The Open UniversitySkip to content
 

LRD: latent relation discovery for vector space expansion and information retrieval

Gonçalves, Alexandre; Zhu, Jianhan; Song, Dawei; Uren, Victoria and Pacheco, Roberto (2006). LRD: latent relation discovery for vector space expansion and information retrieval. In: ed. Advances in Web-Age Information Management. Lecture Notes in Computer Science, Volume 4016/2006. Berlin: Springer, pp. 122–133.

DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1007/11775300
Google Scholar: Look up in Google Scholar

Abstract

In this paper, we propose a text mining method called LRD (latent relation discovery), which extends the traditional vector space model of document representation in order to improve information retrieval (IR) on documents and document clustering. Our LRD method extracts terms and entities, such as person, organization, or project names, and discovers relationships between them by taking into account their co-occurrence in textual corpora. Given a target entity, LRD discovers other entities closely related to the target effectively and efficiently. With respect to such relatedness, a measure of relation strength between entities is defined. LRD uses relation strength to enhance the vector space model, and uses the enhanced vector space model for query based IR on documents and clustering documents in order to discover complex relationships among terms and entities. Our experiments on a standard dataset for query based IR shows that our LRD method performed significantly better than traditional vector space model and other five standard statistical methods for vector expansion.

Item Type: Book Chapter
ISBN: 3-540-35225-2, 978-3-540-35225-9
Academic Unit/Department: Knowledge Media Institute
Mathematics, Computing and Technology > Computing & Communications
Item ID: 9320
Depositing User: Users 6898 not found.
Date Deposited: 28 Sep 2007
Last Modified: 22 Jun 2012 11:45
URI: http://oro.open.ac.uk/id/eprint/9320
Share this page:

Altmetrics

Scopus Citations

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk