1. Introduction

During the main accretion phase, protostars are deeply embedded in their collapsing envelopes and parent clouds. They are so embedded that they radiate mostly at long wavelengths, making their detection and study difficult from the ground (e.g. André et al. 2000; Di Francesco et al. 2007). Protostars, or young stellar objects (YSOs), in the solar neighborhood have been extensively surveyed, but a complete and unbiased census of all protostars in nearby molecular clouds is lacking. The census of embedded YSOs provided by IRAS and near-IR studies in the 1980s could perform more complete surveys in all major nearby star-forming regions (e.g. Nordh et al. 1996; Bontemps et al. 2001; Kaas et al. 2004; Allen et al. 2007; Evans et al. 2009). The population of the youngest protostars, the Class 0 YSOs, can however not be properly surveyed solely in the near and mid-infrared. These youngest objects remain weak or undetected shortward of \(\sim 20 \mu m \).

The Herschel Gould Belt Survey (André et al. 2010) is a key program of the ESA Herschel Space Observatory (Pilbratt et al. 2010). It employs the SPIRE (Griffin et al. 2010) and PACS (Poglitsch et al. 2010) instruments to do photometry in the peak of the spectral energy distributions (SEDs) of the cold protostellar phases, probing of the dust emission from warm inner regions at 70 and 160 \(\mu m \). This confirms the global statistics of several hundred Class 0 YSOs that should be found in the whole Gould Belt Survey.

Key words. stars: formation – ISM: clouds

2. Observations

The observations were performed in the parallel mode of Herschel with a scanning speed of 60\('/\)s, which allows photometric imaging with SPIRE at 250, 350, and 500\(\mu m \) and PACS at 70 and 160\(\mu m \). Two cross-linked scan maps were performed for a final coverage of \(\sim 3.3' \times 3.3' \) (see Fig. 1).

The SPIRE data were reduced using HIPE version 2.0 and modified pipeline scripts; see Griffin et al. (2010) for the large-scale far-infrared images at an unprecedented spatial resolution and sensitivity. The Aquila rift region has been chosen to be observed for the science demonstration phase of Herschel for this survey.

Our 250/350/500 \(\mu m \) SPIRE and 70/160 \(\mu m \) PACS images of the Gould Belt provide the first access to the critical spectral range of the far-infrared to submillimeter regimes to cover the peak of the spectral energy distributions (SEDs) of the cold phase of star formation at a high enough spatial resolution to separate individual objects. The Herschel surveys therefore allow an unprecedented, unbiased census of starless cores (Könnyves et al. 2010), embedded protostars (this work), and cloud structure (Men'shchikov et al. 2010), down to the lowest column densities (André et al. 2010). This survey yields the first accurate far-infrared photometry, hence good luminosity and mass estimates, for a comprehensive view of all early evolutionary stages.
in-orbit performance and scientific capabilities, and Swinyard et al. (2010) for calibration methods and accuracy. A median baseline was applied to the maps for each scan leg, and the naive mapper was used as a mapmaking algorithm. The PACS data were reduced in HIPE 3.0. We used an updated version of the calibration files following the most recent prescriptions of the PACS ICC (see Könyves et al. 2010 for details). Multiresolution median and second-order deglitching, as well as a high-pass filtering over the full scan leg length, were applied. The final PACS maps were created using the photProject task, which performs simple projection of the data cube on the map grid.

The resulting PACS maps are displayed in Fig. 2. Owing to the rapid mapping speed, the resulting point spread functions (PSFs) are elongated in the scan directions leading to cross-like shapes of the PSFs with expected sizes of 5.9″ × 12.2″ at 70 μm and 11.6″ × 15.7″ at 160 μm. The resulting rms in these maps ranges from 50 to 1000 mJy/beam at 70 μm and from 120 to 2200 mJy/beam at 160 μm, depending on the level of background in the map. It is in the W40/Sh2-64 Hit region that the background level is the highest.

3. Overview and distance of the Aquila rift complex

The Aquila rift is a coherent, 5° long feature above the Galactic plane at l = 28°, clearly visible on an extinction map derived from the reddening of stars in 2MASS (Fig. 1). A distance of 225 ± 55 pc has been derived for this extinction wall, using spectro-photometric studies of the optically visible stars (Stražys et al. 2003). This distance is very similar to the usually adopted distance of 260 ± 37 pc for the Serpens star-forming region1, located only 3° north (Stražys et al. 1996).

