Copy the page URI to the clipboard
He, Yulan and Young, S.
(2003).
DOI: https://doi.org/10.1109/ICASSP.2003.1198769
Abstract
The paper presents a hidden vector state (HVS) model for hierarchical semantic parsing. The model associates each state of push-down automata with the state of an HMM. State transitions are factored into separate stack pop and push operations and then constrained to give a tractable search space. The result is a model which is complex enough to capture hierarchical structure but which can be trained automatically from unannotated data. Experiments have been conducted on ATIS-3 1993 and 1994 test sets. The results show that the HVS model outperforms a general finite state tagger (FST) by 19% to 32% in error reduction.