The efficiency of C-4 substituents in activating the \(\beta\)-lactam scaffold towards serine proteases and hydroxide ion

Journal Item

How to cite:

Mulchande, Jalmira; Martins, Luísa; Moreira, Rui; Archer, Margarida; Oliveira, Tania F. and Iley, Jim (2007). The efficiency of C-4 substituents in activating the \(\beta\)-lactam scaffold towards serine proteases and hydroxide ion. Organic and Biomolecular Chemistry, 5 pp. 2617–2626.

For guidance on citations see FAQs.

© [not recorded]

Version: [not recorded]

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1039/b706622h

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
The efficiency of C-4 substituents in activating the β-lactam scaffold towards serine proteases and hydroxide ion

Jalmira Mulchandea, Luísa Martinsa, Rui Moreiraa, Margarida Archerb, Tania F. Oliveirab, Jim Ileyc

a CECF, Faculdade de Farmácia, Universidade de Lisboa, Av. Forças Armadas, 1600-083 Lisboa, Portugal

b Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Av. República, Apt. 127, 2781-901 Oeiras, Portugal

c Department of Chemistry, The Open University, Milton Keynes, MK7 6AA, UK
Abstract

The presence of a leaving group at C-4 of monobactams is usually considered to be a requirement for mechanism-based inhibition of human leukocyte elastase by these acylating agents. We report that second-order rate constants for the alkaline hydrolysis and elastase inactivation by N-carbamoyl monobactams are independent of the pK_a of the leaving group at C-4. Indeed, the effect exerted by these substituents is purely inductive: electron-withdrawing substituents at C-4 of N-carbamoyl-3,3-diethylmonobactams increase the rate of alkaline hydrolysis and elastase inactivation, with Hammett \(\rho_I \) values of 3.4 and 2.5, respectively, which indicate the development of a negative charge in the transition-states. The difference in magnitude between these \(\rho_I \) values is consistent with an earlier transition-state for the enzymatic reaction when compared with that for the chemical process. These results suggest that rate limiting step in elastase inactivation is the formation of the tetrahedral intermediate, and that \(\beta \)-lactam ring-opening is not concerted with the departure of a leaving group from C-4. Monobactam sulfones emerged as potent elastase inhibitors even when the ethyl groups at C-3, required for interaction with the primary recognition site, are absent. For one such compound, a 1:1 enzyme-inhibitor complex involving porcine pancreatic elastase has been examined by X-ray crystallography and shown to result from serine acylation and sulfinate departure from the \(\beta \)-lactam C-4.
β-Lactams are potent inhibitors of a wide range of enzymes that contain a catalytic serine residue, including the hepatitis C virus serine protease, penicillin binding proteins (PBPs), β-lactamases and human leukocyte elastase (HLE). The efficiency of β-lactams as enzyme inhibitors depends on the molecular recognition by the protein as well as on the intrinsic chemical reactivity of the β-lactam, both of which affect the rate at which these inhibitors acylate the serine residue.

Among the most extensively studied enzymatic reactions of β-lactams is the inhibition of class A β-lactamases by penam sulfone inhibitors such as sulbactam, tazobactam and their analogues. Reaction of penam sulfones with the catalytic Ser70 involves β-lactam ring-opening and leads to the departure of a sulfinate leaving group from C-5 and formation of an imine (Scheme 1). The imine then undergoes a cascade of reactions including nucleophilic attack by Ser130 hydroxyl group to form a stable acrylate ester capable of preventing hydrolysis of the acyl-enzyme, and thus leading to irreversible inhibition. The oxidation state of the sulfur atom in the penam plays a role in potency: while sulbactam is a potent β-lactamase inhibitor, its penicillanate counterpart is only a substrate of β-lactamase, while the corresponding sulfoxides are both substrate and weak inactivators. Worth noting, β-lactamase inhibition by clavulanic acid, requires intramolecular hydrogen bonding from the C-9 hydroxyl group to assist the departure of an oxonium oxygen from C-5, i.e. These results suggest that departure of a good leaving group from the C-5 carbon atom of penams and clavams is required to achieve irreversible inhibition of enzymes containing a catalytic serine residue.

Cephalosporins are time-dependent inhibitors of HLE inhibitors, and, similarly to penams, the oxidation state of the sulfur atom also plays a role in potency, with sulfones showing considerably greater activity than the corresponding sulfides or β-sulfoxides, while α-sulfoxides are inactive. However, the identity of the species giving rise to inhibition remains to be defined. X-Ray crystallography indicates that inactivation of HLE by cephalosporin sulfones containing a good leaving group at C’-3 (e.g. X = AcO) preferably involves reaction with His57 at this position rather than sulfinic acid departure from C-6 and thiazine ring-opening.
Monobactams containing potential leaving groups at C-4 were also developed as mechanism-based inhibitors of HLE,23-25 although the requirement of leaving-group departure to achieve irreversible inactivation is still controversial. Crystallography26 and mass spectrometry27 studies indicate that the reaction of monobactams containing a C-4 aryloxy substituent with HLE involves the departure of a phenol, possibly concerted with C-N bond fission and β-lactam ring-opening.28 However, the observation that the second-order rate-constants for HLE inactivation by monobactams with no leaving group at C-4 do not differ significantly from those of monobactams containing a phenol28 suggests that leaving group ability is not essential to inactivate the enzyme. Understanding how β-lactam substituents affects molecular recognition by the enzyme and “chemical reactivity” is most useful in designing more potent enzyme inhibitors. We report here a study on the chemistry of elastase inactivation by model monobactams, 5, (Scheme 2, Table 1) with the objective of elucidating how C-4 substituents contribute to the chemical reactivity towards the catalytic serine. The results herein presented show that the effect exerted by these substituents is largely inductive and that sulfones at C-4 are particularly efficient in activating the β-lactam scaffold towards elastase.
RESULTS AND DISCUSSION

