Copy the page URI to the clipboard
Wang, Shudong; Midgley, Carol A.; Scaërou, Frederic; Grabarek, Joanna B.; Griffiths, Gary; Jackson, Wayne; Kontopidis, George; McClue, Steven J.; McInnes, Campbell; Meades, Christopher; Mezna, Mokdad; Plater, Andy; Stuart, Iain; Thomas, Mark P.; Wood, Gavin; Clarke, Rosemary G.; Blake, David G.; Zheleva, Daniella I.; Lane, David P.; Jackson, Robert C.; Glover, David M. and Fischer, Peter M.
(2010).
DOI: https://doi.org/10.1021/jm901913s
Abstract
Through cell-based screening of our kinase-directed compound collection, we discovered that a subset of N-phenyl-4-(thiazol-5-yl)pyrimidin-2-amines were potent cytotoxic agents against cancer cell lines, suppressed mitotic histone H3 phosphorylation, and caused aberrant mitotic phenotypes. It was subsequently established that these compounds were in fact potent inhibitors of aurora A and B kinases. It was shown that potency and selectivity of aurora kinase inhibition correlated with the presence of a substituent at the aniline para-position in these compounds. The anticancer effects of lead compound 4-methyl-5-(2-(4-morpholinophenyl-amino)pyrimidin-4-yl)thiazol-2-amine (18; Ki values of 8.0 and 9.2 nM for aurora A and B, respectively) were shown to emanate from cell death following mitotic failure and increased polyploidy as a consequence of cellular inhibition of aurora A and B kinases. Preliminary in vivo assessment showed that compound 18 was orally bioavailable and possessed anticancer activity. Compound 18 (CYC116) is currently undergoing phase-I clinical evaluation in cancer patients.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from Dimensions- Request a copy from the author This file is not available for public download
- Download Accepted Manuscript (PDF / 251kB)