On the other hand, the most active and main extinction feature in the 2MASS extinction map is associated with the HII region W40/Sh2-64, which has so far been considered to be at a distance ranging from 100 and 700 pc depending on author (Smith et al. 1985; Vallee 1987, and references therein). These distance estimates are mostly based on kinematical distances that have large uncertainties. W40 could therefore be at the same distance as Serpens. Recently, Gutermuth et al. (2008) reported Spitzer observations of an embedded cluster, referred to as Serpens South, in the Aquila rift region. This cluster is located very close in projection on the sky to W40 (see Fig. 1) and thus seems to be part of the W40 region. Gutermuth et al. (2008) proposed that the Serpens South cluster should be part of Serpens since it has the same velocity (6 km s⁻¹). The molecular cloud associated with W40 and traced by C II recombination lines and CO (Zeilik & Lada 1978) has a velocity ranging from 4.5 to 6.5 km s⁻¹, which is also roughly the same as Serpens. More recent N₂H⁺ observations of the entire W40/Serpens South region confirm similar velocities in the whole region with velocity differences of only ~2 km s⁻¹ (Maury et al. in prep.). It is therefore more straightforward to consider that the W40 region is a single complex at the same distance as Serpens. This distance also suits the MWC297/Sh2-62 region since the young 10 M⊙ star MWC297 itself has an accepted distance of 250 pc (Drew et al. 1997). It is finally worth noting that the visual extinction map by Cambresy (1999) derived from optical star counts and only tracing the first layer of the extinction wall has exactly the same global aspect as the 2MASS extinction map of Fig. 1, suggesting that both Serpens Main and the W40/Aquila rift/MWC297 region are associated with this extinction wall at 260 pc. We thus adopt the distance of 260 pc for the entire region in the following.

The 2MASS extinction map and the Herschel images (see Appendix for PACS images and Könyves et al. 2010 for SPIRE images) clearly show a massive cloud associated with W40. This cloud corresponds to G28.74+3.52 in Zeilik & Lada (1978) and has a mass of 1.1 × 10⁴ M⊙ (derived from our 2MASS extinction map). The cloud associated with MWC297 is less massive (4.1 × 10³ M⊙), and we obtain a total mass of 3.1 × 10⁴ M⊙ for the whole area covered by Herschel.

4. Results and analysis

4.1. Source detection and identification of protostars

A systematic source detection was performed on all 5 Herschel bands using getsources (Men'shchikov et al. 2010). This code uses a method based on a multiscale decomposition of the images to disentangle the emission of a population of spatially coherent sources in an optimized way in all bands simultaneously. We built a sample of the best candidate protostars for the whole field. These sources are clearly detected in all Herschel bands (high significance level), and we require a detection at the shortest Herschel wavelength, 70 μm (or 24 μm when Spitzer data were available), to distinguish YSOs from starless cores. Since the 24 and 70 μm emission should only trace warm dust from the inner regions of the YSO envelopes, these sources can be safely interpreted as protostars. The 70 μm fluxes have even been recently recognized as a very good tracer of protostellar luminosities (Dunham et al. 2008). On the other hand, in the PDR region of W40 some extended emission from warm dust at the HII region interface could contaminate this YSO detection criterion. To avoid too stringent a contamination from this extended emission, we selected only sources with an FWHM size

1 Note that a larger distance of 415 ± 25 pc has been recently claimed for Serpens Main based on a VLBA parallax of EC95, a young AeBe star embedded in Serpens Main (Dzib et al. 2010).
A large number of compact sources are clearly seen in the 70 \(\mu \text{m} \) map down to the sensitivity limit of the survey. In the whole Aquila field, 201 YSOs were detected with getsources. The best achieved rms (50 mJy/beam) in the Aquila 70 \(\mu \text{m} \) map in the lowest background regions corresponds to a 5\(\sigma \) detection level in terms of protostar luminosity of 0.05 \(L_\odot \) using the Dunham et al. (2008) relationship. In contrast, in the highest background regions, the 5\(\sigma \) detection level is then as high as 1.0 \(L_\odot \). To account for the variable background level in Aquila, we performed simulations to evaluate the final completeness level of the YSO detection and obtained a 90\% completeness level of \(\sim 0.2 L_\odot \) (see Könyves et al. 2010), which is compatible with the above rough estimates using Dunham et al. (2008).