1. Chemistry

The synthesis of compounds 5 used the appropriate 4-acetoxyazetidin-2-one 6\(^2\)\(^4\) as starting material to give direct access to the differently C-4 substituted azetidin-2-one key intermediates 7-10 (Scheme 2). Reaction of 4-acetoxyazetidin-4-ones 6 with phenol\(^2\)\(^4\) or thiols\(^2\)\(^9\) and sodium hydroxide in acetone at room temperature gave the corresponding C-4 substituted β-lactams 7 and 8, respectively. Alternatively, 8a was synthesised by refluxing 6a with thiophenol in benzene.\(^3\)\(^0\) Treatment of thioethers 8 with 3-chloroperbenzoic acid (MCPBA) yielded the corresponding sulfones 9 (Scheme 2). The C-4 unsubstituted intermediate 10 was synthesised by reduction of 6b with NaBH\(_4\) in ethanol at 0 °C.\(^3\)\(^1\) Finally, reaction of intermediates 7-10, with benzyl isocyanate gave the desired compounds 5 in good yield.

2. Enzyme Inhibition Studies

The series of β-lactams, 5a-d, lacking substituents at the C-3 position was prepared to assess the impact of a leaving group at C-4 on porcine pancreatic elastase (PPE) inhibition when interaction with the S\(_1\) primary recognition site (Schechter and Berger, Biochem Biophys Res Comm, 25, 157.162, 1967) of elastase is reduced. PPE is a readily available elastase that shares a conserved catalytic triad consisting of Ser195, His57 and Asp102 with HLE.\(^3\)\(^5\) The primary specificity pocket of PPE is slightly less hydrophobic and smaller than that of HLE, showing preference of small-sized aliphatic side chains such as alanine.\(^3\)\(^5\) The kinetic studies carried out at pH 7.2 and 25°C, using the incubation method\(^3\)\(^2\), showed that β-lactams 5b-d containing leaving groups are time-dependent inhibitors of PPE, while the C-4 unsubstituted counterpart 5a is inactive up to a concentration of 1 mM. The second-order rate constants for PPE inactivation, \(k_{\text{inact}}/K_i\), (Table 1) were determined from the plots of pseudo-first-order inhibition rate constant, \(k_{\text{obs}}\), versus [I] (Figure1). The sulfone derivative 5d proved to be a potent inhibitor of PPE, with a \(k_{\text{inact}}/K_i\) value of 290 M\(^{-1}\)s\(^{-1}\), thus suggesting that the sulfone group is a very powerful activator of the β-lactam carbonyl carbon atom.
towards the Ser195 hydroxyl group even in the absence of an adequate molecular recognition moiety at C-3 in the β-lactam scaffold.

Further evidence of the efficiency of 5d as irreversible inhibitor of PPE comes from the titration of enzyme activity. The number of equivalents required to inactivate PPE was calculated by plotting the fraction of remaining enzyme activity, v/v_0, after a 30 min incubation period versus the initial ratio of inhibitor to enzyme, i.e. $[I]/[E]_0$. For levels of inhibition of up to 90% of the original enzyme activity, the extent of inactivation was found to depend linearly on the inhibitor to enzyme molar ratio (Figure 2), and extrapolation of the line to $v/v_0 = 0$ shows that it required approximately 1.2 equiv of 5d to completely inactivate PPE. Interestingly, such high inhibitory efficiency is similar to that reported for HLE inactivation by 3,3-diethyl monobactams and cephalosporins.\(^{(35)}\)(Green, ABB)

In contrast to the C-3 unsubstituted series, their 3,3-diethyl counterparts 5e-j were completely inactive against PPE in concentrations up to 0.5 mM. However, β-lactams 5e-j inhibited HLE very efficiently in a time-dependent fashion. The pseudo-first-order rate-constants, k_{obs}, for HLE inactivation were determined using the progress-curve method.\(^{(34)}\) For compound 5f, a linear dependence of k_{obs} on inhibitor concentration was observed (Figure 1B); and correction for the concentration and Michaelis constant of the substrate yielded the second-order rate constant for inhibition, (k_{inact}/K_i), as the slope (Table 1). For compounds 5g and 5h, the individual kinetic parameters K_i and k_{inact} were obtained by determining k_{obs} as a function of the inhibitor concentration while for the remaining β-lactams (5e, 5i and 5j) the k_{inact}/K_i values were determined by calculating $k_{obs}/[I]$ (Table 1). The second-order rate-constants for HLE inactivation, k_{inact}/K_i, are within the range of 10^5 to 10^6 M\(^{-1}\)s\(^{-1}\), which reflects the stringent S\(_1\) subsite specificity of this enzyme toward hydrophobic substituents with three or four carbon atoms (e.g. leucine).\(^{(25,31,35,36)}\) Finally, sulfones 5h and 5i present k_{inact}/K_i values superior to that of the Merck Company’s compound M618614 used as standard in our assays.

3. X-Ray Crystallography Studies
PPE was incubated with 5d for 30 min, Good quality crystals were grown and subjected to x-ray analysis. The electron density maps at the catalytic site indicate that PPE inactivation by 5d involves β-lactam ring-opening, as revealed by the ester formed with Ser195 Oγ (Figure 3). Moreover, inspection of the maps calculated at 1.66 Å resolution shows that acylation of PPE by 5d also involves the departure of sulfinate from C-4. Interestingly, the crystal structure reveals the presence of a hydroxyl group at C-3 (β-lactam numbering) (Scheme 3). This hydroxyl group establishes H-bonds to water molecules while the ester carbonyl group is H-bonded to the NH backbone of Gln192. Furthermore, the adjacent urea NH groups are within H-bonding distance to water molecules, as shown in Figure 3. This was a somewhat unexpected result when compared with those from previous X-ray crystallographic studies with other β-lactams containing leaving groups at C-4. For example, inactivation of PPE by 4-aryloxy-3,3-diethyl-β-lactams leads to a carbinolamine acyl-enzyme, resulting from reaction of water at C-4 of the imine intermediate. When a single 1-hydroxyethyl substituent is present at C-3, an enamine acyl-enzyme is formed presumably from a retro-aldol reaction on the imine precursor.

