Ultrastructural Distribution of the 7 Nicotinic Acetylcholine Receptor Subunit in Rat Hippocampus

How to cite:

For guidance on citations see FAQs.

Link(s) to article on publisher’s website:
http://www.jneurosci.org/cgi/content/abstract/21/20/7993?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&author1=skehel&andorexactfulltext=and&searchid=1&FIRSTINDEX=0&sortspec=relevance&resourcetype=HWCIT

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Ultrastructural Distribution of the α7 Nicotinic Acetylcholine Receptor Subunit in Rat Hippocampus

Ruth Fabian-Fine,1,2 Paul Skehel,2 Mick L. Errington,2 Heather A. Davies,1 Emanuele Sher,3 Michael G. Stewart,1 and Alan Fine2,4

1Department of Biological Sciences, The Open University, Milton Keynes, MK7 6AA, United Kingdom, 2Division of Neurophysiology, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom, 3Lilly Research Centre, Eli Lilly and Co., Erl Wood Manor, Windlesham, Surrey GU20 6PH, United Kingdom, and 4Department of Physiology and Biophysics, Dalhousie University Faculty of Medicine, Halifax, Nova Scotia B3H 4H7, Canada

Acetylcholine (ACh) is an important neurotransmitter in the mammalian brain; it is implicated in arousal, learning, and other cognitive functions. Recent studies indicate that nicotinic receptors contribute to these cholinergic effects, in addition to the established role of muscarinic receptors. In the hippocampus, where cholinergic involvement in learning and memory is particularly well documented, α7 nicotinic acetylcholine receptor subunits (α7 nAChRs) are highly expressed, but their precise ultrastructural localization has not been determined. Here, we describe the results of immunogold labeling of serial ultrathin sections through stratum radiatum of area CA1 in the rat. Using both anti-α7 nAChR immunolabeling and α-bungarotoxin binding, we find that α7 nAChRs are present at nearly all synapses in CA1 stratum radiatum, with immunolabeling present at both presynaptic and postsynaptic elements. Morphological considerations and double immunolabeling indicate that GABAAergic

Accepted for publication June 26, 2001.

This work was supported by the Medical Research Council and by grants from the Human Frontier Science Program (A.F.) and the Brain and Behavioural Sciences Research Council (108/BI 11211) (M.G.S.). We thank J.-A. Horne, E. Hirst, and Drs. T. V. F. Bliss, I. Burdett, and L. A. Meieritz-chen for helpful discussion.

Correspondence should be addressed to Dr. Ruth Fabian-Fine, Department of Psychology, Dalhousie University, Halifax, Nova Scotia B3H 4J1 Canada. E-mail: rfabian@is.dal.ca.

Acetylcholine (ACh) is the major excitatory neurotransmitter in the peripheral nervous system. Ionotropic nicotinic receptors mediate postsynaptic excitatory responses at the neuromuscular junction, and there is evidence that nicotinic receptors may also act presynaptically to modulate acetylcholine release in the periphery (Wessler et al., 1992; Liang and Vizi, 1997). In the mammalian CNS, specific receptors for nicotinic ligands have been recognized for many years (Arimatsu et al., 1978; Dudai and Segal, 1978; Hunt and Schmidt, 1978; Segal et al., 1978), but only recently has evidence begun to emerge for their functional roles, including possible mediation of fast postsynaptic responses at certain brain sites (Zhang et al., 1993; Roerig et al., 1997; Chu et al., 2000) and modulation of release of various transmitters, including glutamate (Vidal and Changeux, 1993; McGehee et al., 1995; Gray et al., 1996), GABA (Lena et al., 1993), ACh (McGehee et al., 1995), and dopamine (Rapier et al., 1988). Nicotinic receptors constitute a heterogeneous family of ion channels. In the nervous system, nine different α subunits (α2–α10) and three different β subunits (β2–β4) have been described. Most are assumed to form heteropentameric structures, with various combinations of α and β subunits. There is also evidence in heterologous expression systems that some subunits, particularly α7, form homopentamers (Courtjier et al., 1990; Schoepfer et al., 1990; Seguela et al., 1993). Nicotinic acetylcholine receptors containing α7 subunits (α7 nAChRs) are, along with those containing the α4/β2 combination, the most abundant in brain. The distribution of these receptors is specific, with the α7 subunit, which is selectively bound by α-bungarotoxin (αBgtx) (Chen and Patrick, 1997; Orr-Urtreger et al., 1997), abundant in particular cortical and subcortical areas (Bina et al., 1995) of the mammalian brain; conspicuous among these is the hippocampus (Dominguez del Toro et al., 1994). The α7 subunit appears to participate in numerous important processes, including modulation of release of several neurotransmitters, mediation of postsynaptic excitatory responses, long-term potentiation (LTP), and cognitive function (Hunter et al., 1994; Fujii et al., 2000; Mansvelder and McGehee, 2000) (for review, see Role and Berg, 1996; Wonnacott, 1997; Radcliffe et al., 1999; Levin and Rezvani, 2000).

