Open Research Online The Open University's repository of research publications and other research outputs ## Hambleton – a new sulphur rich pallasite ## Conference or Workshop Item How to cite: Johnson, D.; Hutchison, R.; Kirk, C. and Grady, M. M. (2006). Hambleton – a new sulphur rich pallasite. In: 69th Annual Meeting of the Meteoritical Society, 6-11 Aug 2006, Zurich, Switzerland. For guidance on citations see FAQs. © [not recorded] Version: [not recorded] Link(s) to article on publisher's website: http://www.lpi.usra.edu/meetings/metsoc2006/pdf/5216.pdf Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page. oro.open.ac.uk HAMBLETON - A NEW SULPHUR RICH PALLASITE D.Johnson¹, R.Hutchison², C Kirk² and M.M.Grady ^{1,2}. ¹Open University, Walton Hall, Milton Keynes, MK76AA, United Kingdom. E-mail: D.Johnson@open.ac.uk. ²Natural History Museum, London, SW7 5BD, UK. **Introduction:** A new pallasite, a single mass of 17.6 kg, was found south of Hambleton, North Yorkshire, by R and I Elliott in August 2005. The mass is composed of ~60 vol % olivine, ~25 vol% metal and ~15 vol% sulphide. The phases are irregularly distributed and highly weathered. There follow the results of a study by optical and analytical scanning electron microscopy. Observations: Olivine occurs as cm-sized sub-rounded crystals in a granular mosaic. Many contain sub-parallel sets of fractures, some of which are annealed, while others are filled with metal or sulphide. In metal-rich or sulphide-rich areas olivines are fragmented and angular to sub-angular and veined by metal or sulphide respectively. Some regions <5cm in size are composed entirely of olivine crystals enclosed within troilite. Olivine is Fo_{88.3}, and together with the oxygen isotopic ratios: $\delta^{17}O = +1.383\%$; $\delta^{18}O = +3.029\%$; $\delta^{17}O = -0.187\%$, indicate that the meteorite is a main group pallasite. From the olivine-rich exterior, weathering has penetrated for 4-5 cm towards the interior of the mass. The weathered, olivine-rich outer portion is brittle and prone to disintegration. A blue secondary mineral rich in Mg, P and Fe was shown by XRD to be baricite (Mg, Fe)₃ (PO₄)₂.8H₂O. Much of the metal has succumbed to terrestrial oxidiation, especially low-Ni phases such as kamacite, cloudy taenite or plessite. The sulphide is more susceptible to terrestrial alteration than the metal. **Discussion:** Metal rich regions are consistent with the view of Scott [1] that pallasites formed by the injection of metallic liquid into dunite. Evolved metallic melts, related to IIIAB irons, should be sulphur-rich. Paucity of sulphide in pallasites led Ulff-Moller et al [2] to suggest that either FeS-rich liquid was lost or formed pallasites that are underrepresented in our samples. **Conclusion:** With Phillips County (pallasite), Hambleton is a rare FeS-rich pallasite. ## **References:** [1] Scott E.R.D. 1977. Geochimica et Cosmochimica Acta 47: 693-710. [2] Űlff-M¢ller et al. 1998. Meteoritics & Planetary Science 33: 221-227.