Quaternary Collision-Zone Magmatism of the Greater Caucasus

How to cite:
Bewick, Sam; Parkinson, Ian J; Harris, Nigel; Adamia, Shota; Sadradze, Nino; Allen, Mark B and Hammond, Sam (2022). Quaternary Collision-Zone Magmatism of the Greater Caucasus. Journal of Petrology, 63(5), article no. egac037.

For guidance on citations see FAQs.

© 2022 The Authors

https://creativecommons.org/licenses/by/4.0/

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1093/petrology/egac037

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Quaternary Collision-Zone Magmatism of the Greater Caucasus

Samuel Bewick1, Ian J. Parkinson2, Nigel Harris1,*, Shota Adamia3, Nino Sadradze3, Mark B. Allen4 and Sam Hammond1

1School of Environment, Earth and Ecosystem Sciences, Open University, Milton Keynes MK7 6AA, UK
2School of Earth Science, University of Bristol, Queens Road, Bristol, BS8 1RJ, UK
3Institute of Geophysics, Tbilisi State University, 1/1M. Alexidze Street, 0171, Tbilisi, Georgia
4Department of Earth Sciences, Durham University, Durham DH1 3LE, UK
*Corresponding author. School of Environment, Earth and Ecosystem Sciences, Open University, Milton Keynes MK7 6AA, UK. Tel: +44 01908-655171. E-mail: n.b.harris@open.ac.uk

Abstract

The Greater Caucasus mountains (Caucasioni) mark the northern margin of the Arabia–Eurasia collision zone. Magmatism in the central part of the Greater Caucasus began in the Pleistocene, up to ∼25 Myr after initial collision. This paper presents bulk-rock and Sr–Nd–Pb isotope geochemistry from 39 Quaternary volcanic rock samples (<450 Ka) recovered from the Mt. Kazbek (Kasbegui) region of the Greater Caucasus, Georgia, to assess the sources and magmatic evolution of these lavas and the possible triggers for melting in the context of their regional tectonics. Compositions are dominantly calc-alkaline basaltic andesite to dacite (57–67 wt % SiO2). Although the lavas were erupted through thick continental crust, there is little evidence for extensive modification by crustal contamination. Trace element and isotopic systematics indicate that the lavas have supra-subduction zone signatures, most likely reflecting derivation from a lithospheric source that had been modified by melts and/or fluids from material subducted before and during the collisional event. Mass-balance modelling of the Sr–Nd isotope data indicates that the lavas require significant input from a subducted slab, with deep-sourced fluids fluxing the slab into the source region. In contrast with published data from Lesser Caucasus magmatism, data from the Mt. Kazbek region suggest that a compositionally distinct sediment source resides beneath the Greater Caucasus, producing characteristic trace element and Pb isotopic signatures. Two distinct compositional groups and therefore primary liquids can be discerned from the various volcanic centres, both derived from light rare-earth element enriched sources, but with distinct differences in Th/Yb and Dy/Yb ratios and Pb isotopes. Rare-earth element modelling of the lava sources is consistent with 3–4% melting starting in the garnet peridotite and continuing into the spinel facies or, potentially, sited in the garnet-spinel transition zone. Small-scale convection related to mantle upwelling provides a plausible mechanism for Greater Caucasus magmatism and explains the random aspect to the distribution of magmatism across the Arabia–Eurasia collision zone.

Keywords: rare Earth elements, Sr–Nd–Pb isotopes, collision zone, Caucasus

INTRODUCTION

Magmatism is a common feature of continental collision zones, but its origins and significance are not easily understood (Pearce et al., 1990; Guo & Wilson, 2019). Unlike supra-subduction zone magmatism, there is no generally agreed mechanism for the generation of magmatism that takes place after the initial collision between two continents, during ongoing convergence. The common description of ‘post-collisional’ magmatism is potentially misleading, because continental collision is a long-term process that may take place over tens of millions of years. The two main active continental collisions on Earth are between India and Eurasia and Arabia and Eurasia (Jackson & McKenzie, 1984; Hatzfeld & Molnar, 2010). The chemistry of the syn-collision volcanic rocks in these collision zones can constrain the nature of the crust and mantle beneath them and also provides insights into the processes that generate the magmatism, thereby increasing our understanding of collision zone processes in general.

Young magmatism is a distinctive feature of the Arabia–Eurasia collision zone and is widespread across the northern (Eurasian) side of the original suture (Adamia et al., 2010, 2017; Chiu et al., 2017; Kaislaniemi et al., 2014; Lebedev et al., 2014). Regardless of the exact age of initial collision (see below), Greater Caucasus magmatism postdates the final subduction of the Tethyan Ocean by probably as much as 25–35 Myr.

Volcanism in the Greater Caucasus is well documented (e.g. Lebedev & Vashakidze, 2014), with volcanism in the western part of the Greater Caucasus range predominantly silicic compared to that in the central part of the...
range where there is a wider range of compositions. Most published models for melt generation in the Greater Caucasus require some amount of crustal input. Lebedev et al. (2014) suggest there is a common Caucasus mantle composition that is represented by trachy-basalts similar to oceanic island basalts (OIB) erupted in central Georgia, such that intermediate composition rocks from the central range of the Greater Caucasus have undergone small amounts of crustal assimilation (e.g. Parfenov et al., 2019), whereas the silicic volcanics of the western range require significant (50%) crustal assimilation (e.g. Lebedev et al., 2010). By contrast, Bindeman et al. (2021) suggest some of the silicic melts of the western Greater Caucasus represent deep crustal melts mixing with subduction-zone derived mantle melts. Recent publications focused on the geochemistry of the much more widely distributed volcanics from the Lesser Caucasus (e.g. Neill et al., 2013, 2015; Adamia et al., 2017; Sugden et al., 2019; Sugden et al., 2020) have all postulated melt generation models that require the melting of a subduction-zone enriched lithospheric source, which may result from prior subduction of the Tethyan slab beneath the Eurasian continental margin (Neill et al., 2013, 2015; Sokol et al., 2018; Sugden et al., 2019). The work by Sugden et al. (2020) suggests that some of the geochemical features of this modified lithosphere, such as an enriched sediment melt/fluid signature, have been preserved for >40 Ma and explain some of the similarities in geochemistry of recent volcanics across the entire collision zone. This paper provides new bulk-rock and Sr–Nd–Pb isotope chemistry data for Quaternary volcanic rocks from the central part of the Greater Caucasus range (Fig. 1), with the aim of improving our understanding of the processes that generate magmatic rocks during and following continental collision in general and this part of the Arabia–Eurasia collision zone in particular. Key issues include whether the young Greater Caucasus magmatism is produced by processes common to the more widespread magmatism of the entire collision zone, whether regional magmatism shares similar lithospheric sources and whether Greater Caucasus magmatism should be regarded as a special case, e.g. with origins related to a separate subduction system or post-subduction process.

GEOLOGICAL SETTING

Regional geology

The Greater Caucasus (Fig. 1) is an asymmetric, south-vergent, late Cenozoic fold-and-thrust belt (Adamia et al., 2011) that reaches from the northeast side of the Black Sea to the junction between the South Caspian and Middle Caspian basins. The easternmost segment of the orogen is characterised by a doubly-vergent structure (Mosar et al., 2010; Forte et al., 2014). Foreland basins have developed on both sides of the orogen (Ershov et al., 2003; Adamia et al., 2010, 2011, 2017; Mosar et al., 2010). The structure is highly asymmetrical, with a gentle monocline to the north, and major north-dipping thrusts on the south side of the range, including the Main Caucasus Thrust. Crust in the region is significantly thickened, to ~50–60 km (Philip et al., 1989; Adamia et al., 2011, 2017). Late Cenozoic deformation is a consequence of the Arabia–Eurasia collision (Allen et al., 2004; Sosson et al., 2017). During the collision, the thrust front has migrated southwards into the Kura Basin, and Kura fold and thrust belt (Mosar et al., 2010), which lie in the Transcaucasia that separates the Greater from the Lesser Caucasus to the south (Adamia et al., 2011).

