Copy the page URI to the clipboard
Dietze, Stefan and Domingue, John
(2008).
Abstract
The widespread use of ontologies raises the need to integrate distinct conceptualisations. Whereas the symbolic approach of established representation standards – based on first-order logic (FOL) and syllogistic reasoning – does not implicitly represent semantic similarities, ontology mapping addresses this problem by aiming at establishing formal relations between a set of knowledge entities which represent the same or a similar meaning in distinct ontologies. However, manually or semi-automatically identifying similarity relationships is costly. Hence, we argue, that representational facilities are required which enable to implicitly represent similarities. Whereas Conceptual Spaces (CS) address similarity computation through the representation of concepts as vector spaces, CS rovide neither an implicit representational mechanism nor a means to represent arbitrary relations between concepts or instances. In order to overcome these issues, we propose a hybrid knowledge representation approach which extends FOL-based ontologies with a conceptual grounding through a set of CS-based representations. Consequently, semantic similarity between instances – represented as members in CS – is indicated by means of distance metrics. Hence, automatic similarity detection across distinct ontologies is supported in order to facilitate ontology integration.