Stable Chlorine Isotope Reservoirs in Chondrites

Conference Item

How to cite:

For guidance on citations see FAQs

© [not recorded]
Version: [not recorded]

Link(s) to article on publisher’s website:

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
STABLE CHLORINE ISOTOPE RESERVOIRS IN CHONDrites. J. C. Bridges¹, D. A. Banks² and M. M. Grady¹, ¹Dept. of Mineralogy, Natural History Museum, London SW7 5BD, UK (j.bridges@nhm.ac.uk), ²Dept. of Earth Sciences, University of Leeds, Leeds LS2 9JT, UK.

Introduction: By analyzing the stable Cl-isotopes of halite from the Zag H-breccia and comparing the results with those from other chondritic materials we can provide new information about isotopes in the early Solar System. In particular Cl-isotope work may complement O-isotope studies. We show for the first time that substantial 37Cl/35Cl fractionation exists between chondrite components.

Zag halite crystallized from an evaporating brine at $<< 100^\circ$C on the H-parent body [1,2]. The absence of clay alteration in olivine shows the rapid nature of this process which could have been started through melting of ice emplaced onto the planetesimal surface [1].

Techniques: Water soluble extracts were prepared from halite and H4 matrix from Zag (extract was primarily dissolved halite). Analysis of 37Cl/35Cl was carried out by TIMS. To further characterise brine compositions halogen values were determined by ion chromatography [3]. Extracts were also analysed from the CM2 fall Murchison (Br/Cl ratio only) and H5 find Plains. 37Cl is relative to SMOC.

Results and discussion: Zag halite and the silicate extract have light Cl-isotopic values compared to bulk carbonaceous chondrites [4] (Fig. 1). The Br/Cl ratios of the halite samples are slightly less than that of Orgueil. Evaporation fractionates Cl-isotopes by $\leq 0.4\%$ relative to a parent brine [5] suggesting that Zag isotope ratios are close in value to an initial reservoir. Pore fluid fractionation and crystallization of clays can also act to fractionate Cl-isotopes towards light values [5] but there is no sign of such extensive fluid activity in Zag [1].

The higher Br/Cl ratios of extracts from the Plains find suggest that terrestrial adsorption of halogens acts to increase Br/Cl ratios. This might also be expected to alter the 37Cl values but adsorption of aerosols tends to increase 35Cl [6], so the influence of terrestrial alteration is currently uncertain. However, the Zag halite was sampled pure so terrestrial contamination can be ruled out for it [1,2].

In the absence of any obvious mechanism to fractionate the Cl-isotopes during fluid activity, the difference in 37Cl between whole carbonaceous chondrites and our water soluble extracts suggests that there were at least 2 distinct reservoirs with 37Cl ~ -1 to -2% (ice/parent body brine) and 35Cl ~ 2.5 to 4% (chondrite silicate solids). These reservoirs might be related to 16O-poor fluids and 16O-rich solids on parent bodies [7].

![Fig. 1. Br/Cl (wt) vs. 37Cl (%). Water soluble extracts (this study): Zag halite (2 samples from 1 grain); Zag (H4 matrix); Plains (H5 find). Terrestrial seawater [3]. Whole chondrite pyrolysis, Br/Cl ratios for 3 carbonaceous chondrites [4,8].](image-url)