Light microscopic immunostaining has revealed the presence of α7 nAChRs in both somatic and dendritic regions in all hippocampal areas (Dominguez del Toro et al., 1994). Hippocampal cells in culture were found to exhibit patchy α7 nAChR immunolabeling on somata and dendrites, colocalized with presynaptic markers (Barrantes et al., 1995; Zarei et al., 1999), but the identity of the labeled cells was unspecified, nor was it possible at the light microscopic level to establish the presynaptic versus...
postsynaptic nature of the labeling. Electron microscopic (EM) analysis of 125I-Bgtx binding provided evidence for α_7 nAChRs in hippocampal synapses (Hunt and Schmidt, 1978), but the large grain radius and relative insensitivity of the method prevented firm conclusions about incidence or distribution of the Bgtx binding sites. Full understanding of the varied and subtle functional roles recently attributed to α_7 nAChRs in the hippocampus (Radcliffe et al., 1999) will require high-resolution analysis of the subcellular distribution of this subunit. To this end, we have performed light and electron microscopic immunostaining of CA1 stratum radiatum, and here report that α_7 receptors are highly abundant at almost all synapses in this region. The intensity of the signal suggests that the importance of α_7-mediated nicotinic cholinergic signaling may be far greater than is currently recognized.

MATERIALS AND METHODS

Light microscopic α_7 nAChR immunolabeling. Intact brain preparations were obtained from two adult male Sprague Dawley rats. Animals were anesthetized with urethane (1.5 gm/kg, i.p.) and perfused over ~20 min with 200 ml of 4% paraformaldehyde (PFA)/0.3% glutaraldehyde (GA) in PBS (0.1M, pH 7.2). After dissection the brains were immersed in 4% paraformaldehyde (PFA)/0.3% glutaraldehyde (GA) for 30 min. After fixation, the tissue was rinsed in PBS (0.1M, pH 7.2). After dissecting the brain, the tissue was rinsed in PBS (0.1M, pH 7.2). After fixing it in 30% sucrose, the brain was immersed in 200 ml of 4% paraformaldehyde (PFA)/0.3% glutaraldehyde (GA) for 2 hr and embedded in 7% Agarose. Vibratome sections (30 μm) were thawed and dried using a Leica VT1000S and rinsed in PBS (4 X 10 min). Sections containing the hippocampal formation were then incubated at 1% glycine in PBS to quench residual reactive aldehyde groups, washed in PBS (2 X 10 min), permeabilized in 0.1% saponin (S2149; Sigma, St. Louis, MO)/PBS for 15 min, and incubated with the primary monoclonal anti-α_7 nAChR antibody (Mab 506; M220, Sigma) (Schoepfer et al., 1990) at 4°C overnight. The antibody was diluted 1:3000 in an incubation medium (IM) consisting of PBS with 1% bovine serum albumin (A4503, Sigma), 5% normal goat serum, 0.5% cold water fish skin gelatin (G7765, Sigma), and 0.01% saponin. After incubation, preparations were rinsed thoroughly in PBS. To detect anti-α_7 nAChR antibody binding, a secondary goat anti-mouse antibody coupled to the fluorochrome Cy3 (Stratech Scientific, Stansted, England) was detected with goat anti-rabbit 10 nm gold plus mouse anti-cy3 (1:4000 in IM) overnight (4°C) before infiltration and embedding in Lowicryl HM 20 (R1034; Agar Scientific, Stansted, England). The resin was polymerized at ~50°C by exposure to ultraviolet light. Serial ultrathin sections (50 nm) were cut with a Reichert Ultracut and collected on nickel grids. To treat all sections identically and to prevent tearing during the labeling procedure, grids were mounted in a grid support plate (16705698; Leica Microsystems, Milton Keynes, UK). Sections were wetted in PBS for 30 min and preincubated in IM for 30 min at room temperature. Sections were then incubated with the monoclonal anti-α_7 nAChR antibody (see above; 1:4000 in IM) overnight at 4°C followed by 1 hr at 37°C. After thorough washing in PBS and preincubation in IM (30 min) the secondary antibody (goat anti-mouse 5 nm gold; A-11242; Molecular Probes) was detected with goat anti-rabbit 10 nm gold plus mouse anti-cy3 (1:4000 in IM) detected with goat anti-mouse 5 nm gold (EM.GAM5; British Biocell, Cardiff, Wales, UK). For the double labeling of (1) glutamate and α_7 nAChR, (2) GABA and α_7 nAChR, or (3) dual epistines of α_7 nAChR, the following antibodies were used: (1) rabbit anti-glutamate (1:20,000 in IM; G6642; Sigma) detected with goat anti-rabbit 10 nm gold plus mouse anti-α_7 nAChR (1:4000 in IM) detected with goat anti-mouse 5 nm gold (EM.GAM5; British Biocell, Cardiff, Wales, UK); (2) rabbit anti-GABA (1:4000 in IM; A2052; Sigma) detected with goat anti-rabbit 10 nm gold plus mouse anti-α_7 nAChR (1:4000 in IM) detected with goat anti-mouse 5 nm gold, or (3) rabbit anti-α_7 nAChR (1:100 in IM; SC554; Santa Cruz Biotechnology, CA) detected with goat anti-rabbit 10 nm gold plus mouse anti-α_7 nAChR (1:4000 in IM) detected with goat anti-mouse 5 nm gold. All secondary gold-conjugated antibodies were used at a dilution of 1:100 in IM. The sections were contrasted with uranyl acetate (5 min) and Reynold’s lead citrate (50 sec) according to standard EM methods. The preparations were examined using JEOL JEM-100 CX and JEOL JEM-1010 electron microscopes.

