Copy the page URI to the clipboard
Johnson, Jeffrey and Price, Blaine A.
(2004).
DOI: https://doi.org/10.1007/b98623
Abstract
Complexity science is characterised by computational irreducibility, chaotic dynamics, combinatorial explosion, co-evolution, and multilevel lattice hierarchical structure. One of its main predictive tools is computer-generated distributions of possible future system states. This assumes that the system can be represented inside computers. Robot soccer provides an excellent laboratory subject for complexity science, and we seek a lattice hierarchical vocabulary to provide coherent symbolic representations for reasoning about robot soccer systems at appropriate levels. There is a difference between constructs being human-supplied and being abstracted autonomously. The former are implicitly lattice-hierarchically structured. We argue that making the lattice hierarchy explicit is necessary for autonomous systems to abstract their own constructs. The ideas are illustrated using data taken from the RoboCup simulation competition.