The structure of the Greater Caucasus varies significantly along strike. Basement is exposed in the centre of the range, where Palaeozoic metamorphic and igneous complexes crop out. Active convergence rates across the Greater Caucasus increase eastwards to ~12 mm yr$^{-1}$ (Reilinger et al., 2006). Recent volcanism is present in the west at Mt. Elbrus and in the central part of the range, which includes the volcanic centres that are the focus of this study in the region of Mt. Kazbek (Kezbegui). Pliocene–Pleistocene (2–3 Ma) ignimbrites and associated granites are found at Chegem and Tyrnyauz, to the east of Mt. Elbrus, although no recent plutonic rocks are exposed at Mt. Elbrus or Mt. Kazbek. Seismic studies (Mellors et al., 2012; Mumladze et al., 2015) report rare sub-crustal (>50 km) earthquakes, up to a depth of 158 ± 4 km, beneath the eastern Greater Caucasus; these events have been interpreted as recording the presence of a slab of oceanic lithosphere beneath the region (Mumladze et al., 2015). By contrast, deep (>150 km), high-velocity seismic anomalies have been interpreted as evidence for lithospheric delamination (Koulakov et al., 2012).

A widely recognised model for the pre-collision history of the Greater Caucasus is that it represents a Palaeozoic–Mesozoic–Early Cenozoic back-arc basin (Adamia et al., 2011), developed north of a contemporary arc that is exposed in the Transcaucasia–Lesser Caucasus to the south (Adamia et al., 1981; Saintot et al., 2006). Continental basement exposed in the west of the Greater Caucasus shows Palaeozoic age ranges, indicating affinities with the juvenile crust of the Scythian and Turan platforms to the north and east (Natal’in & Şengör, 2005; Allen et al., 2006). Jurassic basaits within the interior of the Greater Caucasus have been interpreted as the products of a narrow, obliquely extensional oceanic basin (Adamia et al., 1981), similar to the modern Gulf of California (Şengör, 1990). In this model, the original arc/back-arc transition lies under the Rioni and Kura basins between the two modern ranges, while the high peaks, thickened crust and active thrusts of the Greater Caucasus represent strong inversion of this Palaeozoic–Early Cenozoic back-arc basin during the Arabia–Eurasia collision. Initial uplift of the western Greater Caucasus by the Early Oligocene has been interpreted as an early effect of this collision (Dercourt et al., 1986; Vincent et al., 2007) and as marking the end of a period of oceanic subduction in the late Mesozoic and early Cenozoic. Oceanic crustal basement beneath the South Caspian and Black Sea basins represents separate back-archs, which also developed to
the north of the Neo-Tethyan subduction zone (Adamia et al., 1981, 2011, 2017; Okay et al., 1994; Brunet et al., 2003).

Timing of initial collision between Arabia and Eurasia is debated (e.g. Sosson et al., 2010; Adamia et al., 2017), but most estimates place initial collision between ~34 Ma and ~26 Ma (Allen & Armstrong, 2008; Koshnaw et al., 2019). The former age is the time of a sharp reduction in arc and back-arc magmatism across SW Eurasia and the development of unconformities on both sides of the suture (Perotti et al., 2016). The later age is derived from the youngest detrital zircons found within syn-collisional foreland basin strata on the Arabian Plate, within northern Iraq; this represents a minimum age for initial collision. Convergence has continued since initial collision, with the present rate across the collision zone being 16–26 mm yr$^{-1}$, increasing eastwards due to the pole of rotation lying close to the eastern Mediterranean (Vernant et al., 2004).

There is an alternative model proposed for the Caucasus region (Cowgill et al., 2016), which proposes a wider (oceanic) basin between the Greater and Lesser Caucasus that existed until as recently as ~5 Ma, at which point it was eliminated by subduction northwards under the Greater Caucasus range. This model is disputed (e.g. Adamia et al., 2017; Vincent et al., 2018; Ismail Zadeh et al., 2020), not least because of the lack of a late Cenozoic arc in the Greater Caucasus, and the absence of ophiolites or other clear evidence of a suture zone between the two ranges.

There has been at least sporadic magmatism across the collision zone since the mid-Cenozoic, but with an apparent upsurge in the past ~5 million years (Kaislaniemi et al., 2014). Late Cenozoic magmatism in the Greater Caucasus is concentrated close to the stratovolcano of Mt. Elbrus, the magmatic centres of Chegem and Tymyayuz (all located within Russia) and the stratovolcano of Mt. Kazbek (on the Georgia–Russia border), which is the focus of this study (Fig. 1b).

Quaternary magmatism in the greater Caucasus of Georgia

Quaternary volcanism in the Greater Caucasus in Georgia is located close to the Russian border, near the towns of Gudauri and Stepantsminda, either side of the Tergi River valley, and in the Keli Highland (Fig. 2). The region consists of the areas of Mt. Kazbek, Gudauri, Qabarjina and the Keli Highland that we sampled during a field season in 2013. Volcanism in the region displays a wide range of volcanic styles, from explosive volcanoclastic deposits to thick columnar jointed flows that can be
greater than 200 m thick and over 14 km long. Age relationships between the volcanic rocks are shown in Fig. 3. Mt. Kazbek is the largest stratovolcano in Georgia (altitude, 5054 m). Lebedev et al. (2014) distinguished four age groups of volcanic activity. Stage I is older than 400 ka; stage II lasted from 250–200 ka, before a caldera collapse event; stage III was from 120–90 ka; and stage IV occurred at ∼50 ka (Fig. 3). This classification is consistent with our morphological observations in the field and therefore we have assigned samples to these four stages. Samples of basement Variscan granitoids were collected to the north of Mt. Kazbek, near the Russian border to assess the composition of potential crustal contaminants (Fig. 3). We also sampled lavas from the Gudauri Formation on east side of the Mthiulethi Aragvi valley, and the Qabarjina Formation around the village of Ukhati. The Keli Highland lies predominantly in the inaccessible territory of South Ossetia, so it was not possible to sample in this area. Detailed field descriptions of the sample locations are presented in the supplementary data.

SAMPLE DESCRIPTIONS
Lavas throughout the Mt. Kazbek region are all porphyritic to varying degrees. Plagioclase and orthopyroxene are almost ubiquitous across all samples with amphibole also a common phenocryst phase. Clinopyroxene, olivine and a sub-calcic high-Al pyroxene (>5 wt % Al₂O₃) occur as a major phenocryst phase in some samples. Olivine is particularly widespread in samples from stage III of the Kazbek volcanics, while apatite and an Fe–Ti oxide are common accessory phases. The
groundmass is either glassy or dominated by plagioclase, pyroxene and Fe oxides in aphanitic samples. Biotite has only been observed in some stage IV lavas and in trace amounts in the Qabarjina Formation lavas. Mineral proportions and notes on key textural information are provided in Table 1 and typical petrographic features are illustrated in Fig. 4. Detailed information on the field relations and petrology of all volcanic rocks discussed in this study are provided in the supplementary data.

