Currently browsing: Items authored or edited by John Gower

55 items in this list.
Generated on Mon Aug 10 16:32:02 2020 BST.

Jump to:

2018 | 2017 | 2016 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994

2018To Top

Albers, C. J.; Gower, J. C. and Kiers, H. A. L. (2018). Rank Properties for Centred Three-Way Arrays. In: Mola, F.; Conversano, C. and Vichi, M. eds. Classification, (Big) Data Analysis and Statistical Learning. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, pp. 69–76.

2017To Top

Albers, Casper and Gower, John (2017). Visualising interactions in bi- and triadditive models for three-way tables. Chemometrics and Intelligent Laboratory Systems, 167 pp. 238–247.

2016To Top

Gower, John C.; Le Roux, Niël J. and Gardner-Lubbe, Sugnet (2016). Biplots: qualititative data. Wiley Interdisciplinary Reviews: Computational Statistics, 8(2) pp. 82–111.

2011To Top

Gower, John C. and Albers, Casper J. (2011). Between-group metrics. Journal of Classification, 28(3) pp. 315–326.

Albers, C.J.; Critchley, F. and Gower, J. C. (2011). Quadratic minimisation problems in statistics. Journal of Multivariate Analysis, 102(3) pp. 698–713.

Albers, C. J.; Critchley, F. and Gower, J. C. (2011). Applications of quadratic minimisation problems in statistics. Journal of Multivariate Analysis, 102(3) pp. 714–722.

2010To Top

Gower, John C. (2010). Procrustes methods. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4) pp. 503–508.

Albers, Casper J. and Gower, John C. (2010). A general approach to handling missing values in Procrustes analysis. Advances in Data Analysis and Classification, 4(4) pp. 223–237.

Gower, J. C.; Groenen, P. J. F. and Van der Velden, M. (2010). Area biplots. Journal of Computational and Graphical Statistics, 19(1) pp. 46–61.

2009To Top

Wieringa, Jaap; Dijksterhuis, Garmt; Gower, John and van Perlo, Frederieke (2009). Generalised procrustes analysis with optimal scaling: exploring data from a power supplier. Computational Statistics and Data Analysis, 53(12) pp. 4546–4554.

Blasius, Jörg; Eilers, Paul H. C. and Gower, John (2009). Better biplots. Computational Statistics and Data Analysis, 53(8) pp. 3145–3158.

2008To Top

Gower, John (2008). The biological stimulus to multidimensional data analysis. Electronic Journal for History of Probability and Statistics, 4(2)

Lubbe-Gardner, Sugnet; le Roux, Niël J. and Gower, John C. (2008). Measures of fit in principal component and canonical variate analysis. Journal of Applied Statistics, 35(9) pp. 947–965.

Gower, John (2008). Asymmetry analysis: The place of models. In: Shigemasu, K.; Okada, A.; Imaizuma, T. and Hodhina, T. eds. New Trends in Psychometrics. Universal Academy Press, pp. 69–78.

2007To Top

Arnold, Gillian M; Gower, John C; Gardner-Lubbe, Sugnet and Le Roux, Niël J (2007). Biplots of free-choice profile data in generalized orthogonal Procrustes analysis. Journal of the Royal Statistical Society: Series C (Applied Statistics), 56(4) pp. 445–458.

Albers, Casper; Critchley, Frank and Gower, John (2007). Group average representations in Euclidean distance cones. In: Brito, Paula; Bertrand, Patrice; Cucumel, Gucumel and de Carvalho, Francisco eds. Selected Contributions in Data Analysis and Classification. Studies in Classification, Data Analysis, and Knowledge Organization. Berlin, Germany: Springer, pp. 445–454.

2006To Top

Gower, John (2006). Divided by a Common Language: Analyzing and visualizing two-way arrays. In: Greenacre, Michael and Blasius, Joerg eds. Multiple Correspondence Analysis and Related Methods. Chapman & Hall/CRC Statistics in the Social and Behavioral Science (1). Boca Raton, Florida: Chapman and Hall, pp. 77–105.

Gower, J. C. (2006). Statistica data analytica est et aliter. Statistica Neerlandica, 60(2) pp. 124–134.

Gardner, Sugnet; Gower, John C. and le Roux, N.J. (2006). A Synthesis of canonical variate analysis, generalised canonical correlation and Procrustes analysis. Computational Statistics and Data Analysis, 50(1) pp. 107–134.

2005To Top

Blasius, Jörg and Gower, John C. (2005). Multivariate prediction with nonlinear principal components analysis: application. Quality and Quantity, 39(4) pp. 373–390.

Gower, John and Blasius, Jörg (2005). Multivariate prediction with nonlinear principal components analysis (methodology). Quality and Quantity, 39(4) pp. 359–372.

Gower, John C. and Ngouenet, Roger F. (2005). Nonlinearity effects in multidimensional scaling. Journal of Multivariate Analysis, 94(2) pp. 344–365.

Gower, John (2005). Biplot. In: Everitt, Brian and Howell, David eds. Encyclopedia of Statistics in Behavioral Sciences, Volume 1. New York: Wiley, pp. 163–164.

2004To Top

Gower, J. C. (2004). The geometry of biplot scaling. Biometrika, 91(3) pp. 705–714.

Gower, John (2004). Classifying classification problems. In: Comptes Rendus des Iles Rencontres de la Societe Francophone de Classification (Chavent, M; Dordan, O; Lacomblez, C.C.; Langlais, M and Patouille, B eds.), Information not provided, pp. 41–47.

Gower, John C. and Dijksterhuis, Garmt B. (2004). Procrustes problems. Oxford Statistical Science Series, 30. Oxford, UK: Oxford University Press.

