The Open UniversitySkip to content
 

Open Research Online
Items Authored or Edited by Bridget Webb

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0 [Create Shortened URL] SURL
Jump to: Journal Item
Number of items: 10.

Journal Item

Bryant, Darryn; Herke, Sarada; Maenhaut, Barbara and Webb, Bridget S. (2018). On Hamilton decompositions of infinite circulant graphs. Journal of Graph Theory, 88(3) pp. 434–448. filefilefilefile

Wanless, Ian M. and Webb, Bridget S. (2017). Small Partial Latin Squares that Cannot be Embedded in a Cayley Table. Australasian Journal of Combinatorics, 67(2) pp. 352–363. file

Danziger, Peter; Horsley, Daniel and Webb, Bridget S. (2014). Resolvability of infinite designs. Journal of Combinatorial Theory, Series A, 123(1) pp. 73–85. file

Cameron, Peter and Webb, Bridget (2012). Perfect countably infinite Steiner triple systems. Australasian Journal of Combinatorics, 54 pp. 273–278. file

Danziger, Peter; Wanless, Ian M. and Webb, Bridget S. (2011). Monogamous latin squares. Journal of Combinatorial Theory, Series A, 118(3) pp. 796–807.

Chicot, K. M.; Grannell, M. J.; Griggs, T. S. and Webb, B. S. (2010). On sparse countably infinite Steiner triple systems. Journal of Combinatorial Designs, 18(2) pp. 115–122.

Maenhaut, Barbara; Wanless, Ian M. and Webb, Bridget S. (2007). Subsquare-free Latin squares of odd order. European Journal of Combinatorics, 28(1) pp. 322–336.

Wanless, Ian M. and Webb, Bridget S. (2006). The Existence of latin squares without orthogonal mates. Designs, Codes and Cryptography, 40(1) pp. 131–135.

Bryant, Darryn; Maenhaut, Barbara; Quinn, Kathleen and Webb, Bridget S. (2004). Existence and embeddings of partial Steiner triple systems of order ten with cubic leaves. Discrete Mathematics, 284(1-3) pp. 83–95.

Cameron, Peter J. and Webb, Bridget S. (2002). What is an infinite design? Journal of Combinatorial Designs, 10(2) pp. 79–91.

This list was generated on Sat Sep 21 18:13:28 2019 BST.

Policies | Disclaimer

© The Open University   contact the OU