For Bgtx labeling, ultrathin sections were incubated in IM containing biotin-XX-conjugated Bgtx (1:300 for 4 hr at room temperature; B-1196; Molecular Probes). After rinsing in PBS, sections were incubated overnight at 4°C in IM containing mouse anti-biotin antibody (1:250; A-11242; Molecular Probes). For detection of the mouse anti-biotin, a goat anti-mouse antibody coupled to 10 nm gold was used.
Mitochondria preparation and Western blot analysis. Mitochondria were prepared from the hippocampus of four 115 gm male Sprague Dawley rats, according to standard methods (Luttrup and Zelander, 1992). Briefly, hippocampus was homogenized on ice in 10 vol of 0.44 M sucrose, 10 mM HEPES, and 1 mM MgCl₂. The homogenate was then centrifuged at 2000 rpm (400 x g) for 10 min at 4°C in a Beckman JA-20. The supernatant was removed, leaving P1, and centrifuged again at 14,000 rpm (17,500 x g) for 15 min under the same conditions. The resulting supernatant S2 was removed, and the pellet was resuspended in ice-cold homogenization buffer and centrifuged again at 9000 rpm (7000 x g) for 15 min to generate a supernatant S3 and a pellet enriched for mitochondrial fraction. This operation was repeated twice more to wash the mitochondrial fraction. Equivalent amounts of each fraction and the initial homogenate were analyzed by Western blot analysis. Proteins were separated by SDS-PAGE as described previously (Schägger and von Jagow, 1987) using a 10% separating gel, and transferred to Immobilon-P by electroblotting. Membranes were blocked in either 2% (w/v) BSA (Fraction V, 735086, Boehringer Mannheim), 0.05% (v/v) Nonidet P40 (BDH, Poole UK) in PBS, or 3% nonfat milk powder, 0.05% (v/v) NP40 in PBS. Primary antibodies were applied in the same buffer at dilutions of 1:10,000 for anti-α7 nAChR (M220) and 1:30,000 for anti-Hsp60 (SPA-804; StressGen, Victoria British Columbia, Canada). Immunoreactivity was detected using HRP-conjugated donkey anti-rabbit (711-035-152; Jackson ImmunoResearch) or anti-mouse (715-035-150; Stratech Scientific, Luton, UK) or anti-rabbit (713-035-150; Stressgen, Victoria Canada) secondary antibodies at 1:10,000 and ECL (RPN 2106, Amersham Pharmacia Biotech, Little Chalfont, UK).

Controls. The specificity of the mouse anti-α7 nAChR antibodies used here has been described previously (Schöpfer et al., 1990; Dominguez del Toro et al., 1994). Specificity of antibody binding was confirmed by immunoblotting and by the absence of immunolabeling in preparations from which primary antibodies were omitted. The anti-synaptophysin antibody used here is well characterized and is known to bind selectively to synaptic vesicles in the presynaptic terminal close to the synaptic cleft; and (3) presence of a postsynaptic density in the postsynaptic profile. According to the appear-
ance of the postsynaptic density, two different synapse types have been
distinguished in the vertebrate CNS (Gray, 1959; Colonnier, 1968). The
first type (type 1 or "asymmetrical synapse") has an extensive postsyn-
aptic density and a population of large, round, electron-lucent vesicles in
the presynaptic profile. Type 2 ("symmetrical synapses") are charac-
terized by a less conspicuous postsynaptic density and a presynaptic popu-
lation of small, pleomorphic, electron-lucent vesicles. It is generally
accepted that glutamatergic synapses have asymmetric morphology,
whereas GABAergic synapses are symmetric. Complete counts of all
gold particles at each synapse would require full three-dimensional
reconstruction of each synapse, a prohibitively time-consuming task. As
a useful approximation that largely eliminates false-negative (unlabeled)
synapses, we analyzed sets of three serial sections. All synapses in
randomly selected fields of view that were present throughout all three
serial sections were counted. For presentation, micrographs and slides
were digitized at high resolution using a Mustek fl atbed scanner or a
Nikon LS-1000 slide scanner. Contrast and brightness were optimized in
Adobe Photoshop 5.0.

