Local mixture models of exponential families

Anaya-Izquierdo, Karim and Marriott, Paul (2007). Local mixture models of exponential families. Bernoulli, 13(3) pp. 623–640.

DOI: https://doi.org/10.3150/07-BEJ6170

Abstract

Exponential families are the workhorses of parametric modelling theory. One reason for their popularity is their associated inference theory, which is very clean, both from a theoretical and a computational point of view. One way in which this set of tools can be enriched in a natural and interpretable way is through mixing. This paper develops and applies the idea of local mixture modelling to exponential families. It shows that the highly interpretable and flexible models which result have enough structure to retain the attractive inferential properties of exponential families. In particular, results on identification, parameter orthogonality and log-concavity of the likelihood are proved.

Viewing alternatives

Download history

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions

Export

About