ANALYTICAL TECHNIQUES

Major elements and selected trace element (Sc, V, Cr, Co, Ni, Cu, Zn, Ga, As, S, Pb, Sr, Y, Zr, Nb, Mo, Ba, Th and U) concentrations were determined by X-ray florescence (XRF). Loss on ignition (LOI) was calculated by measuring the percentage mass loss of volatiles after heating the sample at 1000°C for 40 minutes. Glass disks for major element analyses were made by mixing 0.700 g of the pre-ignited rock powder with dried lithium metaborate–tetraborate flux (Spectraflux 100B) in a ratio of 1:5 by weight and pressed powder pellets were used to determine abundances of trace elements; see Ramsey et al. (1995) for details. XRF analysis was undertaken at the Open University using an ARL 8420+ dual goniometer wavelength-dispersive XRF spectrometer following the methodology of Ramsey et al. (1995). External reproducibilities of WS-E (Whin Sill dolerite) and OU-3 (Nanhonor microgranite) are better than ±2.5% (2 s.d.) for oxides with a concentration greater than 0.25 wt %. See Thompson et al. (2000) for further details of the standards. Trace elements were analysed at the Open University using an Agilent 7500a inductively coupled plasma mass spectrometer (ICP-MS).

<table>
<thead>
<tr>
<th>Table 1: Mineral modal proportions and textures of samples from the Greater Caucasus.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Kazbegi volcano</td>
</tr>
<tr>
<td>Stage 1</td>
</tr>
<tr>
<td>Stage 2</td>
</tr>
<tr>
<td>Stage 3</td>
</tr>
<tr>
<td>Stage 4</td>
</tr>
<tr>
<td>Gudauri Fm</td>
</tr>
</tbody>
</table>

Based on single sample. 10–16 wt % Al₂O₃.
Fig. 4. Textures in representative samples of Quaternary volcanic rocks of the Greater Caucasus. White scale bar is 0.5 mm. (a) Pilotaxitic groundmass in the Gudauri Formation. Two euhedral, but opacitised high-Al pyroxenes. An orthopyroxene-rich glomerocryst is present, with plagioclase laths protruding into trapped melt. (b) Large glomerocryst from the Gudarui Formation, dominated by orthopyroxene (Opx) and clinopyroxene (Cpx), with minor plagioclase, and trapped glass phase. (c) Glassy groundmass of the Qabarjina Formation. The small amphibole phenocrysts are strongly altered, but larger plagioclase phenocrysts are fresh. Pyroxene grains are fragmented, and a pyroxene-dominated glomerocryst is seen in the top right corner. (d) Phenocryst-rich Stage II of Mt. Kazbek volcanics, with two groups of plagioclase grains in disequilibrium. Glassy groundmass, clinopyroxene and vesicles also present. (e) Phenocryst-poor Stage III of Mt. Kazbek volcanics. The groundmass is coarser than other rocks from the area. Amphiboles (Amph) are strongly altered and clinopyroxene (Cpx) is rounded and embayed. (f) Stage IV of Mt. Kazbek volcanics. Phenocrysts are small, and amphibole laths form a trachytic texture.

following the methodology of Rogers et al. (2006). Precision was typically <3% (2 s.d.), although Th and U were slightly worse (4.5–6.5%). Comparison between XRF and ICP-MS data is excellent, although for some evolved samples there is an indication of incomplete zircon dissolution. In this study, we present ICP-MS trace element data, because of its better precision and lower detection limits but use XRF Zr data for a small number of evolved samples.

Twenty-four samples were selected for Sr–Pb–Nd isotopic analyses based on major and trace element chemistry, to produce a suite that covers the compositional range. All isotopic measurements were made at the Open University, using a Neptune multi-collector (MC)-ICP-MS. Approximately 0.05 g of sample was leached in 6 M HCl for 1 hour at 120°C, centrifuged for 1 minute, after which the leachate was pipetted off. Samples were then rinsed with MQ H2O twice and then allowed to dry before being reweighed. The leaching stage is used to remove any potential anthropogenic contaminants. After leaching, the dried powder was digested with concentrated HF-HNO3, dried and re-dissolved in 6 M HCl and finally dried and re-dissolved in concentrated HNO3 to produce a complete dissolution. The solution was then split into two aliquots, one for Sr–Pb and the other for Nd isotopic analyses.

Strontium and Pb isotopes were analysed following the methodology developed at the Open University and described in detail by Hunt et al. (2012). Instrument reproducibility was monitored by measuring the NBS 987
and yields an average 87Sr/86Sr of 0.710276 ± 31 (2 s.d., $n = 53$), although for the early part of the study it yielded 0.710262 ± 6 (2 s.d., $n = 26$). This change reflects some Faraday cup degradation during the latter part of the study. To correct for the shift, we normalised all our measurements to a preferred MC-ICP-MS value of 0.710266 (Nowell et al., 2003), although the effect on precision is minimal compared to the total variation found in this study.

The rock standards BHVO-2 and AGV-1 were digested and analysed in an identical way to the rock samples to provide a gauge of analytical precision for the whole chemical and mass spectrometric procedure. BHVO-2 yielded an average 87Sr/86Sr of 0.703492 ± 11 (2 s.d., $n = 4$), which is within error of the static TIMS value of 0.703479 ± 20 (Weis et al., 2006), whereas AGV-1 yielded an average of 0.704006 ± 9 (2 s.d., $n = 5$), which is within error of the static TIMS value of 0.703996 ± 20 (Weis et al., 2006).

Lead isotopes were measured by double-spike by combining an un-spiked run and with a run spiked with a 207Pb–204Pb tracer (see Hunt et al., 2012). Instrument reproducibility was monitored by measuring the NBS 981 standard throughout this study ($n = 59$ over 30 months) and yields a 206Pb/204Pb ratio of 16.9428 ± 24, 207Pb/204Pb ratio of 15.5007 ± 28 and a 208Pb/204Pb ratio of 36.7276 ± 75, which are within error of previous high-precision double-spike MC-ICP-MS studies (Thirlwall, 2002; Baker et al., 2004; Hunt et al., 2012). AGV-1 was digested 6 times and analysed for Pb isotopes and yielded Pb isotopic values within uncertainty of the high-precision double-spike of Baker et al. (2004).

The aliquot for Nd isotopes was first passed through a cation column to separate the rare earth element (REE) from the matrix. Neodymium was then separated from La, Ce and quantitatively from Sm using LnSpec resin in a dilute (0.25 M) HCl media following the method described in Pin et al. (2014). Isotopic measurements involved aspirating ∼200 ppb via a standard introduction system into the Neptune operating in static low-resolution mode and fitted with H-cones. Analyses were corrected for instrumental mass fractionation using the exponential fractionation law and minor 144Sm interference on 144Nd was stripped off iteratively assuming a 146Nd/144Nd ratio of 0.7219 and 147Sm/144Sm of 4.83871 (de Laeter et al., 2003; Weis et al., 2006).

Instrument reproducibility was monitored by measuring, a) & M standard that yields an average 143Nd/144Nd of 0.511822 ± 25 (2 s.d., $n = 58$ over 8 months). This standard is tied to a value of the La Jolla standard of 0.511849 ± 3 for 143Nd/144Nd, which is within error of published data (Raczek et al., 2003; Weis et al., 2006). AGV-1 was digested 6 times and analysed for Nd isotopes and yields an average 143Nd/144Nd of 0.512787 ± 15 (2 s.d., $n = 6$), which is within error of the TIMS values for 143Nd/144Nd of 0.512784 ± 18 (Weis et al., 2006).

Major element data for the three centres form strong negative linear trends in plots of MgO, CaO, Fe$_2$O$_3$Tot and TiO$_2$ against SiO$_2$ with the Gudauri Formation typically forming a cluster at the more mafic end (Fig. 6). The Qabarjina Formation and Stage IV Kazbek volcanics show the most well-defined trends; Stage IV rocks show little variation in MgO, although the MgO content is highest in the most evolved sample.

