ABSTRACT
Search in folksonomies is hampered by the fact that the meaning of tags and their relations are not made explicit in the system. This is typically addressed by using knowledge sources (KS) to semantically enrich tagspaces, most notably WordNet and (online) ontologies. However, there is no insight of how the different characteristics of these KS contribute to search improvement in folksonomies. In this work we compare these two KS in the context of folksonomy search. We show that while WordNet leads to richer tag structures than online ontologies do, its fine-grained sense hierarchy renders these structures less effective in search compared to the ones generated from ontologies.

Categories and Subject Descriptors
1.2.1 Applications and Expert Systems - Natural language interface, 1.2.8 Problem Solving, Control Methods, and Search - Graph and tree search strategies, Heuristic method.

General Terms

Keywords
Folksonomies, Search, Enrichment, Ontologies, WordNet.

1. INTRODUCTION
Folksonomies are well-known Web2.0 applications and popular medium to publish, annotate and share content. The basic entities of folksonomies are the users, who annotate (tag) the resources with tags (freely selected text labels).

Due to the lack of restrictions in tagging, synonymy, polysemy and basic level variation are frequently observed phenomena among folksonomies tags [2]. Their common underlying cause is that the intended meaning of tags and their relations are not made explicit and therefore are not known to the system. Ideally, to overcome all the above impediments, each folksonomy should be associated with a semantic structure that provides explicit meaning and relations for the tags. One solution to this is the use of formal knowledge sources (KS) to acquire concepts and relations for tags. The two most popular KS used for this purpose are WordNet and online ontologies. However, currently there is no insight on which of them can provide the optimal solution to folksonomy enrichment and search.

In this work we investigate how the usage of each KS addresses the tag polysemy, synonymy, and basic level variation and minimises their effects on folksonomy search.

2. METHOD
To establish clear measures for the comparison of WordNet and ontologies we identify which characteristics of a KS affect the solution of the above folksonomy issues.

To overcome tag polysemy a requirement for a KS is to have enough senses to match the possible senses of tags. Thus, we measure the number of senses per tag assigned when using each KS. To address tag synonymy a KS needs to provide enough synonym words for the senses. To explore the search problems caused by the basic level variation we inspect the structure of senses in each KS. Particularly, the number of more specific (subsense) and more generic (supersense) senses per sense and the additional resources retrieved per sub/super-sense. In order to obtain an overall tagspace coverage against a KS we measure the number of tags mapped to senses from each KS.

In a nutshell, in a tagspace with |R| resources, |T| tags and two KS, WordNet (W) and Ontologies (O), a tag T has a number of senses $S(T:KS)$ in the respective KS. Each of them, has a number of subsenses SUB($S(T:KS)$) and supersenses SUP($S(T:KS)$). We are interested in measuring:

- $\|KST\|$, the number of tags covered by each KS.
- $\|KSTS\|$, the mean number of senses per tag.
- $\|\text{SUB}(S(T:KS))\|$ and $\|\text{SUP}(S(T:KS))\|$, the mean number of subsenses and supersenses per sense.
- $\text{Inc}_{\text{SUB}}(S(T:KS)) = |R_{\text{SUB}}(S(T:KS)) - R_T|/|R_{\text{SUB}}(S(T:KS)) \cup R_T|$ and $\text{Inc}_{\text{SUP}}(S(T:KS)) = |R_{\text{SUP}}(S(T:KS)) - R_T|/|R_{\text{SUP}}(S(T:KS)) \cup R_T|$ are the ratios of resources tagged with the sub/super-senses of the query keyword T. These represent the increase in recall as they would normally be excluded from the results when using a keyword based search like folksonomies do.

To measure the above, we first enrich the tagspaces utilising the two KS. For each KS, we use one enrichment strategy and acquire one semantic structure. Second, we test
each semantic structure on a search experiment utilising a
query expansion mechanism.