We wondered if this pattern of reactivity was inherent to 5d or a function of the enzyme active site. Therefore we undertook reaction of inhibitor 5d with sodium methoxide in methanol, which has been reported as a good model reaction for the acylation of serine enzymes. The product of this reaction was 3-benzylpyrimidine-2,4(1H,3H)-dione, 11, in 80% yield (Scheme 4). This result is consistent with MeO-catalyzed β-lactam ring opening followed by pyrimidine ring formation and phenylsulfinate elimination (or first the elimination then the ring closure). Clearly, the enzyme active site must preclude the ring closure process; moreover, the acyl-enzyme equivalent to 11 would be a cis-enamine and this would be expected to add water to C-4 (β-lactam numbering) rather than to the C-3 atom that is evident in Figure 3, thus suggesting that a different pathway may be available in the active site of PPE subsequently to β-lactam ring-opening. Although the nature of such pathway is currently unclear, it is unlikely to be the rate-limiting step in the enzyme inactivation process (see below). In this regard, it is of interest to note that the distance between C-4 (β-lactam
numbering) of PPE-5d complex and the Ca of Gln192 is only 3.4 Å; this close approach might suggest a reason as to why the presence of a hydroxyl group in the C-4 position is precluded.

4. Alkaline Hydrolysis

It has been suggested that the magnitude of the second-order rate-constant, k_{OH}, for the alkaline hydrolysis of potential inhibitors of enzymes containing a catalytic serine is a crude indicator for their ability to be effective and therapeutically useful acylating agents.37,39,40 Comparison of the k_{OH} values presented in Table 1 reveals that the reactivity of β-lactams 5 correlates poorly to the pK$_a$ of the leaving group at C-4 of the β-lactam moiety. A poor correlation between log k_{OH} values for the 3,3-diethyl series 5e-j and the pK$_a$ of the leaving group at C-4 was observed, corresponding to a βlg value of -0.05, indicating that there is essentially no change in the effective charge on the leaving group on going from the ground state to the transition state. These results are comparable to those reported for the alkaline hydrolysis of the vinylogous cephalosporins containing a potential leaving group at C-3’ (4, n = 0), for which a βlg value close to zero was also determined.41

In contrast, log k_{OH} values correlate with σ$_I$ values for the substituents at C-4, including those that are not expelled, yielding Hammett ρ$_I$ values of 2.8 and 3.4 for the series 5a-d and 5e-j, respectively (Figure 4). These ρ$_I$ values are consistent with rate-limiting attack of hydroxide on the β-lactam carbonyl atom and indicate that the effect exerted by C-4 substituents on the alkaline hydrolysis of 5 is purely inductive.

The higher ρ$_I$ value determined for the 3,3-diethyl series when compared to that of the C-3 unsubstituted series is consistent with the formation of a high energy tetrahedral intermediate in which the two C-O bonds are eclipsed with the ethyl groups at C-3. According to the Hammond postulate, this implies a later transition state along the reaction coordinate with significant negative charge build-up, thereby being more susceptible to the electronic effects of the C-4 substituents. The ρ$_I$ value determined here for the monobactams 5 is higher than the corresponding ρ$_I$ value of 1.35 reported for the alkaline hydrolysis of cephalosporins,42 a difference that almost certainly reflects the
shorter distance between the electron-withdrawing substituents and the nitrogen atom in the \(\beta \)-lactam scaffold of 5.

6. Structure-activity Relationships

Insight into how a particular substituent promotes the ability of the enzyme to use its catalytic apparatus to increase the rate of acylation through \(\beta \)-lactam ring-opening can be obtained by the enzyme rate enhancement factor (EREF); this is the ratio of second-order rate-constant for enzyme inactivation to the second-order rate-constant for the alkaline hydrolysis, i.e. \(\frac{k_{\text{inact}}/K_i}{k_{\text{OH}}} \) or \(\frac{(k_{\text{obs}}/[I])/k_{\text{OH}}}{k_{\text{OH}}} \).

Remarkably, the 3,3-diethyl \(\beta \)-lactams \(5e-j \) exhibit EREF values ca. 10\(^4\) higher than those of their C-3 unsubstituted analogues \(5b-d \) (Table 1). The differences in EREF between the two series of \(\beta \)-lactams largely reflect the importance of the alkyl substituents at C-3 in promoting an efficient molecular recognition by the S\(_1\) site of the enzyme. This interaction probably positions the \(\beta \)-lactam carbonyl within the oxyanion hole, facilitating successful nucleophilic attack by Ser-195, and thus enhancing the rate of \(\beta \)-lactam ring-opening.\(^{31}\) Clearly, the favourable binding energy between the enzyme and the C-3 substituents overcomes the strain energy in the tetrahedral intermediate en route to the acyl-enzyme.

As with alkaline hydrolysis, enzyme inactivation efficiency is not dependent on the pK\(_a\) of the leaving group at C-4. However, a good correlation was found between the logarithm of the second-order rate-constants of inactivation and the \(\sigma_1 \) values for the substituents at C-4, including \(X = H \) (\(5e \)), which corresponds to a \(\rho_1 \) value of 2.5 for compounds \(5e-j \) (Figure 4). This \(\rho_1 \) value is higher than that reported for HLE inactivation by cephalosporin sulfones (\(4, X = \beta-\text{MeO}, n = 2; \rho_1 = 1.83 \)),\(^{20}\) again reflecting the shorter distance between the substituents and the nitrogen atom in the \(\beta \)-lactam scaffold \(5 \). Compared with the alkaline hydrolysis of \(5 \) (\(\rho_1 \) of 3.4), the HLE reaction seems to involve an earlier transition-state with less negative charge buildup. This effect can be ascribed, at least in part, to the favourable non-covalent interactions with the primary specificity pocket which allows the enzyme to stabilize the transition-state and to make full use of its catalytic machinery to increase the rate of acylation through \(\beta \)-lactam ring-opening. This is consistent with the EREF values
for 5e-j ranging from 10^5 to 10^6, which indicate that HLE is facilitating the expulsion of the urea anion from the tetrahedral intermediate when compared to the hydroxide-induced hydrolysis.