2003To Top

Gower, John (2003). Visualisation in multivariate and multidimensional data analysis. In: Bulletin of the International Statistical Institute, Information not supplied, pp. 101–104.

Gower, John C. and de Rooij, Mark (2003). A Comparison of the multidimensional scaling of triadic and dyadic distances. Journal of Classification, 20(1) pp. 115–136.

de Rooij, Mark and Gower, John C. (2003). The Geometry of triadic distances. Journal of Classification, 20(2) pp. 181–220.

Gower, John (2003). Unified biplot geometry. metodološki zvezki (Develpments in Applied Statistics), 19 pp. 3–22.

2001To Top

Gower, J. C. (2001). Procrustes analysis. In: Smelser, N. J. and Baltes, P. B. eds. International Encyclodpedia of the Social and Behavioural Sciences, Volume 18. Oxford: Elsevier, pp. 12141–12143.

2000To Top

Gower, John C. (2000). Rank-one and rank-two departures from symmetry. Computational Statistics and Data Analysis, 33(2) pp. 177–188.

1999To Top

Gower, John (1999). Geometry, algebra and data analysis. The Mathematical Scientist, 24(2) pp. 75–89.

Gower, J. C.; Meulman, J. J. and Arnold, G. M. (1999). Non-metric linear biplots. Journal of Classification, 16(2) pp. 181–196.

Gower, J. C. and Krzanowski, W. J. (1999). Analysis of distance for structured multi-variate data. Journal of the Royal Statistical Society. Series C (Applied Statistics), 48(4) pp. 505–519.

Gower, John (1999). Discussion of contrast between psycometric and statistical approaches to multiway data analysis. In: International Statistical Insitute ed. Bulletin of the International Statistical Institute, Volume 58. Helsinki: International Statistical Institute, pp. 101–102.

1998To Top

Gower, J. C. (1998). The role of constraints in determining optimal scores. Statistics in Medicine, 17(23) pp. 2709–2721.

Gower, J. C. and Zielman, B. (1998). Orthogonality and its approximation in the analysis of asymmetry. Linear Algebra and its Applications, 278(1-3) pp. 183–193.

Gower, John (1998). Classification, overview. In: Armitage, P. and Coulton, Theodore eds. Encyclopedia of Biostatistics, Volume 1. John Wiley and Sons, Inc., pp. 656–667.

Gower, John (1998). Principal coordinates analysis. In: Armitage, P. and Coulton, Theodore eds. Encyclopedia of Biostatistics, Volume 5. John Wiley and Sons, Inc., pp. 3514–3518.

Gower, John (1998). Similarity, dissimilarity, and distance measure. In: Armitage, P. and Coulton, Theodore eds. Encyclopedia of Biostatistics, Volume 5. John Wiley and Sons, Inc., pp. 4097–4100.

Gower, John and Harding, Simon A. (1998). Prediction regions for categorical variables. In: Blasius, Jörg and Greenacre, Michael eds. Visualization of Categorical Data. Elsevier Inc., pp. 405–419.

Gower, J. C. and Ngouenet, R. F (1998). Some new types of biplot. In: Proceeding of the Fourth Sensometrics (Brockhoff, P.B ed.), pp. 60–63.

Gower, John C. and Ross, Gavin J. S. (1998). Non-probabilistic classification. In: Rizzi, Alfredo; Vichi, Maurizio and Bock, Hans Hermann eds. Advances in Data Science and Classification. New York, NY U.S.: Springer, pp. 21–28.

1997To Top

Gower, John; Hand, D. J. and Ngouenet, R. F. (1997). The development of interactive graphical software for a unified biplot methodology. In: Wegman, E. J. and Azen, S. P. eds. Computing Science and Statistics, Volume 29. International Association for Statistical Computing, pp. 22–27.

1996To Top

Gower, John (1996). Multivariate and multidimensional analysis. In: Armitage, Peter and David, Herbert A. eds. Advances in Biometry. Wiley Series in Probability and Statistics. New York, U.S.: Wiley.

Denis, Jean-Baptise and Gower, John C. (1996). Asymptotic confidence regions for biadditive models: interpreting genotype-environment interactions. Journal of the Royal Statistical Society: Series C (Applied Statistics), 45(4) pp. 479–493.

Gower, John C. and Greenacre, Michael J. (1996). Unfolding a symmetric matrix. Journal of Classification, 13(1) pp. 81–105.

1995To Top

Gower, J. C. and Hand, David J. (1995). Biplots. Monographs on statistics and applied probability, 54. London, U.K.: Chapman & Hall.

Gower, John (1995). A general theory of biplots. In: Krzanowski, W.J. ed. Recent Advances in Descriptive Multivariate Statistics. Royal Statistical Society Lecture Notes, 2. Oxford, U.K.: Oxford University Press, pp. 283–303.

Gower, John (1995). Orthogonal and projection procrustes analysis. In: Krzanowski, W.J. ed. Recent Advances in Descriptive Multivariate Statistics. Royal Statistical Society Lecture Notes, 2. Oxford, U.K.: Oxford University Press, pp. 113–134.

Gower, John (1995). Distance-geometry and shape. In: Proceedings in Current Issues in Statistical Shape Analysis, 5-7 Apr 1995, Leeds, U.K..

1994To Top

Denis, Jean-Baptiste and Gower, John C. (1994). Asymptotic covariances for the parameters of biadditive models. Utilitas Mathematica, 46 pp. 193–205.

Export

Subscribe to these results

get details to embed this page in another page Embed as feed [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0