Statistical analysis. Gold particle incidence was compared to determine
whether the a7 nAChR immunolabeling over synaptic membranes was
significantly higher than background labeling. Gold particles were
counted over the synaptic membranes identified in all serial sections. The
actual sampled region was the synaptic cleft plus the adjoining 30-nm-
wide presynaptic and postsynaptic zones, because the separation between
a labeled epitope and a gold particle attached to a secondary antibody can
extend up to 28 nm (Matsubara et al., 1996). These counts were com-
pared with the number of gold particles over equivalent areas of regions
where no labeling was expected, such as myelin. Because particle counts
were not normally distributed, a Welch t test was used for comparisons.
The sampled synaptic area for each synapse was estimated by multiplying
the total sampled length of the synaptic cleft over the three serial sections
by the section thickness. Linear regression analysis was performed to
examine possible correlation of the number of gold particles per synapse
with the synaptic area.

Figure 3. A–C, Light microscopic double labeling for αBgtx (green) and synaptophysin (red) demonstrates the abundance and substantial correspond-
dence of both labeled sites. D, Higher magnification of the area outlined in C reveals the predominant colocalization (arrow) or close apposition of both
labeled sites. A small proportion of synaptophysin-labeled sites (double arrowhead) and a fraction of αBgtx-labeled sites (arrowhead) show no
colocalization. Scale bar: A–C, 130 μm; D, 30 μm.

Figure 4. Electron micrographs of the CA1 stratum radiatum area in
αBgtx-labeled intact brain preparations. A–E, Labeling for αBgtx is
present at presynaptic (arrowheads) and postsynaptic sites (arrows). b, Presynaptic boutons; s, dendritic spines. Scale bar, 200 nm.
RESULTS

Light and electron microscopic immunolabeling demonstrates that the α_7 nAChR subunit is present in cell bodies and processes of hippocampal neurons

Light microscopic immunolabeling of the hippocampal formation revealed diffuse α_7 nAChR-like immunoreactivity (α_7 nAChR-LIR) throughout cell bodies and cell processes of neurons in the dentate gyrus and CA3 and CA1 regions (Fig. 1). Immunoreactivity throughout the molecular layer of the dentate gyrus and in the cell body layers of all regions was relatively strong and easily recognizable at low magnification (Fig. 1A). Immunoreactivity in the dendritic fields of CA3 and CA1 was weaker, but clearly visible at higher magnification in Figure 1, B and C. To determine the precise location of the α_7nAChRs, we performed postembedding EM immunolabeling. Synaptic contacts were heavily labeled, as were membranous structures within the presynaptic and postsynaptic cytoplasm. Labeling was also present at mitochondria (Fig. 2); to determine whether this labeling represented authentic α_7 nAChRs or cross-reactivity of the antibody with other protein(s) present in mitochondria, we performed Western blot analysis on subcellular fractions of brain homogenates. Our results demonstrate that the monoclonal antibody M220 recognizes two bands in crude homogenates, one of ~56 kDa (corresponding to the α_7 nAChR) and one of 44 kDa (Fig. 2A). Only the 44 kDa band was present in the purified mitochondrial fraction. That this fraction contained mainly mitochondria was con-

Figure 5. Electron micrographs of the CA1 stratum radiatum region in anti-α_7 nAChR-labeled intact brain preparations. A–F. Most synaptic contacts contain numerous gold particles at synaptic membranes (arrowheads). Gold particles are also found at presynaptic vesicles (small arrow) and attached to membranous structures in the postsynaptic cytoplasm (double arrowheads). Inset, Gold particles were often found at nonsynaptic membranes at positions corresponding to synapses in adjacent sections (arrowheads), indicating a perisynaptic localization of the α_7 nAChR subunits. b, Presynaptic boutons; s, dendritic spines. Scale bar: A–F, 200 nm; inset, 90 nm.
confirmed by its enrichment in the mitochondrial marker, Hsp-60 (Fig. 2A), and by ultrastructural investigation of the fraction (Fig. 2B). We were able to eliminate the 44 kDa band in Western blots using 3% nonfat milk powder in the blocking medium (Fig. 2A) (see Materials and Methods). This blocking procedure, however, was not compatible with immuno-electron microscopy. To confirm the specificity of α7 nAChR immunolabeling, we performed two independent tests: (1) double labeling using the monoclonal antibody (M220) and a polyclonal antiserum (SC5544) raised against a larger epitope of the α7 subunit (polyclonal: amino acids 367–502; monoclonal: amino acids 380–400); and (2) light and electron microscopic labeling for αBgtx. Figure 2C–E demonstrate that both antibodies directed against the α7 subunit labeled synaptic contacts, frequently colocalizing at both presynaptic and postsynaptic sites. As shown in Figure 2, D and E (5 nm particles), the monoclonal antibody yielded stronger labeling, and only the monoclonal antibody labeled mitochondria (Fig. 2C–E).

