Oceanic heat transport onto the Amundsen Sea shelf through a submarine glacial trough

How to cite:

For guidance on citations see FAQs.

© [not recorded]
Version: [not recorded]

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1029/2006GL028154

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Oceanic heat transport onto the Amundsen Sea shelf through a submarine glacial trough

Dziga P. Walker,1 Mark A. Brandon,1 Adrian Jenkins,2 John T. Allen,3 Julian A. Dowdeswell,4 and Jeff Evans4

Received 13 September 2006; revised 17 November 2006; accepted 1 December 2006; published 16 January 2007.

1. Introduction

Glaciers which drain the West Antarctic Ice Sheet (WAIS) into the Amundsen Sea are accelerating and thinning rapidly. These observations have been attributed to the regional oceanography whereby heat contained within Circumpolar Deep Water (CDW) drives the basal melting of floating glaciers. On the basis of new data we calculate that 2.8 terra-Watts (1012) of oceanic heat flow onto the continental shelf and toward the glaciers via a submarine glacial trough. This is enough to account for most of the basal melting in the entire region suggesting the ocean is supplying an excess of heat toward the Antarctic continent.

2. Results and Discussion

In March 2003 an oceanographic survey was conducted at the shelf break of the Amundsen Sea to the northwest of the Amundsen Sea Embayment (Figure 1). This survey was centered over a submarine glacial trough...
Figure 2. Swath bathymetry showing the shelf break and the submarine glacial trough (dashed lines) [Dowdeswell et al., 2006; Evans et al., 2006]. A non-linear color scheme is used to clearly show the trough features, and depths >1400 m are colored the same. The black line is the CTD transect shown in Figure 3.

Figure 3. Hydrographic data measured across the glacial trough. (a) Temperature, (b) salinity, and (c) neutral density \(\gamma^n \). The white line is the upper limit of Circumpolar Deep Water (CDW) \(\gamma^n = 28.00 \text{ kg m}^{-3} \). The black diamonds are the CTD positions with their associated numbers (located in Figure 2).

We used the data in Figure 3 to derive a transport rate for the CDW into this trough. First, we derived relative geostrophic velocity profiles between each CTD station pair along a synoptic section across the glacial trough and then referenced the relative velocities to absolute currents determined from shipboard Acoustic Doppler Current Profiler (ADCP) data that had been filtered and de-tided using a...
Figure 4. The cumulative volume flux of CDW through the trough. Negative values are poleward (on-shelf) flowing water. The 95% confidence limits (shaded gray) are calculated using the standard error of the mean derived from the sections of Acoustic Doppler Current Profiler data used in the volume flux calculation.

harmonic analysis technique with spatially dependent polynomials [Allen, 1995].

Transport rates derived from the CTD section across the glacial trough give a volume flux of CDW ($C > 28.00$ kg m$^{-3}$) into the trough of 234 mSv (±62 mSv, 95% CI, Figure 4). This figure is comparable to the estimated inflow beneath 800 m at the PIG ice front of 172 mSv [Jacobs et al., 1996]. If we take temperature relative to the surface freezing point of CDW, we can obtain a heat transport representing the amount of energy available for melting ice. We calculate 2.8 TW (±0.68 TW) of heat is flowing toward the Antarctic continent in the trough. If we make the assumptions that none of this heat was lost en-route to the sub-ice cavities, then the meltwater return flux would be 8200 m3 s$^{-1}$ or 257 km3 year$^{-1}$ (Gt year$^{-1}$). This is slightly greater than the entire glacial discharge into the south-eastern Amundsen Sea from Pine Island, Thwaites, and Smith glaciers combined [Rignot and Thomas, 2002]. Given that some of this discharge is lost through iceberg calving, the heat carried on-shelf within the trough is sufficient to account for a significant portion of the entire ice shelf melting in the Amundsen Sea.