In conclusion, the effectiveness of monobactams as elastase inhibitors is strongly dependent on the effect of C-3 substituents on the molecular recognition by the enzyme as well as on the effect of C-4 substituents on chemical reactivity that leads to serine acylation. The rate limiting step in elastase inactivation is the formation of the tetrahedral intermediate, and β-lactam ring-opening is not concerted with the departure of a leaving group from C-4. Monobactam sulfones emerged as very potent inhibitors of elastase due to the strong electron-withdrawing properties of the sulfone, although the departure of sulfinate from C-4 might be relevant to the chemistry of enzyme inactivation.

EXPERIMENTAL

General
Melting points were determined using a Kofler camera Bock Monoscope M and are uncorrected. The infrared spectra were collected on a Nicolet Impact 400 FTIR infrared spectrophotometer and the NMR spectra on a Brucker 400 Ultra-Shield (400 MHz) in CDCl$_3$; chemical shifts, δ, are expressed in ppm, coupling constants, J, are expressed in Hz. Low-resolution mass spectra were recorded using VG Mass Lab 20-250, VG Quattro or HP5988A mass spectrometers. Elemental analyses were performed by Medac Ltd., Brunel Science Centre, Englefield Gree Egham, TW20 0JZ, UK or by ITN, Chemistry Unit, Sacavém, Portugal. UV-vis assays were recorded either on a Shimadzu UV-1603 or UV-2100 PC spectrophotometers. TLCs were performed on a Merck grade aluminium plates, silica gel 60 F$_{254}$, and visualized by UV light and/or iodine. Preparative column chromatography was performed on silica gel 60 from Merck (70-230 mesh ASTM). DCM, TEA and benzene were purified and dried before use. Solvents and buffer materials for enzyme assays were of
analytical reagent grade and were purchased from Merck or Sigma. PPE, MeO-Suc-Ala-Ala-Pro-Val-p-NA and N-Suc-Ala-Ala-Ala-pNA were purchased from Sigma and HLE was purchased from Calbiochem.

General procedure for the synthesis of N-carbamoylazetidin-2-one derivatives

Benzyl isocyanate (4.2 mmol) and subsequently triethylamine (4.2 mmol) were slowly added to a solution of the appropriate azetidin-2-one 7-10 (3.5 mmol) in dichloromethane (3 mL), The reaction was stirred at room temperature and monitored by TLC. After completion of the reaction, the solution was evaporated under reduced pressure. The product was purified by column chromatography.

N-Benzylcarbamoylazetidin-2-one, 5a. Purified by column chromatography on silica gel (dichloromethane-ethyl acetate 9.5:0.5); 66%; m.p. 62-64 °C, ν_{max} (film) 3335, 1764, 1685 cm⁻¹; δ_H 3.08 (2H, t, J = 4.8); 3.68 (2H, t, J = 4.8); 4.50 (2H, d, J = 6.0); 6.89 (1H, brs); 7.28 - 7.38 (5H, m); δ_C 36.16, 37.28, 43.80, 127.70, 127.74, 128.80, 137.99, 150.09, 167.11; ESI-MS m/z 204 (MH⁺); Anal. calcd. for C_{11}H_{12}N_{2}O_{2}: C, 64.69; H, 5.92; N, 13.72; found: C, 65.50; H, 6.10; N, 13.12.

N-Benzylcarbamoyl-4-phenoxyazetidin-2-one, 5b. Purified by column chromatography on silica gel (elution with dichloromethane-ethyl acetate 9.5:0.5); 85%; m.p. 129-130°C; ν_{max} (film) 3368, 1780, 1708 cm⁻¹; δ_H 3.17 (1H, dd, J = 16.0, 1.2); 3.46 (1H, dd, J = 16.0, 4.4); 4.52 (2 H, dd, J = 14.4, 5.6), 6.07 (1H, dd, J = 4.4, 1.2); 6.88 (1H, brs); 7.10 (1H, t, J = 7.2); 7.15 (2H, d, J = 8.0); 7.31–7.39 (7H, m); δ_C 43.76, 45.51, 78.76, 117.14, 123.21, 127.00, 128.78, 129.72, 137.56, 156.14, 164.42; ESI-MS m/z 297.52 (MH⁺); Anal. calcd. for C_{17}H_{16}N_{2}O_{3}: C, 68.91, H, 5.44, N, 9.45; found, C, 69.12, H, 5.61, N, 9.19.

N-Benzylcarbamoyl-4-phenylthioazetidin-2-one, 5c. Purified by column chromatography on silica gel (elution with dichloromethane-ethyl acetate 9.5:0.5); 80%; m.p. 78-79 °C, ν_{max} (film) 3366, 3036,
2908, 1773, 1698 cm\(^{-1}\); \(\delta H\) 2.88 (1H, dd, \(J = 16.4, 2.8\)); 3.40 (1H, dd, \(J = 16.4, 2.8\)); 4.47 (1H, dd, \(J = 15.0, 6.0\)); 4.54 (1H, dd, \(J = 15.0, 6.0\)); 5.29 (1H, dd, \(J = 5.4, 2.8\)); 6.81 (1H, brs); 7.30 -7.56 (10H, m); \(\delta C\) 43.41, 44.13; 56.56; 127.73, 127.85, 129.08, 129.47, 129.69, 130.42, 135.33, 139.69, 166.02, 189.23, ESI-MS m/z 334.84 (MNa\(^+\)); Anal. calcd. for C\(_{17}\)H\(_{16}\)N\(_2\)O\(_2\)S: C, 65.36; H, 5.16; N, 8.97; found C 64.85; H 5.08; N 8.89.

