

Open Research Online

The Open University's repository of research publications and other research outputs

Amino acids composition and oxygen isotopes in the Shisr 033 CR chondrite

Conference or Workshop Item

How to cite:

Martins, Z.; Greenwood, R.C.; Franchi, I.A; Botta, O.; Ehrenfreund, P. and Hofmann, B.A. (2005). Amino acids composition and oxygen isotopes in the Shisr 033 CR chondrite. In: 68th Annual Meteoritical Society Meeting, 12-16 Sep 2005, Gatlinburg, Tennessee, USA.

For guidance on citations see $\underline{\mathsf{FAQs}}$.

(c) [not recorded]

Version: [not recorded]

Link(s) to article on publisher's website:

http://www.lpi.usra.edu/meetings/metsoc2005/pdf/5164.pdf

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data <u>policy</u> on reuse of materials please consult the policies page.

oro.open.ac.uk

AMINO ACIDS COMPOSITION AND OXYGEN ISOTOPES IN THE SHISR 033 CR CHONDRITE Z. Martins¹, R. C. Greenwood², I. A. Franchi², O. Botta³, P. Ehrenfreund¹, B. A. Hofmann⁴ ¹Astrobiology Lab, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands Email: z.martins@chem.leidenuniv.nl ²PSSRI, Open University, Milton Keynes, MK7 6AA, UK ³International Space Science Institute, Hallerstrasse 6, CH-3012 Bern, Switzerland. ⁴Natural History Museum, Bernastrasse 15, CH-3005 Bern, Switzerland

Shisr 033 is the first CR chondrite recovered in Oman. It consists of 65 fragments with a total mass of 1098 g collected from an area of a few square meters. The meteorite shows medium weathering of metal (W2) with omnipresent Fe-hydroxide staining. Compared with ¹⁴C-dated ordinary chondrites from Oman the degree of weathering is consistent with a terrestrial age of 5-15 kyr. Many fine-grained phyllosilicate-rich inclusions containing pyrrhotite and framboidal magnetite are apparent. The second largest fragment (249.9 g) was selected and 23 g of interior material were obtained by splitting away surface material. After gentle crushing, 4.86 g of fines enriched in phyllosilicate-rich material was selected for amino acids analysis. Selected individual phyllosilicate-rich clasts were analyzed by pyrolysis. From the coarse material individual chondrules were selected for O isotope analysis.

The acid hydrolyzed hot water extracts of the fines enriched in phyllosilicate-rich material were analyzed for amino acids using hot water extraction, followed by acid hydrolysis, desalting and pre-column derivatization [1]. Amino acids separation was achieved by high-performance liquid chromatography (HPLC) and by gas chromatography-mass spectrometry (GC-MS). Amino acid abundances were determined by comparison of the chromatographic signals with those of known standards. Shisr 033 contains extraterrestrial amino acids, including α -aminoisobutyric acid (AIB); however, comparisons to the CM2 Murchison, the CI Orgueil, and the CR Renazzo show a distinct amino acid distribution for this meteorite. The D/L ratio determined for alanine indicates the presence of terrestrial contamination.

Oxygen isotopic analyses were performed on a bulk sample (B), a bulk sample leached with ethanolaminthioglycollate to remove iron hydroxides (B2), a sample of composite chondrules (H) and a hand-picked dark clast (D). Samples B, B2 and H fall onto the CR trend as defined by Clayton and Mayeda (1999) [2]. The uncleaned bulk sample is significantly heavier than the cleaned one, most likely indicating an influence by terrestrial Fehydroxides (calculated $\delta^{18}\text{O}$ around +8‰ in equilibrium with Oman desert rainwater). The dark clast (D) falls onto the CV-CO trend. Stepped combustion of a dark clast revealed a low organic carbon and high carbonate contents indicative of terrestrial contamination.

References: [1] O. Botta and Bada J. L. 2002. *Surveys in Geophysics* 23: 411-467. [2] R. N. Clayton and T. K. Mayeda. 1999. *Geochimica et Cosmochimica Acta* 63: 2089-2104.