The presence of α7 nAChR at synaptic sites was further confirmed by αBgtx binding. As demonstrated in Figure 3, light microscopic double labeling for αBgtx and synaptophysin revealed abundant expression of both epitopes in hippocampal synaptic zones, often in close apposition. In keeping with previous findings (Hunt and Schmidt, 1979), αBgtx binding was seen only occasionally throughout neuronal cell bodies; this difference compared with the pattern of anti-α7 nAChR immunolabeling may reflect the post-translational processing required for αBgtx binding (Chen et al., 1998; Aztiria et al., 2000) but not for binding of the monoclonal antibody directed against the peptide epitope. Ultrastructural investigation of hippocampal tissue labeled for αBgtx revealed widespread presynaptic and postsynaptic labeling (Fig. 4) that, although less intense than the labeling observed with the anti-α7 nAChR antibody, was qualitatively similar in distribution, confirming that the synaptic immunolabeling reflects the presence of authentic α7 nAChRs.

Most synapses in CA1 stratum radiatum display α7 nAChR-LIR

The ultrastructural investigation of dentate gyrus and CA1 and CA3 regions revealed α7 nAChR-LIR at synaptic sites in all hippocampal areas (Fig. 5). Gold particles were located mainly (1) at the postsynaptic density, (2) within the synaptic cleft, (3) in the postsynaptic cytoplasm (Figs. 5–7), and (4) at presynaptically located vesicles, often located in close proximity to the synaptic

Table 1. Quantitative parameters of serial section analysis of immunogold labeling for α7 nAChRs in CA1 stratum radiatum

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Number of Synapses Evaluated (3 Serial Sections per Synapse)</th>
<th>% of Synapses</th>
<th>Number of Synapses Evaluated in at least One of the Three Serial Sections</th>
<th>% of Synapses</th>
<th>Number of Synapses Evaluated in all Three Serial Sections</th>
<th>% of Synapses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of synapses evaluated (3 serial sections per synapse)</td>
<td>158 (100%) in 12 series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of synapses with labeled synaptic membranes in at least one of the three serial sections</td>
<td>151 (96%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of synapses with unlabeled synaptic membranes in all three serial sections</td>
<td>7 (4%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of synapses with labeled presynaptic sites (excluding the synaptic membrane) in at least one of the three serial sections</td>
<td>124 (78%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of synapses with labeled postsynaptic sites (excluding the synaptic membrane) in at least one of the three serial sections</td>
<td>114 (71%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of background areas evaluated</td>
<td>373 in 12 series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
membrane but >30 nm apart from it (indicating that the epitope is located at the vesicles rather than the synaptic membrane). It is not clear whether the latter are synaptic vesicles or specialized transport vesicles. Labeled synapses were present at both den-
glutamatergic and virtually all synapses showed α7 nAChR-LIR, most glutamatergic synapses are likely to bear substantial levels of α7 nAChRs. Consistent with this interpretation, double labeling for glutamate and α7 nAChR shows that most but not all asymmetric α7 nAChR-LIR synapses are glutamate-LIR (Fig. 9); glutamate-LIR, α7 nAChR-negative synapses were rare. Double labeling for both α7 nAChRs/GABA and α7 nAChR/glutamate also revealed that most of the postsynaptic neurons with α7 nAChRs were glutamatergic, presumably pyramidal cells.

To investigate whether the α7 nAChR-immunoreactive contacts include GABAergic synapses, we performed double labeling for GABA and α7 nAChRs. The results show that many but not all GABA-like immunoreactive profiles display α7 nAChR-LIR at the synaptic cleft (Fig. 10), suggesting that many GABAergic synapses in CA1 stratum radiatum are subject to α7 nAChR-mediated cholinergic modulation. It is unclear, however, whether the detailed distribution of α7 nAChRs at GABAergic synapses is similar to that at glutamatergic synapses.