\(N\)-Benzylcarbamoyl-4-phenylsulfonylazetidin-2-one, 5d. Purified by column chromatography on silica gel (elution with dichloromethane-ethyl acetate 9.5:0.5); 81%; m.p. 159-161 °C, \(\nu\)\(\text{máx}\) (film) 3374, 3064, 3031, 2978, 1789, 1711 cm\(^{-1}\); \(\delta H\) 3.48 (1H, dd, \(J = 16.8, 6.0\)); 3.67 (1H, dd, \(J = 16.8, 2.8\)); 4.33 (1H, dd, \(J = 14.8, 6.0\)); 4.39 (1H, dd, \(J = 14.8, 6.0\)); 5.20 (1H, dd, \(J = 6.0, 2.8\)), 6.65 (1H, brs); 7.23 (2H, dd, \(J = 8.0, 1.2\)); 7.31 -7.38 (3H, m); 7.58 (2H, t, \(J = 8.0\)); 7.74 (1H, dt, \(J = 8.0, 1.2\)); 7.96 (2H, dd, \(J = 8.0, 0.8\)); \(\delta C\) 39.43, 43.86, 65.84, 127.58, 127.79, 128.77, 129.28, 129.39, 134.88, 136.75, 137.28, 148.39, 164.27; EI-MS m/z: 344.00 (M\(^+\)); Anal. calcd. for C\(_{17}\)H\(_{16}\)N\(_2\)O\(_4\)S: C, 59.29; H, 4.68; N, 8.13; found C, 59.55; H, 5.25; N, 7.97.

\(N\)-Benzylcarbamoyl-3,3-diethylazetidin-2-one, 5e. Purified by column chromatography on silica gel (elution with dichloromethane-ethyl acetate 9.5:0.5); 83% as a colourless oil, \(\nu\)\(\text{máx}\) (film) 3374, 3064, 3031, 2978, 1789, 1711 cm\(^{-1}\); \(\delta H\) 1.00 (6H, t, \(J = 7.6\)); (4H, q, \(J = 7.6\)); 3.42 (2H, s); 4.50 (2H, d, \(J = 6.0\)); 6.93 (1H, brs); 7.28 – 7.38 (5H, m); \(\delta C\) 8.70, 25.71, 43.75, 47.04, 59.31, 127.44, 127.54, 127.65, 128.65,128.71, 137.98, 150.95, 172.83; ESI-MS m/z: 261.10 (MH\(^+\)); Anal. calcd. for C\(_{15}\)H\(_{20}\)N\(_2\)O\(_2\): C, 69.20; 7.74, N, 10.76; found C, 68.80; 7.80; 10.59.

\(N\)-Benzylcarbamoyl-3,3-diethyl-4-phenoxyazetidin-2-one, 5f. Purified by column chromatography on silica gel (elution with dichloromethane-ethyl acetate 9.5:0.5); 81%; m.p. 58-59 °C; \(\nu\)\(\text{máx}\) (film) 3366, 3064, 3031, 2970, 2939, 2880, 1770, 1710 cm\(^{-1}\); \(\delta H\) 1.00 (3H, t, \(J = 7.6\) Hz); 1.06 (3H, t, \(J = 7.6\)); 1.77-1.84 (3H, m); 1.99 (1 H, dq, \(J = 14.4, 7.2\)); 4.47 (1H, dd, \(J = 15.6, 6.0\)); 4.51 (1H, dd, \(J = 15.6, 6.0\)); 5.68 (1H, s); 6.93 (1H, brs); 7.07 (1H, t, \(J = 7.2\)); 7.22-7.35 (9H, m); \(\delta C\) 8.58, 8.84, 21.23,
23.86, 43.75, 64.35, 86.76, 117.76, 123.17, 127.63, 127.67, 128.76, 129.67, 137.66, 150.14, 157.47, 172.23; ESI-MS m/z 353.29 (MH⁺); Anal. calcd. for C_{21}H_{24}N_{2}O_{3}: C, 71.57, H, 6.86, N, 7.95; found 71.84, 6.78, 8.18.

N-Benzy carbamoyl-3,3-diethyl-4-phenylthioazetidin-2-one, 5g. Purified by column chromatography on silica gel (elution with dichloromethane-ethyl acetate 9.5:0.5); 70%; m.p. 80-81 °C; ν_{max} (film) 3361, 3061, 2968, 1758, 1701 cm⁻¹; δ_H 0.94 (3H, t, J = 8.0 Hz); 1.06 (3H, t, J = 8.0); 1.75-1.98 (4H, m); 1.99 (1H, dq, J = 14.4, 7.2); 4.51 (1H, dd, J = 15.6, 6.0); 4.55 (1H, dd, J = 15.6, 6.0); 5.06 (1H, s); 6.95 (1H, brs); 7.28-7.39 (8H, m); 7.77 (2H, d, J = 8.0); δ_C 8.43, 9.01, 23.11, 24.74, 43.74, 63.95, 71.42, 127.60, 127.65, 128.17, 128.74, 129.19, 133.24, 137.71, 150.13, 172.04; EI-MS m/z 368.15 (M⁺); Anal. calcd. for C_{21}H_{24}N_{2}O_{2}S: C, 68.45, H, 6.56, N, 7.60; found, C, 68.22, H, 6.93, N, 8.03.

N-Benzyl carbamoyl-3,3-diethyl-4-phenylsulfonylazetidin-2-one, 5h. Purified by column chromatography on silica gel (elution with dichloromethane-ethyl acetate 9.5:0.5); 63%; m.p. 142-144 °C; ν_{max} (film) 3366, 3060, 3041, 2971, 1778, 1711 cm⁻¹; δ_H 1.01 (3H, t, J = 7.2 Hz); 1.06 (3H, t, J = 7.2); 1.68 (1H, dq, J = 14.4, 7.2); 1.95 (1H, dq, J = 14.4, 7.2); 2.20 (1H, dq, J = 14.4, 7.2); 2.47 (1H, dq, J = 14.4, 7.2); 4.21 (1H, dd, J = 14.8, 6.0); 4.33 (1H, dd, J = 14.8, 6.0); 4.75 (1H, s); 6.66 (1H, brs); 7.14 (2H, d, J = 7.6); 7.19-7.28 (3H, m); 7.47 (2H, t, J = 7.6); 7.61 (1H, t, J = 7.6); 7.85 (2H, t, J = 7.6); δ_C 8.56, 8.90, 20.86, 25.12, 43.85, 67.05, 74.72, 127.43, 127.69, 128.74, 128.88, 129.18, 134.39, 137.36, 139.84, 148.99, 171.49; EI-MS m/z (M⁺) 400.05; Anal. calcd. for C_{21}H_{24}N_{2}O_{4}S: C, 62.98, H, 6.04, N, 6.99; found, C, 61.57, H, 6.86, N, 7.20.