No overall trend is observed across the whole suite between Al$_2$O$_3$ and SiO$_2$ although the most mafic Gudauri rocks have high- and low-Al$_2$O$_3$ groups. Stage III volcanics have a slight positive correlation, while the Qabarjina Formation and Stage IV volcanics define strong negative trends. The Stage IV volcanics have high Al$_2$O$_3$ contents, similar to the Gudauri Formation while both sample groups contain high-Al pyroxenes (Table 1). Concentrations of K$_2$O are relatively constant across the range of SiO$_2$ (Fig. 5b), particularly for stages II and III of Mt. Kazbek. The Qabarjina Formation shows a positive trend, while Mt. Kazbek Stage IV samples decrease with increasing SiO$_2$. Na$_2$O forms a rough positive trend with SiO$_2$ (Fig. 6g). The Gudauri Formation has lower Na$_2$O concentrations than the other centres (Na$_2$O = 3.37–3.79 wt % for Gudauri, 3.83–4.83 wt % for the others). Two parallel trends can be distinguished; a low-Na$_2$O trend involving the Gudauri Formation, Qabarjina Formation and stage IV volcanics of Mt. Kazbek, and a high-Na$_2$O one involving the other three stages of Mt. Kazbek. Samples above 59 wt % SiO$_2$ define a broadly negative trend between SiO$_2$ and P$_2$O$_5$, although the lower SiO$_2$ Gudauri samples form a positive trend suggesting an inflexion point in P$_2$O$_5$ at ~59 wt % SiO$_2$.

RESULTS

Major elements

Geochmical data and sample locations are given in Table 2. All of the samples are fresh, with LOI values between -0.26 and 1.21 wt %, with the highest values corresponding to samples containing hydrous minerals such as amphibole and biotite. Flows from all three centres (Mt. Kazbek, Qabarjina Formation and Gudauri Formation) fall on similar arrays on major-element geochemical plots. All rocks are intermediate to felsic in composition and are classified as sub-alkaline, using the definition of Macdonald & Katsura (1964), although sample 13-056 (Stage III Kazbek lavas) lies close the sub-alkaline to alkaline division (Fig. 5a). The most basic samples are basaltic andesites from the Gudauri flow although two dacitic samples were also sampled from this centre, one at the base of the largest flow, and the second from a separate flow assumed to be associated with the same volcanic centre. Samples from the Qabarjina centre are the most evolved in the region, with compositions that range from andesite to dacite (62.65–67.27 wt % SiO$_2$). Samples from Mt. Kazbek cover a wide range of compositions from basaltic trachyandesite to dacite (55.83–65.39 wt % SiO$_2$) consistent with data from Lebedev & Vashakidze (2014). Virtually all samples are quartz normative (Table S1), the exception being sample 13-056.
Table 2: Geochemical analyses of samples from the Greater Caucasus; Gudauri Fm

<table>
<thead>
<tr>
<th>Sample</th>
<th>H1</th>
<th>H2</th>
<th>H3</th>
<th>H4</th>
<th>13-001a</th>
<th>13-002</th>
<th>13-005</th>
<th>13-006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat. (°N)</td>
<td>42.27.862</td>
<td>42.27.862</td>
<td>42.26.327</td>
<td>42.29.303</td>
<td>42.27.82</td>
<td>42.26.243</td>
<td>42.28.828</td>
<td>42.29.929</td>
</tr>
<tr>
<td>Long. (°E)</td>
<td>44.28.616</td>
<td>44.28.616</td>
<td>44.29.883</td>
<td>44.28.296</td>
<td>44.28.397</td>
<td>44.29.598</td>
<td>44.28.344</td>
<td>44.27.077</td>
</tr>
<tr>
<td>Major elements (wt %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>57.5</td>
<td>57.1</td>
<td>56.7</td>
<td>57.5</td>
<td>63.0</td>
<td>56.9</td>
<td>57.0</td>
<td>63.8</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.92</td>
<td>0.92</td>
<td>0.95</td>
<td>1.06</td>
<td>0.70</td>
<td>0.98</td>
<td>1.04</td>
<td>0.78</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.8</td>
<td>16.6</td>
<td>16.6</td>
<td>18.2</td>
<td>17.8</td>
<td>16.6</td>
<td>18.0</td>
<td>17.1</td>
</tr>
<tr>
<td>Fe₂O₃TOT</td>
<td>6.59</td>
<td>6.59</td>
<td>6.98</td>
<td>6.80</td>
<td>4.44</td>
<td>6.65</td>
<td>6.52</td>
<td>4.04</td>
</tr>
<tr>
<td>MnO</td>
<td>0.13</td>
<td>0.13</td>
<td>0.14</td>
<td>0.14</td>
<td>0.09</td>
<td>0.14</td>
<td>0.14</td>
<td>0.11</td>
</tr>
<tr>
<td>MgO</td>
<td>5.80</td>
<td>5.88</td>
<td>6.37</td>
<td>6.60</td>
<td>4.60</td>
<td>6.45</td>
<td>4.52</td>
<td>3.33</td>
</tr>
<tr>
<td>CaO</td>
<td>3.99</td>
<td>3.97</td>
<td>3.97</td>
<td>3.97</td>
<td>3.97</td>
<td>3.97</td>
