N-methyl-d-aspartate receptor independent changes in expression of polysialic acid-neural cell adhesion molecule despite blockade of homosynaptic long-term potentiation and heterosynaptic long-term depression in the awake freely behaving rat dentate gyrus

Rodríguez, J. J.; Dallérac, G. M.; Tabuchi, M.; Davies, H. A.; Colyer, F. M.; Stewart, M. G. and Doyère, V. (2009). N-methyl-d-aspartate receptor independent changes in expression of polysialic acid-neural cell adhesion molecule despite blockade of homosynaptic long-term potentiation and heterosynaptic long-term depression in the awake freely behaving rat dentate gyrus. Neuron Glia Biology, 4(3) pp. 169–178.

DOI: https://doi.org/10.1017/S1740925X09990159

Abstract

Investigations examining the role of polysialic acid (PSA) on the neural cell adhesion molecule (NCAM) in synaptic plasticity have yielded inconsistent data. Here, we addressed this issue by determining whether homosynaptic long-term potentiation (LTP) and heterosynaptic long-term depression (LTD) induce changes in the distribution of PSA-NCAM in the dentate gyrus (DG) of rats in vivo. In addition, we also examined whether the observed modifications were initiated via the activation of N-methyl-d-aspartate (NMDA) receptors. Immunocytochemical analysis showed an increase in PSA-NCAM positive cells both at 2 and 24 h following high-frequency stimulation of either medial or lateral perforant paths, leading to homosynaptic LTP and heterosynaptic LTD, respectively, in the medial molecular layer of the DG. Analysis of sub-cellular distribution of PSA-NCAM by electron microscopy showed decreased PSA dendritic labelling in LTD rats and a sub-cellular relocation towards the spines in LTP rats. Importantly, these modifications were found to be independent of the activation of NMDA receptors. Our findings suggest that strong activation of the granule cells up-regulates PSA-NCAM synthesis which then incorporates into activated synapses, representing NMDA-independent plastic processes that act synergistically on LTP/LTD mechanisms without participating in their expression.

Viewing alternatives

Download history

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions

Export

About