Copy the page URI to the clipboard
Garcia, Andres; Szomszor, Martin; Alani, Harith and Corcho, Oscar
(2009).
URL: http://www.uni-koblenz.de/confsec/CKCaR09/
Abstract
The availability of tag-based user-generated content for a variety of Web resources (music, photos, videos, text, etc.) has largely increased in the last years. Users can assign tags freely and then use them to share and retrieve information. However, tag-based sharing and retrieval is not optimal due to the fact that tags are plain text labels without an explicit or formal meaning, and hence polysemy and synonymy should be dealt with appropriately. To ameliorate these problems, we propose a context-based tag disambiguation algorithm that selects the meaning of a tag among a set of candidate DBpedia entries, using a common information retrieval similarity measure. The most similar DBpedia en-try is selected as the one representing the meaning of the tag. We describe and analyze some preliminary results, and discuss about current challenges in this area.