4.2. Spatial distribution of the protostars

We plotted in Fig. 3 the spatial distribution of the Herschel sample of 201 YSOs overlaid on the map of the dust temperature derived from a simple graybody fit of the Herschel data (see details in Könyves et al. 2010). It is clear that the W40 region corresponds to the most active star-forming region in the Herschel coverage with 90\% of the detected protostars. A second, much less rich, site corresponds to MWC297 with 8\% of the protostars, and another site to the east of W40 can be tentatively identified with very few candidate protostars.

4.3. Basic properties of the protostars: \(M_{\text{env}} \) and \(L_{\text{bol}} \)

For each source an SED was built using the 5 bands of Herschel, as well as Spitzer photometry (Gutermuth et al. 2008) and MAMBO 1.2 mm data (Maury et al. in prep.) when available. These SEDs were systematically fitted using graybody functions to derive \(M_{\text{env}} \) in a systematic way, while the basic properties \(L_{\text{bol}}, L_{\lambda>350 \text{submm}}, \) and \(T_{\text{bol}} \) were obtained by simple integrations of the SEDs. Two representative SEDs are displayed in Fig. 4 with a newly discovered Class 0 object and a weaker Class 0 source, which has a Spitzer counterpart in Gutermuth et al. (2008).

4.4. A close-up view of the Serpens South region

To go one step further in the identification and characterization of the Herschel protostars, we performed a more detailed analysis of the sources in a small area around the Serpens South cluster. In this area, we made a dedicated getsources source extraction using a smaller size pixel of 3\(\arcsec \), and we could compare these first results with the Spitzer protostar population by Gutermuth et al. (2008). We used getsources on 8 bands from 8 to 1200 \(\mu \text{m} \).

Fig. 4. Spectral energy distributions of a newly discovered bright Class 0 (left panel) and of a weaker Class 0 object (right panel), which was previously detected with Spitzer in Gutermuth et al. (2008).

Fig. 5. Herschel SPIRE 350 μm image of the Serpens South region with the distribution of Herschel candidate protostars (blue circles) from the whole field extraction, of the 7 newly discovered Class 0 protostars (green circles), and of the Spitzer YSOs (red crosses; Gutermuth et al. 2008).

by adding the 8 and 24 μm Spitzer and the 1.2 mm MAMBO data to the 5 Herschel bands.

A synthesized view of these first results based on this novel panchromatic analysis of infrared to millimeter range data for this area is given in Fig. 5. It shows the distribution of Herschel protostars compared to the Spitzer sources. The first analysis of this field indicates that even in a highly clustered region like Serpens South, a significant population of protostars were found to be missing by pure near and mid-infrared imaging with as many as 7 newly detected Class 0 objects (green circles), and of the Spitzer YSOs (red crosses; Gutermuth et al. 2008).

5. Global view of the protostellar population

in Aquila

Using the basic properties derived in Sect. 4.3, we can draw the first picture of the property space Herschel is going to cover thanks to its unprecedentedly sensitive and high spatial resolution in the far-infrared.

In Fig. 6 we plotted the location of the 201 Herschel YSOs obtained in the entire field in a M_{env}–L_{bol} evolutionary diagram used to compare observed properties with theoretical evolutionary models or tracks. The displayed tracks represent the expected evolution of protostars of masses 0.2, 0.6, 2.0, and 8.0 M_\odot from the earliest times of accretion (upper left part of the diagram) to the time of 50% mass accreted (conceptual limit between Class 0 and Class I YSOs), and the time for 90% mass accreted (see Bontemps et al. 1996; Saraceno et al. 1996; André et al. 2000; André et al. 2008). In this plot, we distinguished objects with an $L_{\text{submm}}/L_{\text{bol}}$ higher than 0.03 which could be safely recognized as Class 0 objects, from YSOs with $L_{\text{submm}}/L_{\text{bol}}$ lower than 0.01 which are proposed to be Class I sources. The intermediate objects with 0.03 > $L_{\text{submm}}/L_{\text{bol}}$ > 0.01 should be seen as objects with an uncertain classification. A forthcoming
analysis will resolve their nature by building complete SEDs including Spitzer data for a large part of the Aquila field. So far we could safely classify objects only in the reduced area of Serpens South (Sect. 4.4). In this subfield, we verified that objects with $L_{\text{submm}}/L_{\text{bol}} > 0.03$ and $T_{\text{bol}} > 27$ K using the reduced (only the 5 Herschel bands from 70 to 500 μm) SED coverage are indeed all found to be Class 0 objects based on the full coverage from 8 μm to 1.2 mm. We see that the obtained location of Class 0 and Class I YSOs is compatible with the 50% mass accretion limit. Imposing Class 0 objects to have to be above this limit (dashed line in Fig. 6), we finally found between 45 (for $T_{\text{bol}} > 27$ K) and 60 ($L_{\text{submm}}/L_{\text{bol}} > 0.03$) Class 0 objects in the entire field of Aquila.

