The Formation of Nanocrystalline SrFeO3−δ Using Mechano-Synthesis and Subsequent Sintering: Structural and Mössbauer Studies

Widatallah, H. M.; Al-Rawas, A. D.; Johnson, C.; Al-Harthi, S. H.; Gismelseed, A. M.; Moore, E. A. and Stewart, S. J. (2009). The Formation of Nanocrystalline SrFeO3−δ Using Mechano-Synthesis and Subsequent Sintering: Structural and Mössbauer Studies. Journal of Nanoscience and Nanotechnology, 9(4) p. 2510.

DOI: https://doi.org/10.1166/jnn.2009.dk11

Abstract

The influence of mechanical milling and subsequent sintering of a 2:1 molar mixture of SrCO3 and α-Fe2O3 on the formation of SrFeO3−δ pervoskite-related nanocrystalline particles is investigated. The structural evolution during the formation process is systematically investigated using X-ray diffraction, thermal analysis, X-ray photoelectron spectroscopy and Mössbauer spectroscopy. Premilling the mixture in air for 120 h leads to the incorporation of Sr2+ in the α-Fe2O3 crystal structure thus facilitating the formation of a 2:1 nanocrystalline mixture of SrFeO3 and SrFeO2.875 by sintering the pre-milled mixture in air at 800 °C (12 h). This temperature is ∼300 °C lower than those at which SrFeO3−δ phases are synthesized by the conventional ceramic techniques. Pre-milling the precursors was found to result in a smaller oxygen deficiency (δ) relative to conventional ceramic synthesis of SrFeO3−δ. Rietveld refinement of the X-ray diffraction shows the interatomic distances in the resulting SrFeO2.875 nanocrystalline phase to be slightly different from those of the conventionally prepared bulk leading, in turn, to a crystal structure with tilted polyhedral cationic sites. This structural distortion is related to both small-size and surface effects in the nanoparticles that have no counterparts in the corresponding bulk material. The surface structure of the attained SrFeO3−δ nanocrystalline particles shows a significant partial reduction of Fe4+ to Fe3+ due to ambient conditions and the presence of an appreciable amount of SrCO3 as well.

Viewing alternatives

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions
No digital document available to download for this item

Item Actions

Export

About