Copy the page URI to the clipboard
Huang, Zi; Hengtao, Shen; Zhou, Xiaofang; Song, Dawei and Rüger, Stefan
(2007).
DOI: https://doi.org/10.1145/1277741.1277940
Abstract
Dimensionality reduction plays an important role in efficient similarity search, which is often based on k-nearest neighbor (k-NN) queries over a high-dimensional feature space. In this paper, we introduce a novel type of k-NN query, namely conditional k-NN (ck-NN), which considers dimension-specific constraint in addition to the inter-point distances. However, existing dimensionality reduction methods are not applicable to this new type of queries. We propose a novel Mean-Std (standard deviation) guided Dimensionality Reduction (MSDR) to support a pruning based efficient ck-NN query processing strategy. Our preliminary experimental results on 3D protein structure data demonstrate that the MSDR method is promising.