Copy the page URI to the clipboard
Clarke, Andrew; Meredith, Michael P.; Wallace, Margaret I.; Brandon, Mark A. and Thomas, David N.
(2008).
DOI: https://doi.org/10.1016/j.dsr2.2008.04.035
Abstract
We report data from the first 8 years of oceanographic monitoring in Ryder Bay, northern Marguerite Bay, Antarctica. These data form the oceanographic component of the Rothera Oceanographic and Biological Time-Series (RaTS) project. When weather and ice permit, the RaTS station is occupied every 5 days in summer and weekly in winter. Observations comprise a conductivity–temperature–depth (CTD) cast to 500m and a water sample from 15 m, this being the depth of the chlorophyll maximum in most years. The water samples provide data on total chlorophyll (size-fractionated at 20, 5, 2 and 0.2 µm), macronutrients (N, P and Si) and dissolved organic carbon (DOC). The CTD profiles reveal strong seasonality in the topmost Antarctic Surface Water (AASW) driven by summer solar heating and winter cooling with brine rejection during ice formation. The depth of the winter mixed layer reaches a maximum in August, with annual maximum values ranging from ~30 to >140m. Below the AASW is the relatively aseasonal Winter Water (WW), and the bottom of the profile indicates the presence of modified Upper Circumpolar Deep Water (UCDW). Summer chlorophyll typically exceeds 20mg m-3, with the peak in January. Vertical flux of phytodetritus is also predominantly in January. The summer bloom is dominated by large diatoms and colonial forms, whereas in winter most of the chlorophyll is in the nanophytoplankton (20–5 μm) fraction. Macronutrients show marked seasonality with N:P covariation close to Redfield (~15.3) and Si:N stoichiometry ~1.67. Summer DOC values show little seasonality and relatively high winter levels (>50 µM). Surface waters also exhibit a marked interannual variability, with ENSO as an important driver at subdecadal scales.
Viewing alternatives
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 12086
- Item Type
- Journal Item
- ISSN
- 0967-0645
- Project Funding Details
-
Funded Project Name Project ID Funding Body Not Set Not Set NERC (Natural Environment Research Council) - Keywords
- seasonality; ice; oceanography; mixed layer; irradiance; flux
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Environment, Earth and Ecosystem Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Copyright Holders
- © 2008 Elsevier Ltd.
- Depositing User
- Mark Brandon