<td>3.97</td>
<td>3.97</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.13</td>
<td>0.13</td>
<td>0.14</td>
<td>0.14</td>
<td>0.09</td>
<td>0.14</td>
<td>0.14</td>
<td>0.11</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.13</td>
<td>0.13</td>
<td>0.14</td>
<td>0.14</td>
<td>0.09</td>
<td>0.14</td>
<td>0.14</td>
<td>0.11</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>Total</td>
<td>99.8</td>
<td>99.2</td>
<td>99.9</td>
<td>100.6</td>
<td>99.7</td>
<td>100.2</td>
<td>99.9</td>
<td>99.8</td>
</tr>
<tr>
<td>LOI</td>
<td>0.07</td>
<td>0.06</td>
<td>0.03</td>
<td>0.26</td>
<td>0.40</td>
<td>0.23</td>
<td>0.14</td>
<td>0.08</td>
</tr>
<tr>
<td>Trace elements (µg g⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>53.5</td>
<td>55.2</td>
<td>55.8</td>
<td>55.5</td>
<td>53.5</td>
<td>55.2</td>
<td>55.8</td>
<td>55.5</td>
</tr>
<tr>
<td>V</td>
<td>128</td>
<td>128</td>
<td>135</td>
<td>138</td>
<td>128</td>
<td>128</td>
<td>135</td>
<td>138</td>
</tr>
<tr>
<td>Cr</td>
<td>28.9</td>
<td>27.9</td>
<td>26.1</td>
<td>27.4</td>
<td>28.5</td>
<td>27.9</td>
<td>26.1</td>
<td>27.4</td>
</tr>
<tr>
<td>Nb</td>
<td>8.43</td>
<td>8.43</td>
<td>8.43</td>
<td>11.3</td>
<td>8.43</td>
<td>8.43</td>
<td>8.43</td>
<td>11.3</td>
</tr>
<tr>
<td>Cs</td>
<td>196</td>
<td>196</td>
<td>196</td>
<td>196</td>
<td>196</td>
<td>196</td>
<td>196</td>
<td>196</td>
</tr>
<tr>
<td>Ba</td>
<td>440</td>
<td>440</td>
<td>440</td>
<td>440</td>
<td>440</td>
<td>440</td>
<td>440</td>
<td>440</td>
</tr>
<tr>
<td>La</td>
<td>30.0</td>
<td>31.4</td>
<td>28.3</td>
<td>28.3</td>
<td>28.3</td>
<td>28.3</td>
<td>28.3</td>
<td>28.3</td>
</tr>
<tr>
<td>Ce</td>
<td>62.2</td>
<td>64.8</td>
<td>58.5</td>
<td>57.7</td>
<td>62.2</td>
<td>64.8</td>
<td>58.5</td>
<td>57.7</td>
</tr>
<tr>
<td>Pr</td>
<td>7.27</td>
<td>7.64</td>
<td>6.96</td>
<td>6.75</td>
<td>7.27</td>
<td>7.64</td>
<td>6.96</td>
<td>6.75</td>
</tr>
<tr>
<td>Nd</td>
<td>27.2</td>
<td>28.7</td>
<td>26.2</td>
<td>25.5</td>
<td>27.2</td>
<td>28.7</td>
<td>26.2</td>
<td>25.5</td>
</tr>
<tr>
<td>Sm</td>
<td>5.02</td>
<td>5.31</td>
<td>4.99</td>
<td>4.99</td>
<td>5.02</td>
<td>5.31</td>
<td>4.99</td>
<td>4.99</td>
</tr>
<tr>
<td>Eu</td>
<td>1.42</td>
<td>1.47</td>
<td>1.41</td>
<td>1.41</td>
<td>1.42</td>
<td>1.47</td>
<td>1.41</td>
<td>1.41</td>
</tr>
<tr>
<td>Tb</td>
<td>0.61</td>
<td>0.66</td>
<td>0.62</td>
<td>0.68</td>
<td>0.61</td>
<td>0.66</td>
<td>0.62</td>
<td>0.68</td>
</tr>
<tr>
<td>Dy</td>
<td>3.35</td>
<td>3.59</td>
<td>3.49</td>
<td>3.86</td>
<td>3.35</td>
<td>3.59</td>
<td>3.49</td>
<td>3.86</td>
</tr>
<tr>
<td>Ho</td>
<td>0.67</td>
<td>0.73</td>
<td>0.71</td>
<td>0.79</td>
<td>0.67</td>
<td>0.73</td>
<td>0.71</td>
<td>0.79</td>
</tr>
<tr>
<td>Er</td>
<td>1.87</td>
<td>2.05</td>
<td>2.00</td>
<td>2.20</td>
<td>1.87</td>
<td>2.05</td>
<td>2.00</td>
<td>2.20</td>
</tr>
<tr>
<td>Yb</td>
<td>1.73</td>
<td>1.90</td>
<td>1.82</td>
<td>2.06</td>
<td>1.73</td>
<td>1.90</td>
<td>1.82</td>
<td>2.06</td>
</tr>
<tr>
<td>Lu</td>
<td>0.26</td>
<td>0.28</td>
<td>0.28</td>
<td>0.31</td>
<td>0.26</td>
<td>0.28</td>
<td>0.28</td>
<td>0.31</td>
</tr>
<tr>
<td>Gd</td>
<td>4.15</td>
<td>4.44</td>
<td>4.19</td>
<td>4.46</td>
<td>4.15</td>
<td>4.44</td>
<td>4.19</td>
<td>4.46</td>
</tr>
<tr>
<td>Tb</td>
<td>0.61</td>
<td>0.66</td>
<td>0.62</td>
<td>0.68</td>
<td>0.61</td>
<td>0.66</td>
<td>0.62</td>
<td>0.68</td>
</tr>
<tr>
<td>Dy</td>
<td>3.35</td>
<td>3.59</td>
<td>3.49</td>
<td>3.86</td>
<td>3.35</td>
<td>3.59</td>
<td>3.49</td>
<td>3.86</td>
</tr>
<tr>
<td>Ho</td>
<td>0.67</td>
<td>0.73</td>
<td>0.71</td>
<td>0.79</td>
<td>0.67</td>
<td>0.73</td>
<td>0.71</td>
<td>0.79</td>
</tr>
<tr>
<td>Er</td>
<td>1.87</td>
<td>2.05</td>
<td>2.00</td>
<td>2.20</td>
<td>1.87</td>
<td>2.05</td>
<td>2.00</td>
<td>2.20</td>
</tr>
<tr>
<td>Yb</td>
<td>1.73</td>
<td>1.90</td>
<td>1.82</td>
<td>2.06</td>
<td>1.73</td>
<td>1.90</td>
<td>1.82</td>
<td>2.06</td>
</tr>
<tr>
<td>Lu</td>
<td>0.26</td>
<td>0.28</td>
<td>0.28</td>
<td>0.31</td>
<td>0.26</td>
<td>0.28</td>
<td>0.28</td>
<td>0.31</td>
</tr>
<tr>
<td>Gd</td>
<td>4.15</td>
<td>4.44</td>
<td>4.19</td>
<td>4.46</td>
<td>4.15</td>
<td>4.44</td>
<td>4.19</td>
<td>4.46</td>
</tr>
<tr>
<td>Tb</td>
<td>0.61</td>
<td>0.66</td>
<td>0.62</td>
<td>0.68</td>
<td>0.61</td>
<td>0.66</td>
<td>0.62</td>
<td>0.68</td>
</tr>
</tbody>
</table>

