Copy the page URI to the clipboard
Kowal, J.; Nixon, T.; Aitken, N. and Braithwaite, N. St. J.
(2009).
DOI: https://doi.org/10.1016/j.sna.2009.08.018
Abstract
A new method of exposing silicon/semiconductor wafers to a mixture of radicals is described, in which these species are generated in an oxygen-rich gas discharge confined between a concentric pair of annular mesh electrodes surrounding the wafers. This approach allows the wafer surfaces to be treated without damage from the energetic ions, strong electric fields, and high UV fluxes associated with direct treatment by exposure to gas discharge plasmas. The process is compared with direct oxygen plasma activation for its latitude with respect to treatment duration, effect on wafer surface roughness and bond strength. Wider process latitude and reduced surface roughening are obtained for treatment by radicals compared with direct plasma exposure. Comparative analysis of treated and untreated silicon surfaces by X-ray photoelectron spectroscopy indicate that traces of fluorine present on the wafer surface before treatment are removed with great efficiency by the process.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 18380
- Item Type
- Journal Item
- ISSN
- 0924-4247
- Project Funding Details
-
Funded Project Name Project ID Funding Body Not Set Not Set UK Department for Trade and Industry - Keywords
- wafer bonding; radical; activation; plasma; XPS; surface science; electron spectroscopy; fluorine; silicon
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Engineering and Innovation
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences - Research Group
- Physics
- Copyright Holders
- © 2009 Elsevier B.V.
- Depositing User
- Colin Smith