DISCUSSION

Perhaps the most striking aspects of the current observations are the prevalence and density of α7 nAChR immunolabeling at synapses throughout the stratum radiatum. Almost all synaptic profiles in this region appear labeled over the synaptic membranes. Gold particles are also commonly found over presynaptic and postsynaptic elements of the synapse. The mean immunogold particle density at these α7 nAChR-labeled synapses (184.01 ± 10.15 particles/μm²) is remarkably close to the reported particle densities for NMDA and AMPA glutamate receptor labeling (~200 particles/μm² for each) at synapses in rat CA1 stratum radiatum of similarly prepared tissue (Racca et al., 2000). The synaptic localization of α7 receptors reported here is consistent with immunogold labeling in guinea pig medial prefrontal cortex (Lubin et al., 1999); there also α7 nAChR-LIR was detected both presynaptically and postsynaptically, at axosomatos (presumably glutamatergic) synapses and at a subset of double-labeled GABAergic synapses. The presence of α7 nAChR immunolabeling at presynaptic terminals, although consistent with reported nicotinic stimulation of hippocampal transmitter release (see below), is in contrast to the reported absence of terminal labeling as assessed by light microscopy (Dominguez del Toro et al., 1994).

The abundance of α7 nAChRs at these synapses raises questions about their physiological role. Functional α7 nAChR subunits have been demonstrated on hippocampal interneurons, where they constitute 38 pS, inwardly rectifying channels (Shao and Yakel, 2000) mediating strong excitatory effects (Jones and Yakel, 1997; Alkondon et al., 1998; Frazier et al., 1998a,b; McQuiston and Madison, 1999; Sudweeks and Yakel, 2000) including generation of action potentials. The α7-mediated activation of such interneurons can result in either inhibition or disinhibition of pyramidal neurons (Ji and Dani, 2000). The presence of functional α7 subunits on hippocampal dentate granule or pyramidal cells has been more controversial. Activation of α7 nAChRs on mossy fiber presynaptic terminals has been found to increase intraterminal Ca ²⁺ levels and to increase transmitter release (Gray et al., 1996), but others have failed to observe such Ca ²⁺ elevation (Vogt and Regehr, 2001). Most investigators have found no nAChR-mediated excitation of pyramidal neurons (Frazier et al., 1998b), despite the presence of very low but detectable levels of α7 nAChR subunit mRNA in these cells by single-cell RT-PCR (Sudweeks and Yakel, 2000). However, in acute and cultured hippocampal slices of 2- to 4-week-old rats, a small component of the EPSC evoked in CA1 pyramidal cells by extracellular...
stimulation in stratum radiatum has been reported to be \(\alpha 7 \) nAChR mediated (Heft et al., 1999). The reasons for these different observations are not clear, but of some potential relevance may be the recent discovery of lynx1, an endogenous peptide homologous to \(\alpha B GTx \) that enhances nicotinic receptor currents (Miwa et al., 1999). The distribution of lynx1 binding is similar to the distribution of \(\alpha 7 \) nAChRs, suggesting that physiological activation of \(\alpha 7 \) nAChRs may be modulated by the simultaneous binding of lynx1.

By producing inward, depolarizing current and particularly by directly mediating \(Ca^{2+} \) influx, activation of \(\alpha 7 \) nAChRs could be expected to influence synaptic transmission and plasticity. Presynaptic \(\alpha 7 \) nAChR activation, induced by repetitive, brief (5 × 200 msec at 8.5 sec intervals) application of 0.5 mM nicotine, can lead to persistent potentiation of glutamatergic synapses between dissociated hippocampal neurons (Radcliffe and Dani, 1998). \(\alpha 7 \) nAChR-mediated nicotinic activation in conjunction with postsynaptic depolarization has also been shown to induce LTP at glutamatergic synapses onto ventral tegmental area dopaminergic neurons. Evidence at those synapses suggested that activation of presynaptic \(\alpha 7 \) nAChRs most likely induced potentiation by acting presynaptically to increase the probability of glutamate release, and it was inferred that the consequent enhanced postsynaptic depolarization produced the NMDA receptor (NMDAR) activation necessary for LTP induction. There is also evidence that arachidonic acid, a putative retrograde messenger in LTP, can facilitate synaptic transmission by increasing \(\alpha 7 \) nAChR-mediated currents and thus enhancing presynaptic transmitter release (Nishizaki et al., 1999).

