Spore chemistry as a proxy for UV-B flux

Conference or Workshop Item

How to cite:

Watson, Jonathan; Sephton, Mark; Sephton, Sarah; Beerling, David; Self, Stephen; Gilmour, Iain and Wellman, Charles (2005). Spore chemistry as a proxy for UV-B flux. In: 22nd International Meeting on Organic Geochemistry, 12-16 Sep 2005, Seville, Spain.

For guidance on citations see FAQs.

© [not recorded]

Version: [not recorded]

Link(s) to article on publisher’s website:
http://linkinghub.elsevier.com/retrieve/pii/S0146638006002397

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Spore chemistry as a proxy for UV-B flux

Jonathan S. Watson¹, Mark A. Sephton¹,a, Sarah V. Sephton², David J. Beerling³, Stephen Self², Iain Gilmour¹, Charles H. Wellman³

¹Planetary and Space Sciences Research Institute, Open University, Milton Keynes, MK7 6AA, UK
²Department of Earth Sciences, Open University, Milton Keynes, Buckinghamshire, MK7 6AA, UK
³Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK

aPresent address: Department of Earth Science and Engineering, Royal School of Mines, Imperial College, London, SW7 2BP, UK

Placing current increased terrestrial UV-B fluxes, due to the seasonal depletion of the stratospheric ozone layer, in a historical context is difficult due to a lack of long-term (century or more) instrumental records and necessitates developing proxy indicators. One promising line of enquiry derives from the response of plants to increased near-surface solar fluxes of harmful ultraviolet radiation in the 280 – 315 nm wavelength (UV-B) (Rozema et al. 2001, 2002). Plants exposed to increased UV-B radiation typically experience a number of detrimental effects, including damage to proteins, membrane lipids and DNA. To reduce this damage, many plants, animals and microbes accumulate UV-B protecting pigments (Cockell & Knowland 1999; Rozema et al. 2001, 2002).

Here, we evaluate the potential of a promising candidate for such a proxy, which is based on changes in the chemical composition of spores in response to variations in near-surface UV-B fluxes, in a field setting. We obtained spores from five populations of the tropical lycopsid Lycopodium cernuum growing across an altitudinal gradient (650-1981 m a.s.l.) in S.E. Asia with the assumption that they experienced a range of UV-B radiation doses. Spores from each population were analyzed for UV-B protecting compounds using micro-Fourier transform infrared spectroscopy (micro-FTIR) and thermolchemolysis-GC-MS.

The data reveal the presence of various functional groups associated with UV-B protecting pigments including OH, C=O and C=C. Thermochemolysis and subsequent pyrolysis liberated UV-B pigments (ferulic and para-coumaric acid) from the spores. All of the aromatic compounds liberated from spores by thermochemolysis and pyrolysis were active in UV-B protection. We show systematic increases in micro-FTIR aromatic absorption
(1520 cm\(^{-1}\)) and olefinic or aromatic absorption (829 cm\(^{-1}\)) with altitude that reflect a chemical response to higher UV-B flux. Our results indicate that detailed chemical analyses of historical spore samples could provide a proxy for stratospheric O\(_3\) layer variability and UV-B flux over historical (century to millennia) timescales.

Figure 1: Total ion chromatogram of products from a typical Lycopodium cernuum sample liberated at 300 °C in the presence of TMAH

REFERENCES