In conclusion, even if the precise locations of the Herschel protostars in this diagram are seen as a preliminary result and will be updated with a more complete analysis and source detection, our early results clearly indicate that Herschel is a powerful tool for probing the virtually unexplored area of the physical properties of the earliest stages of protostellar evolution.

Acknowledgements. SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); and NASA (USA). PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KUL, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); IFSI, OAP/AOT, OAA/CAISMI, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT, AOT, OAA/CAI, DLR (Germany), ASI (Italy), and CICT/MCT (Spain). We thank Rob Gutermuth for providing us with the list of Spitzer sources in the Serpens South sub-field prior to publication.

References
André, P., Ward-Thompson, D., & Barsony, M. 2000, Protostars and Planets IV, 859
Straitysz, V., Černis, K., & Bartališė, S. 1996, Baltic Astron., 5, 125

1 Laboratoire AIM, CEA/DSM–CNRS–Université Paris Diderot, IRFU/Service d’Astrophysique, C.E. Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France
2 CNRS/INSU, Laboratoire d’Astrophysique de Bordeaux, UMR 5804, BP 89, 33271 Floirac cedex, France
e-mail: bontemps@obs.u-bordeaux1.fr
3 Université de Bordeaux, OASU, Bordeaux, France
4 European Southern Observatory, Karl Schwarzschild Str. 2, 85748 Garching, Germany
5 INAF–IFSI, Fossato del Cavaliere 100, 00133 Roma, Italy
6 IAS, CNRS–INSU–Université Paris-Sud, 91435 Orsay, France
7 Laboratoire d’Astrophysique de Marseille, CNRS/INSU–Université de Provence, 13388 Marseille Cedex 13, France
8 CESR & UMR 5187 du CNRS/Université de Toulouse, BP 4346, 31028 Toulouse Cedex 4, France
9 Observatoire astronomique de Strasbourg, UMR 7550 CNRS/Université de Strasbourg, 11 rue de l’Université, 67000 Strasbourg, France
10 IRAM, 300 rue de la Piscine, Domaine Universitaire, 38406 Saint-Martin-d’Hères, France
11 National Research Council of Canada, Herzberg Institute of Astrophysics, University of Victoria, Department of Physics and Astronomy, Victoria, Canada
12 School of Physics and Astronomy, Cardiff University, Queens Buildings The Parade, Cardiff CF24 3AA, UK
13 National Astronomical Observatories, Chinese Academy of Sciences, 100012 Beijing, PR China
14 ISTA & Dep. of Astronomy and Astrophysics, University Toronto, Toronto, Canada
15 Herschel Science Center, ESAC, ESA, PO Box 78, Villanueva de la Cañada, 28691 Madrid, Spain
16 Department of Astronomy, Stockholm Observatoty, AlbaNova University Center, Roslagstullsbacken 21, 10691 Stockholm, Sweden
17 Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre et Marie Curie, 98 bis Boulevard Arago, 75014 Paris, France
18 Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, EH9 3HJ, UK
19 INAF-Osservatorio Astrofisico di Arcetri, Largo Fermi 5, 50125 Firenze, Italy
20 Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0NL, UK
21 Department of Physics & Astronomy, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
22 Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
23 SUPA, Institute for Astronomy, Edinburgh University, Blackford Hill, Edinburgh EH9 3HJ, UK