The abundance of postsynaptic \(\alpha 7 \) subunits revealed by our results also suggests, however, a possible postsynaptic locus for \(\alpha 7 \) nAChR-mediated synaptic potentiation. During early postnatal development, when AMPA receptors are absent from many postsynaptic membranes, the \(\alpha 7 \) nAChRs may actually mediate the induction of LTP, either directly or in conjunction with NMDARs. During this time, levels of \(\alpha 7 \) nAChRs in many brain areas, including hippocampus (Hunt and Schmidt, 1979) and somatosensory cortex (Bina et al., 1995), are much higher than in the adult. Activation of postsynaptic, particularly perisynaptic, \(\alpha 7 \) subunits, especially during the first postnatal week when their density is presumably highest, could depolarize a dendritic spine sufficiently to relieve the voltage-dependent \(Mg^{2+} \) block of simultaneously stimulated NMDA receptors, thereby inducing NMDA-dependent synaptic plasticity. Indeed, a selective \(\alpha 7 \) nAChR-mediated enhancement of the NMDA component of EPSPs recorded from auditory cortex pyramidal neurons is seen at postnatal day 8–16 but not in older rats (Aramakis and Metherate, 1998). The high \(Ca^{2+} \) permeability of \(\alpha 7 \) nAChRs (Bertrand et al., 1993; Seguela et al., 1993; Castro and Albuquerque, 1995) raises the further possibility that activation of these receptors alone could yield sufficient \(Ca^{2+} \) influx to trigger calcium-dependent processes, including the induction of synaptic plasticity (Ghosh and Greenberg, 1995). The likelihood of \(\alpha 7 \) nAChR-driven synaptic potentiation might be enhanced if the resulting spine depolarization were sufficient to activate voltage-gated calcium channels in the spine membrane (Yuste and Denk, 1995; Reid et al., 2001), or if the resulting \(Ca^{2+} \) influx were amplified by calcium-induced calcium release (CICR) from internal stores in the dendritic spine (Empetage et al., 1999); indeed, there is evidence for nicotinic activation of CICR (Empetage et al., 2001). Such mechanisms may not be essential for gross brain development, because transgenic mice lacking the \(\alpha 7 \) subunit displayed no abnormalities of brain anatomy (Orr-Urteger et al., 1997) or of behavior (Paylor et al., 1998). However, chronic systemic nicotine administration during the second week of postnatal development has recently been found to lead to persistent electrophysiological abnormalities in auditory neocortex (Aramakis et al., 2000). It is known that \(\alpha 7 \) nAChRs activate and desensitize rapidly in response to brief exposure to high ACh concentrations (Couturier et al., 1990); the half-maximal concentrations for \(\alpha 7 \) activation and inactivation of this subunit under physiological conditions appear to be in the range of 30–90 and 1–2 \(\mu M \), respectively (Seguela et al., 1993; Fenster et al., 1997). Choline, the product of ACh hydrolysis in the extracellular space, is a selective \(\alpha 7 \) nAChR agonist (Alkondon et al., 1997), and ambient levels of choline in the CSF caused by hydrolysis of ACh may be, after strong cholinergic activity, sufficiently high to activate and/or to desensitize \(\alpha 7 \) receptors (Papke et al., 1996). The half-maximal desensitization concentration is sufficiently high, however, for a large fraction of the receptors to remain functional under normal conditions (McGehee et al., 1995; Gray et al., 1996). The physiological consequence of these differential sensitivities is unclear, but it could provide a form of lateral inhibition in time and space: ACh release from an activated cholinergic terminal could result in \(\alpha 7 \)-mediated facilitation of synaptic transmission and plasticity at simultaneously activated glutamatergic...
synapses close to the activated terminal where the local ACh concentration would transiently be high. As a result of diffusion, synapses farther from the cholinergic terminal, or nearby synapses activated asynchronously, would experience inactivating ACh concentrations.

In addition to labeling of synaptic membranes, we also observed abundant labeling over endoplasmic reticulum and over membranous structures in the postsynaptic cytoplasm, including the spine apparatus (Figs. 5–7). This pattern resembles the reported association of β2 and α4 nAChRs with endoplasmic reticulum and transport vesicles in various neurons, including neocortical pyramidal cells (Hill et al., 1993; Nakayama et al., 1995). These observations of a large pool of intracellular α7 nAChRs suggest that these subunits may be actively internalized or inserted and that the extracellular, functional receptors may thus be dynamically regulated in response to the ongoing activity of the neuron.