N-Benzyl carbamoyl-3,3-diethyl-4-benzylthioazetidin-2-one, 5i. Purified by column chromatography on silica gel (elution with dichloromethane-ethyl acetate 9.5:0.5); 53% as an yellow oil, ν_{max} (film) 3365, 1759, 1701 cm⁻¹; δ_H 0.56 (3H, t, J = 7.4); 0.85 (3H, t, J = 7.4); 1.44-1.69 (4H, m); 3.99 (1H, d, J = 12.8); 4.06 (1H, d, J = 12.8); 4.31 (1H, dd, J = 15.3, 6.1); 4.36 (1H, dd, J = 15.3, 6.1);
6.3); 4.70 (1H, s); 6.91 (1H, s); 7.10-7.27 (10H, m); δC 7.67; 8.90; 22.44; 24.44; 37.37; 43.61; 62.99; 65.84; 127.63; 127.72; 127.81; 129.01; 129.07; 129.80; 138.79; 139.62; 172.35;

HPLC-ESIMS m/z (MH⁺) 382.02; Anal. calcd. for C22H26N2O2S; C, 69.10; H, 6.97; N, 7.30; found C, 69.10, H, 6.90; N, 7.30.

N-Benzylcarbamoyl-3,3-diethyl-4-benzylsulfonylazetidin-2-one, 5j. Purified by column chromatography on silica gel (elution with diethyl ether–light petroleum 1:1; 52%; m.p. 93-94 °C; νmax (film) 3365, 1778, 1313, 1165 cm⁻¹; δH 0.79 (3H, t, J = 7.4); 1.01 (3H, t, J = 7.5); 1.62 (1 H, dq, J = 14.5, 7.3); 1.84 (1H, dd, J = 14.5, 7.3); 2.08 (1H, dq, J = 14.5, 7.4); 2.52 (1H, dq, J = 14.6, 7.4); 4.48 (1H, d, J = 13.9); 4.53 (2H, d, J = 5.9); 4.62 (1H, s); 5.01 (1H, d, J = 13.9); 6.95 (1H, t, J = 5.9); 7.19-7.59 (10H, m); δC 8.27, 8.87, 20.90, 24.48, 44.12, 62.27, 66.46, 69.06, 127.59, 127.89, 128.91, 129.07, 131.37, 137.08, 150.20, 171.22; EI-MS m/z 413.8 (MH⁺); Anal. calcd. for C22H26N2O4S; C, 63.75; H, 6.32; N, 6.76; found C, 63.70, H, 6.40; N, 6.60.

Large scale reaction of N-benzylcarbamoyl-4-phenylsulfonylazetidin-2-one with excess sodium methoxide

N-Benzylcarbamoyl-4-phenylsulfonylazetidin-2-one (0.29 mmol), 5h, was added to a solution of sodium methoxide (1.5 mmol) in methanol (15 mL). The reaction mixture was stirred at room temperature and monitored by TLC. The solvent was removed under reduced pressure and the residue was taken up in water (20 mL), acidified with HCl 10% until pH 2 and extracted with ethyl acetate (3x 30 mL). After drying and evaporating off the solvent, the residue was purified by column chromatography on silica gel (elution with dichloromethane-ethyl acetate 8:2), to yield the product 3-benzylpyrimidine-2,4(1H,3H)-dione, 11, as a white solid (79%); m.p. 177-179 °C (Lit 44, 181-182); νmax (film) 3084, 2965, 1625, 1601 cm⁻¹; δH 5.12 (2H, s); 5.81 (1H, dd, J = 7.2, 1.2); 7.14 (1H, dd, J = 7.2, 6.0); 7.26-7.34 (3H, m); 7.46 (2H, d, J = 7.2); 9.35 (1H, brs); δC 43.71, 102.26, 127.70, 128.46, 128.80, 136.49, 138.17, 163.12; EI-MS m/z 202.05 (M⁺); Anal. calcd. for C11H10N2O2, C, 65.34; H, 4.98; N, 13.85; found, C, 65.65, H, 5.25, N, 13.41.
Chemical kinetics

All kinetic measurements were carried out at 25.0 ± 0.1 ºC and with an ionic strength adjusted to 0.5 M by addition of NaClO₄. Due to substrate solubility problems all buffers contained 20% (v/v) acetonitrile. Rate constants were determined using UV spectrophotometry by recording the decrease of substrate absorbance at fixed wavelength, using a spectrophotometer equipped with a temperature controller. In a typical run, reaction was initiated by adding a 15 µL aliquot of a 10⁻² M stock solution of substrate in acetonitrile to a cuvette containing 3 mL of the buffer solution. The pseudo-first-order rate constants, k_{obs}, were obtained by least-squares treatment of log(A_t-A_∞) data, where A_t and A_∞ represent the absorbance at time t and at time infinity, respectively. Rate constants derived using this method were reproducible to ± 5%.