(Stage III Kazbek lavas). All follow a calc-alkaline trend on an assimilation and fractional crystallisation (AFC) diagram (not shown). Samples are sodic (Na₂O/K₂O > 1), and plot in the low-K, calc-alkaline field in the K₂O v. SiO₂ diagram (Fig. 5b).

Trace elements

Representative trace element variations with SiO₂ are illustrated in Fig. 7, in order to explore any relationships with a measure of melt evolution. Highly incompatible trace elements (e.g. Cs, Rb Th and U) have positive
Table 2: Geochemical analyses of samples from the Greater Caucasus; Qabarjina

<table>
<thead>
<tr>
<th>Sample</th>
<th>H7</th>
<th>13-045</th>
<th>13-047a</th>
<th>13-049</th>
<th>13-051</th>
<th>13-053</th>
<th>13-055</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat (°N)</td>
<td>42 33.581</td>
<td>42 34.559</td>
<td>42 34.643</td>
<td>42 34.643</td>
<td>42 34.643</td>
<td>42 35.584</td>
<td></td>
</tr>
<tr>
<td>Long (°E)</td>
<td>44 30.742</td>
<td>44 34.123</td>
<td>44 34.123</td>
<td>44 34.123</td>
<td>44 34.123</td>
<td>44 33.298</td>
<td></td>
</tr>
<tr>
<td>Major elements (wt %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>64.6</td>
<td>66.0</td>
<td>62.6</td>
<td>65.9</td>
<td>65.4</td>
<td>67.3</td>
<td>65.1</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.61</td>
<td>0.56</td>
<td>0.71</td>
<td>0.55</td>
<td>0.54</td>
<td>0.49</td>
<td>0.62</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.4</td>
<td>16.8</td>
<td>16.9</td>
<td>16.2</td>
<td>16.2</td>
<td>16.3</td>
<td>16.4</td>
</tr>
<tr>
<td>Fe₂O₃ TOT</td>
<td>4.20</td>
<td>3.81</td>
<td>4.44</td>
<td>3.71</td>
<td>3.00</td>
<td>2.61</td>
<td>4.01</td>
</tr>
<tr>
<td>MnO</td>
<td>0.10</td>
<td>0.12</td>
<td>0.12</td>
<td>0.18</td>
<td>0.09</td>
<td>0.18</td>
<td>0.10</td>
</tr>
<tr>
<td>MgO</td>
<td>2.55</td>
<td>2.39</td>
<td>1.87</td>
<td>2.00</td>
<td>1.80</td>
<td>1.00</td>
<td>2.18</td>
</tr>
<tr>
<td>CaO</td>
<td>4.22</td>
<td>4.84</td>
<td>4.33</td>
<td>4.33</td>
<td>4.33</td>
<td>4.33</td>
<td>4.33</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.17</td>
<td>0.15</td>
<td>0.22</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.15</td>
</tr>
<tr>
<td>K₂O</td>
<td>57.19</td>
<td>47.20</td>
<td>54.07</td>
<td>51.94</td>
<td>51.65</td>
<td>42.30</td>
<td>54.43</td>
</tr>
<tr>
<td>Trace elements (ug g⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>32.3</td>
<td>8.52</td>
<td>10.7</td>
<td>8.33</td>
<td>9.03</td>
<td>7.10</td>
<td>9.42</td>
</tr>
<tr>
<td>V</td>
<td>72.5</td>
<td>35.2</td>
<td>43.3</td>
<td>46.2</td>
<td>44.2</td>
<td>11.6</td>
<td>52.2</td>
</tr>
<tr>
<td>Cr</td>
<td>85.4</td>
<td>40.3</td>
<td>43.3</td>
<td>46.2</td>
<td>44.2</td>
<td>11.6</td>
<td>52.2</td>
</tr>
<tr>
<td>Co</td>
<td>13.4</td>
<td>9.27</td>
<td>12.3</td>
<td>9.08</td>
<td>8.40</td>
<td>4.61</td>
<td>8.85</td>
</tr>
<tr>
<td>Ni</td>
<td>28.6</td>
<td>18.7</td>
<td>22.7</td>
<td>19.4</td>
<td>12.1</td>
<td>7.2</td>
<td>16.0</td>
</tr>
<tr>
<td>Nb</td>
<td>72.8</td>
<td>93.1</td>
<td>67.2</td>
<td>84.6</td>
<td>91.4</td>
<td>88.1</td>
<td>72.0</td>
</tr>
<tr>
<td>Sr</td>
<td>464</td>
<td>395</td>
<td>540</td>
<td>432</td>
<td>469</td>
<td>411</td>
<td>440</td>
</tr>
<tr>
<td>Y</td>
<td>15.7</td>
<td>15.0</td>
<td>16.6</td>
<td>15.5</td>
<td>16.2</td>
<td>15.9</td>
<td>15.2</td>
</tr>
<tr>
<td>Zr</td>
<td>164</td>
<td>43.4</td>
<td>116</td>
<td>120</td>
<td>120</td>
<td>195</td>
<td>154</td>
</tr>
<tr>
<td>Nb</td>
<td>8.67</td>
<td>9.62</td>
<td>25.0</td>
<td>8.66</td>
<td>4.11</td>
<td>8.47</td>
<td>7.88</td>
</tr>
<tr>
<td>Cs</td>
<td>5.27</td>
<td>4.53</td>
<td>4.41</td>
<td>4.08</td>
<td>4.64</td>
<td>4.77</td>
<td>4.22</td>
</tr>
<tr>
<td>Ba</td>
<td>401</td>
<td>489</td>
<td>592</td>
<td>471</td>
<td>484</td>
<td>474</td>
<td>440</td>
</tr>
<tr>
<td>La</td>
<td>28.6</td>
<td>32.7</td>
<td>34.5</td>
<td>30.8</td>
<td>32.8</td>
<td>32.4</td>
<td>29.0</td>
</tr>
<tr>
<td>Ce</td>
<td>56.0</td>
<td>65.5</td>
<td>67.1</td>
<td>59.6</td>
<td>63.7</td>
<td>62.2</td>
<td>56.9</td>
</tr>
<tr>
<td>Pr</td>
<td>6.10</td>
<td>7.04</td>
<td>7.74</td>
<td>6.42</td>
<td>6.75</td>
<td>6.69</td>
<td>6.19</td>
</tr>
<tr>
<td>Nd</td>
<td>21.7</td>
<td>25.0</td>
<td>27.6</td>
<td>21.8</td>
<td>23.5</td>
<td>22.6</td>
<td>21.3</td>
</tr>
<tr>
<td>Sm</td>
<td>4.07</td>
<td>4.59</td>
<td>5.09</td>
<td>5.96</td>
<td>7.40</td>
<td>5.09</td>
<td>4.15</td>
</tr>
<tr>
<td>Eu</td>
<td>1.04</td>
<td>1.07</td>
<td>1.33</td>
<td>1.02</td>
<td>1.06</td>
<td>1.00</td>
<td>1.03</td>
</tr>
<tr>
<td>Gd</td>
<td>3.37</td>
<td>3.71</td>
<td>3.95</td>
<td>3.27</td>
<td>3.51</td>
<td>3.35</td>
<td>3.29</td>
</tr>
<tr>
<td>Tb</td>
<td>0.49</td>
<td>0.53</td>
<td>0.56</td>
<td>0.47</td>
<td>0.51</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>Dy</td>
<td>2.62</td>
<td>2.80</td>
<td>2.92</td>
<td>2.54</td>
<td>2.82</td>
<td>2.62</td>
<td>2.58</td>
</tr>
<tr>
<td>Ho</td>
<td>0.52</td>
<td>0.51</td>
<td>0.56</td>
<td>0.50</td>
<td>0.53</td>
<td>0.51</td>
<td>0.51</td>
</tr>
<tr>
<td>Er</td>
<td>1.45</td>
<td>1.35</td>
<td>1.50</td>
<td>1.43</td>
<td>1.49</td>
<td>1.51</td>
<td>1.47</td>
</tr>
<tr>
<td>Yb</td>
<td>1.35</td>
<td>1.16</td>
<td>1.29</td>
<td>1.25</td>
<td>1.38</td>
<td>1.36</td>
<td>1.30</td>
</tr>
<tr>
<td>Lu</td>
<td>0.20</td>
<td>0.16</td>
<td>0.19</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.20</td>
</tr>
<tr>
<td>Hf</td>
<td>3.82</td>
<td>4.15</td>
<td>3.22</td>
<td>2.94</td>
<td>3.11</td>
<td>3.73</td>
<td>3.91</td>
</tr>
<tr>
<td>Pb</td>
<td>18.9</td>
<td>23.6</td>
<td>20.7</td>
<td>21.7</td>
<td>24.7</td>
<td>21.4</td>
<td>20.3</td>
</tr>
<tr>
<td>Th</td>
<td>10.0</td>
<td>10.2</td>
<td>12.9</td>
<td>11.9</td>
<td>12.9</td>
<td>11.7</td>
<td>10.6</td>
</tr>
<tr>
<td>U</td>
<td>2.41</td>
<td>1.84</td>
<td>2.69</td>
<td>2.86</td>
<td>3.22</td>
<td>2.92</td>
<td>2.65</td>
</tr>
</tbody>
</table>

Isotopic ratios
- ⁸⁷Sr/⁸⁶Sr: 0.704869 ± 0.000005
- ¹⁴⁳Nd/¹⁴⁴Nd: 0.512690 ± 0.000009
- εNd: 1.02 ± 0.41
- ¹⁸⁴Pb/¹⁸⁰Pb: 18.627 ± 0.001
- ¹⁸⁷Pb/¹⁸⁰Pb: 15.619 ± 0.001
- ¹⁸⁸Pb/¹⁸⁰Pb: 38.693 ± 0.003

* Mg# assumes Fe³⁺/Total Fe = 0.1.

