Improving quantum efficiency and spectral resolution of a CCD through direct manipulation of the depletion region

Brown, C.; Ambrosi, R. M.; Abbey, T.; Godet, O.; O'Brien, R.; Turner, M. J. L.; Holland, A.; Pool, P. J.; Burt, D. and Vernon, D. (2008). Improving quantum efficiency and spectral resolution of a CCD through direct manipulation of the depletion region. In: Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray, 23-28 Jun 2008, Marseille, France.

DOI: https://doi.org/10.1117/12.802622

Abstract

Future generations of X-ray astronomy instruments will require position sensitive detectors in the form of charge-coupled devices (CCDs) for X-ray spectroscopy and imaging with the ability to probe the X-ray universe with greater efficiency. This will require the development of CCDs with structures that will improve their quantum efficiency over the current state of the art. The quantum efficiency improvements would have to span a broad energy range (0.2 keV to >15 keV). These devices will also have to be designed to withstand the harsh radiation environments associated with orbits that extend beyond the Earth's magnetosphere. This study outlines the most recent work carried out at the University of Leicester focused on improving the quantum efficiency of an X-ray sensitive CCD through direct manipulation of the device depletion region. It is also shown that increased spectral resolution is achieved using this method due to a decrease in the number of multi-pixel events. A Monte Carlo and analytical models of the CCD have been developed and used to determine the depletion depths achieved through variation of the device substrate voltage, Vss. The models are also used to investigate multi-pixel event distributions and quantum efficiency as a function of depletion depth.

Viewing alternatives

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions
No digital document available to download for this item

Item Actions

Export

About