Our first assumption is realistic given that at PIG the average temperature of CDW flowing beneath 700 m at the ice shelf front was 1.054°C [Hellmer et al., 1998] and the average CDW temperature ($C > 28.00$ kg m$^{-3}$) crossing the shelf break within the trough in this study was 1.057°C. However, the shallower return flow at PIG was only 0.5°C cooler, on average, than the inflow [Hellmer et al., 1998] and so only a fraction of the heat getting to the glacier is used in the basal melting of the PIG ice shelf. Even this 0.5°C cooling of the inflow represents a heat loss equivalent to 44 km3 year$^{-1}$ of melting and is close to the higher previous estimates of melting beneath PIG [Jacobs et al., 1996; Jenkins et al., 1997; Payne et al., 2004]. Although unproven, the less dense, meltwater plume from the Amundsen Sea glaciers may hug the continent and flow westward in a coastal current. Such a current would flow into the southern limb of the Ross Sea where Jacobs et al. [2002] related an observed freshening to meltwater arriving from the Amundsen Sea.

Despite being unable to measure longer term or seasonal variability, we argue that there is no other water mass denser or as dense as CDW anywhere in the vicinity, and that there are no other likely mechanisms capable of producing such water masses, then there will not be a barrier capable of preventing isopycnal flow of CDW onto the shelf where topography allows. The Winter Water measured here (~90 m deep, Figure 3) has a salinity of 34.00 and consequently is much less dense (and so shallower) than Winter Water typically found elsewhere around Antarctica. This means that, during the austral winter, vertical convection of the water column due to salinization at the sea surface produced by sea ice formation is not strong enough to penetrate into the CDW layer. The relatively small set of summertime observational data from 1994, 2000, 2003 and 2006 (the only on-shelf oceanographic data that exist) clearly show CDW at the same high temperatures (~1.0–1.2°C) all along the shelf break and further on-shelf suggesting that sea ice production during this period is not as strong relative to other regions around Antarctica. The remaining important factor controlling the variability of heat transport to the ice is the proximity of the “source” undiluted CDW carried within the ACC to the shelf edge. Without any continuous measurements at the continental margin it has not been determined how variable these source waters are. One factor capable of controlling the position and strength of upwelling CDW is the Antarctic Divergence which is a wind driven feature; therefore atmospheric forcing in the South Pacific may play a role in controlling heat transport onto the shelf. Our CDW inflow can certainly explain the currently observed high glacier melt rates. If the oceanic conditions at the continental margin have remained similar over long timescales, persistent undiluted CDW present at the shelf edge could help explain why the ice shelf fronts in the south east Pacific have significantly retreated relative to their positions at the last glacial maximum.

3. Summary

Our measurements reveal an on-shelf transport of 2.8 TW of heat within a trough. This heat is sufficient to explain most of the glacial melting that is currently estimated to be happening in the Amundsen Sea. It is however not the only source of CDW on the shelf. Indeed, Figure 3 also shows that a smaller amount of CDW flows onto the shelf in a thinner layer (~70 m) outside of the trough. Furthermore, there are other depressions known to exist in the shelf edge further to the east of this trough thus providing more routes for heat to be carried on shelf. Given that all of the historical data measured elsewhere along the shelf edge of the Amundsen Sea (with or without a trough present) show this thin layer of warm water penetrating the shelf, it is sensible to assume that beneath the pycnocline, the Amundsen Sea shelf is flooded with relatively warm water particularly over deeper topography including that underneath the ice shelves. With such a large surplus of oceanic heat available for melting it remains to determine the physical processes that regulate its delivery to the ice shelves.
Acknowledgments. We wish to thank the officers and crew of the *RRS James Clark Ross* and are grateful to Stan Jacobs and Tom Kellogg for supplying information on the topography of the Amundsen Sea continental shelf break that indicated the location of the submarine trough. We are also grateful to Stan Jacobs and two anonymous reviewers for helpful comments on this manuscript. This work was funded by the Natural Environment Research Council’s Autosub Under Ice Thematic Programme (award reference NER/T/S/2000/00987).

References

M. A. Brandon and D. P. Walker, Centre for Earth, Planetary, Space and Astronomical Research, Open University, Walton Hall, Milton Keynes, MK7 6AA, England. (m.a.brandon@open.ac.uk)

J. A. Dowdeswell and J. Evans, Scott Polar Research Institute, University of Cambridge, Lensfield Road, Cambridge CB2 1ER, England.

A. Jenkins, British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, England.