Correlations with SiO₂ although La, Ba and Nb do not show such systematic relationships. Moderately incompatible trace elements such as Zr, Hf and Sm do not define any strong correlations with SiO₂ or any other indicator of melt evolution such as Mg#. Moderately compatible elements such as Cr, V and Sr define good negative correlations with SiO₂. In detail, the Gudauri Formation typically shows the highest concentrations (up to 235 μg g⁻¹ Cr), with the Kazbek flows having intermediate values (28–188 μg g⁻¹ Cr), and the Qabarjina...
Table 2: Geochemical analyses of samples from the Greater Caucasus, Kazbek Stage I

<table>
<thead>
<tr>
<th>Sample</th>
<th>13-008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat. (° N)</td>
<td>42 35.051</td>
</tr>
<tr>
<td>Long. (° E)</td>
<td>44 28.440</td>
</tr>
<tr>
<td>Major elements (wt %)</td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td>62.8</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.74</td>
</tr>
<tr>
<td>Al2O3</td>
<td>16.3</td>
</tr>
<tr>
<td>Fe2O3 TOT</td>
<td>4.61</td>
</tr>
<tr>
<td>MnO</td>
<td>0.08</td>
</tr>
<tr>
<td>MgO</td>
<td>3.48</td>
</tr>
<tr>
<td>CaO</td>
<td>5.03</td>
</tr>
<tr>
<td>Na2O</td>
<td>4.83</td>
</tr>
<tr>
<td>K2O</td>
<td>1.62</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.21</td>
</tr>
<tr>
<td>Total</td>
<td>99.6</td>
</tr>
<tr>
<td>LOI</td>
<td>0.07</td>
</tr>
<tr>
<td>Mg#</td>
<td>62.42</td>
</tr>
<tr>
<td>Trace elements (ug g⁻¹)</td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>11.1</td>
</tr>
<tr>
<td>V</td>
<td>75.0</td>
</tr>
<tr>
<td>Cr</td>
<td>103</td>
</tr>
<tr>
<td>Co</td>
<td>17.2</td>
</tr>
<tr>
<td>Ni</td>
<td>43.7</td>
</tr>
<tr>
<td>Rb</td>
<td>45.3</td>
</tr>
<tr>
<td>Sr</td>
<td>464</td>
</tr>
<tr>
<td>Y</td>
<td>12.4</td>
</tr>
<tr>
<td>Zr</td>
<td>98.0</td>
</tr>
<tr>
<td>Nb</td>
<td>6.00</td>
</tr>
<tr>
<td>Cs</td>
<td>1.11</td>
</tr>
<tr>
<td>Ba</td>
<td>412</td>
</tr>
<tr>
<td>La</td>
<td>1.07</td>
</tr>
<tr>
<td>Ce</td>
<td>3.03</td>
</tr>
<tr>
<td>Pr</td>
<td>1.43</td>
</tr>
<tr>
<td>Nd</td>
<td>2.36</td>
</tr>
<tr>
<td>Sm</td>
<td>0.46</td>
</tr>
<tr>
<td>Eu</td>
<td>1.29</td>
</tr>
<tr>
<td>Gd</td>
<td>1.10</td>
</tr>
<tr>
<td>Tb</td>
<td>2.87</td>
</tr>
<tr>
<td>Dy</td>
<td>14.4</td>
</tr>
<tr>
<td>Ho</td>
<td>8.77</td>
</tr>
<tr>
<td>Th</td>
<td>2.24</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Isotopic ratios</td>
<td></td>
</tr>
<tr>
<td>⁸⁷Sr/⁸⁶Sr</td>
<td>2 s.d.</td>
</tr>
<tr>
<td>¹⁴⁴Nd/¹⁴⁴Nd</td>
<td>2 s.d.</td>
</tr>
<tr>
<td>δNd</td>
<td>2 s.d.</td>
</tr>
<tr>
<td>²⁰⁶Pb/²⁰⁴Pb</td>
<td>2 s.d.</td>
</tr>
<tr>
<td>²⁰⁷Pb/²⁰⁴Pb</td>
<td>2 s.d.</td>
</tr>
<tr>
<td>²⁰⁸Pb/²⁰⁴Pb</td>
<td>2 s.d.</td>
</tr>
</tbody>
</table>

* Mg# assumes Fe³⁺/Total Fe = 0.1.

Formation the lowest (85.4–11.6 μg g⁻¹ Cr). Two samples from the Gudauri Formation (H4 and 13-005) have anomalously low Cr, which also show low Al₂O₃ contents, suggesting a mineralogical control on the distribution of these elements. In common with the major elements, there is an indication that the Gudauri Formation and stage IV Kazbek samples define distinct trends relative to the other lava groups, with these two groups also having elevated concentrations of Sr and the heavy REE (HREE) element Yb (and Y).

Primitive-mantle normalised variation plots for all three centres show similar patterns (Fig. 8) with large ion lithophile elements (LILEs) enrichment relative to high field strength elements (HFSEs), large negative Nb anomalies and positive Pb anomalies. Enrichment in LILEs is typically in the order of 55–153 (for Rb and Ba), relative to primitive mantle. The greatest enrichment occurs in the Qabarjina Formation, reflecting the broad positive trend of Rb with SiO₂. The Gudauri Formation typically shows a smaller negative Nb anomaly (Nb/Nb* >0.2) than the Qabarjina Formation (0.135–0.201) and Mt. Kazbek centres (0.135–0.297), where Nb/Nb* is the ratio between the primitive-mantle normalised Nb abundance and the interpolated value between primitive-mantle normalised U and K abundances (Fig. 8). We also illustrate trace element data for a representative Hercynian granite that is part of the basement through which the Mt. Kazbek magmas traversed (Fig. 8). The granite has a trace element pattern broadly similar to the Mt. Kazbek region magmas, but has significantly less enrichment in Rb and Cs, is significantly depleted in Sr and has relatively more enrichment in Th and K.

Chondrite-normalised plots of REEs (Fig. 9) have similar patterns between all three centres. The majority of samples lacks a significant Eu-anomaly (Eu/Eu* = 0.79–1.03, although most are >0.9; Eu anomaly is defined as Eu/subharv/(Sm/subharv x Gd/subharv)/0.5, where each of the elements is chondrite normalised). Light REE (LREEs) are enriched relative to HREEs in all samples, with variation in the HREE greater than in the LREE, which controls the degree of LREE enrichment as defined by [La/Yb]₆₅. Stage IV lavas from Mt. Kazbek together with those from the Gudauri centre had the smallest LREE enrichment ([La/Yb]₆₅ = 9.25–13.60), whereas Stages II and III have the steepest REE patterns, and the Qabarjina Formation samples plot at intermediate values. The slope of the MREE to HREEs was monitored by [Dy/Yb]₆₅ as this ratio is sensitive to both residual garnet in the mantle source and amphibole fractionation. Stages II and III of Mt. Kazbek again have the highest [Dy/Yb]₆₅ (1.35–1.65). The Gudauri and Qabarjina formations and Stage IV of Mt. Kazbek have relatively flat patterns ([Dy/Yb]₆₅ = 1.23–1.33). The Hercynian granite has a LREE enrichment similar to the least enriched lava ([La/Yb]₆₅ = 10.7), a relatively flat MREE to HREEs slope ([Dy/Yb]₆₅ = 1.26) and a significant negative Eu anomaly of 0.62.