Finally, the near-ubiquitous presence of α7 nAChRs at hippocampal synapses described here renders more salient the re-

REFERENCES

Fabian-Fine et al. (2000) α7 nAChR Distribution in Rat Hippocampus

Fabian-Fine et al. (2000) α7 nAChR Distribution in Rat Hippocampus

enhancement of fast excitatory synaptic transmission in CNS by pre-

McQuiston AR, Madison DV (1999) Nicotinic receptor activation ex-
cites distinct subtypes of interneurons in the rat hippocampus. J Neu-

Miwa JM, Ibáñez-Tallon I, Crabtree GW, Sánchez R, Sali A, Role LW,
Heintz N (1999) lynx1, an endogenous toxin-like modulator of nicotinic

nocytochemical localization of nicotinic acetylcholine receptor in rat

Arachidonic acid induces a long-lasting facilitation of hippocampal
synaptic transmission by modulating PKC activity and nicotinic ACh

Orr-Utterreger A, Goldner FM, Saecki M, Lorenzo I, Goldberg L, De Biasi
nicotinic neuronal nicotinic acetylcholine receptor lack α-bungarotoxin binding
sites and hippocampal fast nicotinic currents. J Neurosci 17:9165–9171.

nicotinic acetylcholine receptor activation by quaternary nitrogen com-
ounds indicates that choline is selective for the alpha 7 subtype.
Neurosci Lett 213:201–204.

Paylor R, Nguyen M, Crawley JN, Patrick J, Beaudet A, Orr-Utterreger A
(1998) Alpha7 nicotinic receptor subunits are not necessary for
hippocampal-dependent learning or sensorimotor gating; a behavioral

modulates nicotinic receptors in the rat hippocampal slice. J Neurosci
21:RC120.

NMDA receptor content of synapses in stratum radiatum of the

Radcliffe KA, Dani JA (1998) Nicotinic stimulation produces multiple
forms of increased glutamatergic synaptic transmission. J Neurosci
18:7075–7083.

of glutamate and GABA synaptic transmission of hippocampal neu-

Rapier C, Lunt GG, Wonnacott S (1988) Stereoselective nicotine-
induced release of dopamine from striatal synaptosomes: concentration

evoked by activation of individual hippocampal mossy fiber synapses.

Rogers B, Nelson DA, Katz LC (1997) Fast synaptic signaling by nico-
tinic acetylcholine and serotonin 5-HT3 receptors in developing visual

Roher AE, Chaney MO, Kuo YM, Webster SD, Stine WB, Haverkamp
LJ, Woods AS, Cotter RJ, Tuohy JM, Kraft GA, Bonnelli BS, Em-
derived from neuritic and vascular amyloid deposits of Alzheimer's

Rode LW, Berg DK (1996) Nicotinic receptors in the development and

Schiguer H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-
polyacrylamide gel electrophoresis for the separation of proteins in the
range from 1 to 100 kDa. Anal Biochem 166:368–379.

alpha-bungarotoxin binding protein cDNAs and mAbs reveal subtypes
of this branch of the ligand-gated ion channel gene superfamily. Neuron
5:35–48.

Segal M, Dudaí Y, Amsterdam A (1978) Distribution of an α-bungaro-

Molecular cloning, functional properties, and distribution of rat brain
alpha 7: a nicotinic cation channel highly permeable to calcium. J Neu-

Shao Z, Yakek JL (2000) Single channel properties of neuronal nicotinic
ACh receptors in stratum radiatum interneurons of rat hippocampal

Somogyi P, Takagi H (1982) A note on the use of picric acid-
formaldehyde-glutaraldehyde fixative for correlated light and elec-

Sudweeks SN, Yakek JL (2000) Functional and molecular characteriza-
tion of neuronal nicotinic ACh receptors in rat CA1 hippocampal

Vidal C, Changeux J-P (1993) Nicotinic acid and muscarinic modula-
tions of excitatory synaptic transmission in the rat prefrontal cortex in

Vogt KE, Regehr WG (2001) Cholinergic modulation of excitatory syn-
aptic transmission in the CA3 area of the hippocampus. J Neurosci

Wang HY, Lee DH, D’Andrea MR, Peterson PA, Shank RP, Reitz AB
(2000a) beta-Amyloid(1–42) binds to alpha7 nicotinic acetylcholine
receptor with high affinity. Implications for Alzheimer’s disease

Wang HY, Lee DH, Davis CB, Shank RP (2000b) Amyloid peptide
Abeta(1–42) binds selectively and with picomolar affinity to alpha7

receptor agonists on acetylcholine release from the isolated motor
nerve, small intestine and trachea of rats and guinea-pigs. Clin Invest
70:182–189.

Wiedemann B, Franke WW (1985) Identification and localization of
synaptophysin, an integral membrane glycoprotein of MW 38,000 char-

Wonnacott S (1997) Presynaptic nicotinic ACh receptors. Trends Neu-
rosci 20:92–98.

Yuste R, Denk W (1995) Dendritic spines as basic functional units of

Zarrei MM, Radcliffe KA, Chen D, Patrick JW, Dani JA (1999) Distribu-
tions of nicotinic acetylcholine receptor alpha7 and beta2 subunits on

cholinoreceptor-mediated excitatory postsynaptic potentials in rat nu-