Enzyme inactivation by the progress curve method

Inactivation of HLE was assayed at 25 ºC by mixing 10 µL of HLE stock solution (2 µM in 0.05 M acetate buffer, pH 5.5) to a solution containing 10 µL of inhibitor in DMSO (200 µM), 20 µL of substrate MeO-Suc-Ala-Ala-Pro-Val-p-NA (50 mM in DMSO) and 960 µL of 0.1 M HEPES buffer, pH 7.2, and the absorbance was continuously monitored at 410 nm for 20 minutes. Control assays, in which the inhibitor was omitted, ran linearly. The pseudo-first order rate constants, k_{obs}, for the inhibition of HLE were determined according to the slow-tight binding inhibition model and involved the fitting of product concentration as a function of time to Eq. 1 by non-linear regression analysis using the routine ENZFIT (developed at the Faculty of Pharmacy, Lisbon),

$$A = v_i t + \left(v_s - v_i\right)\left(1 - e^{-k_{obs}t}\right)/k_{obs} + A_0$$ \hspace{1cm} (1)

where A is the absorbance at 410 nm, A_0 is the absorbance at $t = 0$, v_i is the initial rate of change of absorbance, v_s is the steady-state rate and k_{obs} is the first-order rate constant for the approach to the steady-state. The individual kinetic parameters K_i and k_{inact} were obtained by determining k_{obs} (in
duplicate or triplicate) as a function of the inhibitor concentration and by fitting the experimental data to Eq. 225. When a linear dependence of \(k_{\text{obs}}\) on inhibitor concentration was observed (e.g. for 5f), correction for substrate concentration and Michaelis constant yielded the second-order rate constant for inhibition, \((k_{\text{inact}}/K_i)\), as the slope and the first-order rate for the dissociation of the E·I complex, \(k_{\text{off}}\), as the intercept (Eq. 3) (see Fig. 1B). For the remaining β-lactams the \(k_{\text{inact}}/K_i\) values were determined in duplicate or triplicate by calculating \(k_{\text{obs}}/[I]\) and then correcting for the substrate concentration and Michaelis constant using Eq 4.

\[
k_{\text{obs}} = \frac{k_{\text{inact}}[I]}{(K_i(1+[S]/K_m)+[I])}
\]

\[
k_{\text{obs}} = k_{\text{off}} + \frac{k_{\text{inact}}/K_i}[I]/(1+[S]/K_m)
\]

\[
k_{\text{obs}}/[I] = \frac{k_{\text{inact}}/K_i}{(1+[S]/K_m)}
\]

Enzyme inactivation by the incubation method

Inhibition of PPE was assayed by Kitz and Wilson’s incubation method.32 In a typical experiment, 50 µL of inhibitor solution in DMSO were incubated at 25 °C with 750 µL of 0.1 M HEPES buffer, pH 7.2, and 200 µL of PPE solution (50 µM in 0.1 M HEPES buffer, pH 7.2). Aliquots (100 µL) were withdrawn at different time intervals and transferred to a cuvette thermostated at 25 °C, containing 895 µL of 0.1 M HEPES buffer, pH 7.2, and 5 µL of N-Suc-Ala-Ala-Ala-pNA (12.5 mM in DMSO). The absorbance was monitored at 390 nm for 60 seconds and the gradients of the slopes obtained of initial rate used as a measure of enzyme activity. The values of \(k_{\text{obs}}\) for compounds 5b-d were determined in duplicates or triplicates from plots of \(\ln(v/v_0)\) \(\text{versus}\) incubation time, where \(v\) is the initial rate at time \(t\) and \(v_0\) is the initial rate of the control incubation without inhibitor. The plots of \(k_{\text{obs}}\) \(\text{versus}\) [I] were linear and the potency of the inhibitors was determined in terms of the bimolecular rate constant \(k_{\text{inact}}/K_i = k_{\text{obs}}/[I]\).
Partition ratio

PPE solutions were incubated at 25 °C with different concentrations of 5d solutions in 0.1 M HEPES buffer, pH 7.2, in a final volume of 1 mL. After 30 minutes incubation, a 100 µL aliquot of the reaction mixture was withdrawn and assayed for remaining enzyme activity as described previously.

X-Ray Crystallographic Studies

Porcine pancreatic elastase (PPE) was incubated with inhibitor 5d for 30 min. Good quality crystals were grown in 200 mM sodium sulfate and 100 mM sodium acetate at pH 5.1 (293 K) using the sitting drop vapour-diffusion method. X-ray diffraction data were collected to 1.66 Å at synchrotron beamline X11 at DESY (Hamburg, Germany), using a wavelength of 0.82 Å. The 5d-PPE complex has been refined to give an R-factor of 15.6% and R-free of 18.6%. The structure is generally well defined within the electron density maps, showing an average B factor of 10.5 Å² for all protein atoms. The final model comprises 240 amino acid residues, 316 water molecules, the inhibitor 5d without the C-4 PhSO₂⁻ leaving group, two glycerol molecules, one sulfate ion and one sodium ion, which is hexa-coordinated to side-chain atoms of Glu80, Asp77, Gln75, Asn72, Glu70 and a water molecule. Alternated conformations were modelled for the side chains of Gln23, Gln75, Val83 and Ser189, with 50% occupancy each. All protein residues lie within allowed regions of the Ramachandran plot and the relevant refinement statistics is presented in Table 2. The overall protein structure of the 5d-PPE complex is very similar to that of the native enzyme (PDB code 1QNJ) and superposition of the Ca atoms shows a r.m.s. deviation of 0.089 Å. The numbering of 5d-PPE complex follows the common practice of using the bovine chymotrypsinogen A numbering.
REFERENCES

Table 1. Second-order rate constants, k_{OH^-}, for the hydroxide-catalyzed hydrolysis of 4-substituted azetidin-2-ones, 5, at 25 °C and the kinetic parameters for the time-dependent inactivation of porcine pancreatic elastase (5a-d) and human leukocyte elastase (5e-h and Merck’s M618614) in pH 7.2 buffer at 25 °C.

