Copy the page URI to the clipboard
Iqbal, Mudasser M.; Gondal, Iqbal and Dooley, Laurence S.
(2004).
DOI: https://doi.org/10.1109/INMIC.2004.1492925
Abstract
The success of pervasive computing environments using ubiquitous loco-dynamic sensing devices is very dependent upon the sensor deployment topology (DT) employed. This paper presents a systematic mathematical model for efficient sensor deployment and provides a comparison with other popular topologies. The model focuses upon blanket coverage of a surveillance area using a minimum number of sensing devices, with minimal infra-sensor overlapping to reduce collisions and co-existence problems. Simulation results are presented for the hexagonal, triangular and square grid topologies for various dimensions of surveillance area. The results confirm that the hexagonal model gives optimal performance in terms of requiring the minimal number of sensors. The paper also highlights the improved performance of ubiquitous wireless sensor networks when a hexagonal topology (HT) is used.