Copy the page URI to the clipboard
Cockell, Charles S.
(2008).
DOI: https://doi.org/10.1016/j.asr.2008.01.003
Abstract
In the coming decades the detection of Earth-like extrasolar planets, either apparently lifeless or exhibiting spectral signatures of life, will encourage design studies for craft to visit them. These missions will require the elaboration of an interstellar planetary protection protocol. Given a specific dose required to sterilize microorganisms on a spacecraft, a critical mean velocity can be determined below which a craft becomes self-sterilizing. This velocity is calculated to be below velocities previously projected for interstellar missions, suggesting that an active sterilization protocol prior to launch might be required. Given uncertainties in the surface conditions of a destination extrasolar planet, particularly at microscopic scales, the potential for unknown biochemistries and biologies elsewhere, or the possible inoculation of a lifeless planet that is habitable, then both lander and orbiter interstellar missions should be completely free of all viable organisms, necessitating a planetary protection approach applied to orbiters and landers bound for star systems with unknown local conditions for habitability. I discuss the case of existing craft on interstellar trajectories – Pioneer 10, 11 and Voyager 1 and 2.