Copy the page URI to the clipboard
Liu, Ming-Chang; McCain, Kaitlyn A.; Matsuda, Nozomi; Yamaguchi, Akira; Kimura, Makoto; Tomioka, Naotaka; Ito, Motoo; Uesugi, Masayuki; Imae, Naoya; Shirai, Naoki; Ohigashi, Takuji; Greenwood, Richard C.; Uesugi, Kentaro; Nakato, Aiko; Yogata, Kasumi; Yuzawa, Hayato; Kodama, Yu; Hirahara, Kaori; Sakurai, Ikuya; Okada, Ikuo; Karouji, Yuzuru; Nakazawa, Satoru; Okada, Tatsuaki; Saiki, Takanao; Tanaka, Satoshi; Terui, Fuyuto; Yoshikawa, Makoto; Miyazaki, Akiko; Nishimura, Masahiro; Yada, Toru; Abe, Masanao; Usui, Tomohiro; Watanabe, Sei-ichiro and Tsuda, Yuichi
(2022).
DOI: https://doi.org/10.1038/s41550-022-01762-4
Abstract
The abundant phyllosilicate and carbonate minerals characterizing most of the returned particles from asteroid Ryugu suggest a history of extensive aqueous alteration on its parent body, similar to the rare mineralogically altered, but chemically primitive, CI (Ivuna-type) chondrite meteorites. Particle C0009 differs mineralogically from other Ryugu particles examined so far by containing anhydrous silicates at a level of ~0.5 vol%, and thus can help shed light on the unaltered original materials that constituted Ryugu’s protolith. In situ oxygen isotope measurements of the most Mg-rich olivine and pyroxene in C0009 reveal two populations of Δ17O: −25‰ to −15‰ and −8‰ to −3‰. The former and the latter populations correlate well with silicate morphologies similar to those seen in amoeboid olivine aggregates and chondrule phenocrysts, respectively, both of which are abundant in less aqueously altered carbonaceous chondrites. This result also highlights the presence of olivine with Δ17O close to the solar value in either a CI chondrite or an asteroid with CI-chondrite characteristics, and provides strong evidence that amoeboid olivine aggregates and Mg-rich chondrules accreted into Ryugu’s protolith. Our data also raise the possibility that the protoliths of CI and other carbonaceous chondrites incorporated similar anhydrous silicates.
Viewing alternatives
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 85391
- Item Type
- Journal Item
- ISSN
- 2397-3366
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Copyright Holders
- © 2022 The Author(s), under exclusive licence to Springer Nature Limited
- Related URLs
- Depositing User
- ORO Import