![Chemical structure of 5](Image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>X</th>
<th>pK_a(XH)</th>
<th>k_{inact}/K_i/ M$^{-1}$s$^{-1}$</th>
<th>$10^9k_{OH^-}$/M$^{-1}$s$^{-1}$</th>
<th>EREF</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>H</td>
<td>H</td>
<td>35 47</td>
<td>NI</td>
<td>0.221</td>
<td>--</td>
</tr>
<tr>
<td>5b</td>
<td>H</td>
<td>OPh</td>
<td>10.0</td>
<td>11.5 a</td>
<td>0.990</td>
<td>11.6</td>
</tr>
<tr>
<td>5c</td>
<td>H</td>
<td>SPh</td>
<td>6.52</td>
<td>22.0 a</td>
<td>0.441</td>
<td>50.0</td>
</tr>
<tr>
<td>5d</td>
<td>H</td>
<td>SO$_2$Ph</td>
<td>1.29</td>
<td>290 a</td>
<td>4.16</td>
<td>70.0</td>
</tr>
<tr>
<td>5e</td>
<td>Et</td>
<td>H</td>
<td>35 47</td>
<td>310 b</td>
<td>0.164</td>
<td>1.89×10^5</td>
</tr>
<tr>
<td>5f</td>
<td>Et</td>
<td>OPh</td>
<td>10.0</td>
<td>2280 b</td>
<td>0.722</td>
<td>3.15×10^5</td>
</tr>
<tr>
<td>5g</td>
<td>Et</td>
<td>SPh</td>
<td>6.52</td>
<td>5760 b,c</td>
<td>0.713</td>
<td>8.08×10^5</td>
</tr>
<tr>
<td>5h</td>
<td>Et</td>
<td>SO$_2$Ph</td>
<td>1.29</td>
<td>15200 b,d</td>
<td>14.2</td>
<td>1.07×10^5</td>
</tr>
<tr>
<td>5i</td>
<td>Et</td>
<td>SCH$_2$Ph</td>
<td>9.27</td>
<td>4464 b</td>
<td>0.362</td>
<td>1.23×10^6</td>
</tr>
<tr>
<td>5j</td>
<td>Et</td>
<td>SO$_2$CH$_2$Ph</td>
<td>1.45</td>
<td>11741 b</td>
<td>12.7</td>
<td>9.24×10^4</td>
</tr>
<tr>
<td>M618614</td>
<td>Et</td>
<td>OC$_6$H$_4$-4-CO$_2$H</td>
<td>8.90</td>
<td>8320 b,e</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

a Against PPE;

b Against HLE;

c 5g: $K_i = 0.633$ µM, $k_{inact} = 3.64 \times 10^3$ s$^{-1}$;

d 5h: $K_i = 0.267$ µM, $k_{inact} = 4.06 \times 10^3$ s$^{-1}$;

e M618614: $K_i = 0.454$ µM, $k_{inact} = 3.78 \times 10^3$ s$^{-1}$
Table 2. Data collection and crystallographic refinement statistics for the porcine pancreatic structure bound to 5d.

<table>
<thead>
<tr>
<th>Resolution range (Å)</th>
<th>37.95-1.66</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refined model</td>
<td></td>
</tr>
<tr>
<td>R-factor (%)</td>
<td>15.6</td>
</tr>
<tr>
<td>R-free (%)</td>
<td>18.6</td>
</tr>
<tr>
<td>Nº of non H protein atoms</td>
<td>1833</td>
</tr>
<tr>
<td>Nº of solvent molecules</td>
<td>320</td>
</tr>
<tr>
<td>Average B-factor (Å²)</td>
<td></td>
</tr>
<tr>
<td>Protein only</td>
<td>10.5</td>
</tr>
<tr>
<td>Inhibitor only</td>
<td>24.4</td>
</tr>
<tr>
<td>Solvent molecules</td>
<td>25.9</td>
</tr>
<tr>
<td>Ramachandran plot</td>
<td>87.4</td>
</tr>
<tr>
<td>Residues in most most favoured regions (%)</td>
<td></td>
</tr>
<tr>
<td>Residues in additional allowed regions (%)</td>
<td>12.6</td>
</tr>
<tr>
<td>r.m.s. deviations</td>
<td></td>
</tr>
<tr>
<td>bond angles (°)</td>
<td>0.01</td>
</tr>
<tr>
<td>angle lengths (Å)</td>
<td>1.22</td>
</tr>
</tbody>
</table>
Figure 1. Dependence of \(k_{\text{obs}} \) for enzyme inhibition on inhibitor concentration: (A), 5d, porcine pancreatic elastase; (B), 5f, human leucocyte elastase.

A

![Graph A showing dependence of \(k_{\text{obs}} \) on inhibition concentration for 5d.]

B

![Graph B showing dependence of \(10^3 k_{\text{obs}}/S^-1 \) on inhibition concentration for 5f.]

Figure 2. Inactivation of porcine pancreatic elastase as a function of the molar ratio of inhibitor 5d to enzyme. PPE (10 µM) and various amounts of inhibitor 5d (20-0.4 µM) in 0.1 M HEPES buffer, pH 7.25, were incubated at 25 °C for 30 min, and aliquots were withdrawn for assay.
Figure 3. A stereoview of the $|F_o| - |F_c|$ electron density map calculated with Ser-195 and inhibitor 5d (code JM48) omitted from the model. The omit map is contoured at 3σ and shows the acyl-enzyme covalently linked to Ser195 with the corresponding interactions with PPE active site.
Figure 4. Plots of second-order rate-constants for the alkaline hydrolysis of C-3 unsubstituted β-lactams 5a-d (▲) and 3,3-diethyl-β-lactams 5e-j (□) and of second-order rate-constants for HLE inactivation by 3,3-diethyl-β-lactams 5e-j (■) against σI values for the X substituents in C-4.
Scheme 1
(i) PhOH, NaOH, acetone; (ii) R\(^2\)SH, NaOH, acetone; (iii) PhSH (2 mol eq.), C\(_6\)H\(_6\), reflux; (iv) MCPBA, DCM; (v) NaBH\(_4\), EtOH; (vi) PhCH\(_2\)NCO, TEA, DCM
Scheme 4

Scheme 3

Covalent enzyme-inhibitor complex (see Fig. 3)