Copy the page URI to the clipboard
Aoki, S.; Gkouvelis, L.; Gérard, J.‐C.; Soret, L.; Hubert, B.; Lopez‐Valverde, M. A.; González‐Galindo, F.; Sagawa, H.; Thomas, I. R.; Ristic, B.; Willame, Y.; Depiesse, C.; Mason, J.; Patel, M. R.; Bellucci, G.; Lopez‐Moreno, J.‐J.; Daerden, F. and Vandaele, A. C.
(2022).
DOI: https://doi.org/10.1029/2022je007206
Abstract
The upper mesosphere and lower thermosphere of Mars (70–150 km) is of high interest because it is a region affected by climatological/meteorological events in the lower atmosphere and external solar forcing. However, only a few measurements are available at this altitude range. OI 557.7 nm dayglow emission has been detected at these altitudes by the limb observations with Nadir and Occultation for Mars Discovery (NOMAD) aboard the ExoMars Trace Gas Orbiter (TGO). We develop an inversion method to retrieve density and temperature at these altitudes from the OI 557.7 nm dayglow limb profiles. We demonstrate that the atmospheric density around 90 and 140 km and temperature around 80 km during the daytime can be retrieved from the TGO/NOMAD limb measurements. The retrieved densities show a large seasonal variation both around 90 and 140 km and reach maximum values around perihelion period. This can be explained by temperature variation in the lower atmosphere driven by the dust content and Sun-Mars distance. Temperature around 80 km is higher than predicted by general circulation models, which is tentatively consistent with the warm atmospheric layer recently discovered in nighttime. The temperature retrieval relies on the temperature dependence of the quenching coefficient of 1S oxygen by CO2. Further validation of this coefficient in the range of the Mars upper atmosphere is needed for the verification of the retrieved high temperature.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 83658
- Item Type
- Journal Item
- ISSN
- 2169-9100
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Research Group
- ?? space ??
- Copyright Holders
- © 2022 American Geophysical Union
- Related URLs
- SWORD Depositor
- Jisc Publications-Router
- Depositing User
- Jisc Publications-Router