Enrichment Strategy A uses WordNet to map tags to its
noun synsets and each synset is considered a sense. For
each sense we import all the synonym words which com-
prise its lexical information. To create a structure between
senses, we import its ancestor synsets (hypernyms) till the
root of the WordNet hierarchy as well as its first level of
hyponyms. This strategy leads to semantic structure A.

Enrichment Strategy B exploits the online ontologies
indexed in Watson\(^1\). This process of sense selection is less
straightforward as there is no pre-defined ontological sense
repository. All ontology concepts that contain the tag in
their local name (id) or label(s) are selected. Because we
explore multiple ontologies, the same concept may be de-
defined in more than one thus leading to duplicates. To avoid
the redundancies we use a clustering algorithm ([1]) that
groups sufficiently similar entities together and merges
them into a cluster of entities, which we consider one
sense. The lexical information of the sense is comprised by
the localnames and the labels of the entities. After the en-
tity clustering, we iterate on the superclasses and sub-
classes of these entities to acquire the desirable sense hi-
erarchy which leads to semantic structure B.

Once the structures A and B are created we implement a
Query Mechanism to perform query expansion during a
search task. Initially we map the query keyword to the rele-
vant sense from each structure A and B. Then we acquire
all the sub/super-senses of the sense and from them we
extract their lexical information. Expanding the query with
the lexical information, we search for resources tagged
with the initial keyword query as well as the additional
keywords obtained from the expansion.

3. Experiments

To evaluate the usefulness of WordNet and ontologies in
folksonomy search we applied enrichment strategies A and
B on a dataset from Flickr. This was a randomly selected
sample of 12233 photos with 89446 tags and 13645 indi-
vidual tags from the group Plant [directory]. We imple-
mented the query mechanism in a web application and
asked 11 users to ask both semantic structures A and B
queries related to plants. The quantitative results from the
enrichment and the querying are displayed in Table 1.

Quantitatively, in terms of enrichment, WordNet nouns
provide higher coverage of tags, more senses and
sub/super-senses for each tag compared to classes from
online ontologies. In our search experiment, WordNet per-
formed better in the subsense expansion, while ontologies
performed better in supersense expansion despite the
higher coverage of tags to WordNet.

<table>
<thead>
<tr>
<th>Table 1: Quantitative results for two KS</th>
</tr>
</thead>
<tbody>
<tr>
<td>KS</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>(</td>
</tr>
<tr>
<td>(</td>
</tr>
<tr>
<td>(</td>
</tr>
<tr>
<td>(</td>
</tr>
<tr>
<td>Inc(_{SUB})</td>
</tr>
<tr>
<td>Inc(_{SUP})</td>
</tr>
</tbody>
</table>

4. DISCUSSION

We comparatively investigated the effect of WordNet and
ontologies on folksonomy enrichment and search and
WordNet outperformed ontologies in most measures. Yet,
in search ontologies performed equally well overall.

More tags of the dataset were mapped in WordNet, with
more senses and more sub/super-senses per tag. In addition,
the matching of tags to WordNet was more straight-
forward, due to the existing sense hierarchy and the uni-
versal naming patterns. On the other hand, for the matching
of tags to ontological senses all the aforementioned issues
need to be dealt with individually. The heterogeneity in
modelling and naming, the redundant senses, the variable
hierarchical granularity and the modelling errors impede
the matching of tags to ontological entities.

But in a search scenario WordNet’s hierarchy of senses
resulted to a fine-grained structure which matched less well
with the tagset compared to the variably granular and im-

dicately redundant structure acquired from ontologies. As a
result of this, the query expansion through the WordNet
structure returned relatively less results considering the
significantly larger number of mapped tags to WordNet
compared to ontologies.

ACKNOWLEDGMENTS

This work was funded by the NeOn project sponsored un-
der EC grant number IST-FF6-027595.

REFERENCES

enriching folksonomies with FLOR*. In ESWC Work-
shop: CISWeb, Tenerife, Spain, 2008.

[2] Golder, S., and Huberman, B.*Usage Patterns of Col-
laborative Tagging Systems*. Journal of Information

[^1]: http://watson.kmi.open.ac.uk