Isotopes

Twenty-four samples were analysed for Sr- and Pb-isotopic composition with 14 of these samples analysed for Nd isotopes. No age correction has been undertaken because all samples are <450 ka (Lebedev et al., 2008) and the correction is smaller than the analytical uncertainty. Variations in composition are small, but ⁸⁷Sr/⁸⁶Sr and ¹⁴⁴Nd/¹⁴⁴Nd form a negative correlation that sits well within the mantle array (Fig. 10). The Gudauri and Mt.
Table 2: Geochemical analyses of samples from the Greater Caucasus; Kazbek Stage II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat (° N)</td>
<td>42 40.001</td>
<td>42 40.036</td>
<td>42 40.114</td>
<td>42 40.068</td>
<td>42 34.568</td>
<td>42 41.584</td>
<td>42 41.305</td>
</tr>
<tr>
<td>Long (° E)</td>
<td>44 38.257</td>
<td>44 38.372</td>
<td>44 38.254</td>
<td>44 38.277</td>
<td>44 34.477</td>
<td>44 38.151</td>
<td>44 38.139</td>
</tr>
<tr>
<td>Major elements (wt %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>62.2</td>
<td>63.4</td>
<td>62.0</td>
<td>62.2</td>
<td>62.3</td>
<td>59.5</td>
<td>59.2</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.80</td>
<td>0.80</td>
<td>1.01</td>
<td>1.05</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.0</td>
<td>16.4</td>
<td>16.0</td>
<td>16.5</td>
<td>16.5</td>
<td>16.6</td>
<td>16.6</td>
</tr>
<tr>
<td>Fe₂O₃ TOT</td>
<td>4.85</td>
<td>4.77</td>
<td>4.75</td>
<td>5.03</td>
<td>4.99</td>
<td>6.13</td>
<td>6.11</td>
</tr>
<tr>
<td>MnO</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.09</td>
<td>0.09</td>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>MgO</td>
<td>3.93</td>
<td>3.78</td>
<td>3.66</td>
<td>3.05</td>
<td>3.04</td>
<td>4.62</td>
<td>4.09</td>
</tr>
<tr>
<td>CaO</td>
<td>5.28</td>
<td>5.10</td>
<td>5.00</td>
<td>4.96</td>
<td>4.99</td>
<td>5.70</td>
<td>4.61</td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.74</td>
<td>4.80</td>
<td>4.59</td>
<td>4.59</td>
<td>4.65</td>
<td>4.65</td>
<td>4.62</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.68</td>
<td>1.88</td>
<td>1.90</td>
<td>1.93</td>
<td>1.92</td>
<td>1.83</td>
<td>1.84</td>
</tr>
<tr>
<td>Total</td>
<td>99.7</td>
<td>101.2</td>
<td>99.0</td>
<td>99.5</td>
<td>99.5</td>
<td>100.5</td>
<td>99.5</td>
</tr>
<tr>
<td>LOI</td>
<td>-0.07</td>
<td>0.08</td>
<td>0.07</td>
<td>0.01</td>
<td>0.38</td>
<td>0.22</td>
<td>0.20</td>
</tr>
<tr>
<td>Mg#</td>
<td>64.07</td>
<td>63.56</td>
<td>62.92</td>
<td>57.17</td>
<td>57.29</td>
<td>62.43</td>
<td>59.53</td>
</tr>
<tr>
<td>Trace elements (ug g⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>12.4</td>
<td>11.5</td>
<td>11.4</td>
<td>13.1</td>
<td>12.5</td>
<td>13.5</td>
<td>12.6</td>
</tr>
<tr>
<td>V</td>
<td>131</td>
<td>103</td>
<td>85.2</td>
<td>104</td>
<td>85.7</td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td>Cr</td>
<td>115</td>
<td>111</td>
<td>116</td>
<td>66.3</td>
<td>75.5</td>
<td>158</td>
<td>118</td>
</tr>
<tr>
<td>Co</td>
<td>118</td>
<td>16.8</td>
<td>17.6</td>
<td>16.6</td>
<td>15.6</td>
<td>21.1</td>
<td>20.9</td>
</tr>
<tr>
<td>Nb</td>
<td>86.8</td>
<td>55.2</td>
<td>55.7</td>
<td>32.0</td>
<td>66.3</td>
<td>158</td>
<td>53.6</td>
</tr>
<tr>
<td>Rb</td>
<td>46.3</td>
<td>53.2</td>
<td>59.7</td>
<td>59.4</td>
<td>52.5</td>
<td>49.9</td>
<td>51.1</td>
</tr>
<tr>
<td>Sr</td>
<td>522</td>
<td>574</td>
<td>600</td>
<td>610</td>
<td>582</td>
<td>608</td>
<td>653</td>
</tr>
<tr>
<td>Y</td>
<td>13.0</td>
<td>12.3</td>
<td>13.5</td>
<td>13.5</td>
<td>12.6</td>
<td>15.1</td>
<td>17.1</td>
</tr>
<tr>
<td>Zr</td>
<td>135</td>
<td>125</td>
<td>119</td>
<td>155</td>
<td>153</td>
<td>166</td>
<td>187</td>
</tr>
<tr>
<td>Nb</td>
<td>6.41</td>
<td>7.02</td>
<td>8.92</td>
<td>10.7</td>
<td>8.71</td>
<td>9.02</td>
<td>11.7</td>
</tr>
<tr>
<td>Cs</td>
<td>1.32</td>
<td>3.15</td>
<td>2.04</td>
<td>2.91</td>
<td>3.52</td>
<td>2.77</td>
<td>3.62</td>
</tr>
<tr>
<td>Ba</td>
<td>415</td>
<td>491</td>
<td>513</td>
<td>459</td>
<td>445</td>
<td>506</td>
<td>510</td>
</tr>
<tr>
<td>Ce</td>
<td>26.2</td>
<td>28.9</td>
<td>29.9</td>
<td>28.4</td>
<td>30.6</td>
<td>31.8</td>
<td>62.7</td>
</tr>
<tr>
<td>La</td>
<td>50.0</td>
<td>54.6</td>
<td>57.1</td>
<td>56.4</td>
<td>54.1</td>
<td>60.2</td>
<td>7.36</td>
</tr>
<tr>
<td>Pr</td>
<td>5.66</td>
<td>6.07</td>
<td>6.47</td>
<td>6.23</td>
<td>6.06</td>
<td>6.92</td>
<td>26.6</td>
</tr>
<tr>
<td>Nd</td>
<td>20.0</td>
<td>21.2</td>
<td>22.8</td>
<td>21.3</td>
<td>24.8</td>
<td>24.8</td>
<td>26.6</td>
</tr>
<tr>
<td>Sm</td>
<td>3.67</td>
<td>3.84</td>
<td>4.18</td>
<td>4.18</td>
<td>3.92</td>
<td>4.66</td>
<td>5.23</td>
</tr>
<tr>
<td>Eu</td>
<td>1.13</td>
<td>1.17</td>
<td>1.17</td>
<td>1.18</td>
<td>1.16</td>
<td>1.38</td>
<td>1.41</td>
</tr>
<tr>
<td>Gd</td>
<td>0.56</td>
<td>0.43</td>
<td>0.46</td>
<td>0.48</td>
<td>0.44</td>
<td>0.54</td>
<td>0.59</td>
</tr>
<tr>
<td>Tb</td>
<td>1.07</td>
<td>1.02</td>
<td>1.07</td>
<td>1.07</td>
<td>1.14</td>
<td>1.07</td>
<td>1.14</td>
</tr>
<tr>
<td>Dy</td>
<td>0.98</td>
<td>1.02</td>
<td>1.07</td>
<td>1.07</td>
<td>1.14</td>
<td>1.07</td>
<td>1.14</td>
</tr>
<tr>
<td>Ho</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.47</td>
<td>0.44</td>
<td>0.53</td>
<td>0.57</td>
</tr>
<tr>
<td>Er</td>
<td>1.26</td>
<td>1.19</td>
<td>1.19</td>
<td>1.23</td>
<td>1.21</td>
<td>1.42</td>
<td>1.47</td>
</tr>
<tr>
<td>Yb</td>
<td>0.16</td>
<td>0.15</td>
<td>0.15</td>
<td>0.16</td>
<td>0.15</td>
<td>0.17</td>
<td>0.18</td>
</tr>
<tr>
<td>Lu</td>
<td>3.43</td>
<td>3.17</td>
<td>2.95</td>
<td>3.70</td>
<td>3.87</td>
<td>4.10</td>
<td>4.30</td>
</tr>
<tr>
<td>Tb</td>
<td>12.4</td>
<td>15.4</td>
<td>14.0</td>
<td>13.5</td>
<td>15.0</td>
<td>15.1</td>
<td>19.1</td>
</tr>
<tr>
<td>Dy</td>
<td>9.23</td>
<td>9.46</td>
<td>10.4</td>
<td>8.81</td>
<td>9.68</td>
<td>10.6</td>
<td>19.1</td>
</tr>
<tr>
<td>U</td>
<td>2.30</td>
<td>2.52</td>
<td>2.62</td>
<td>2.27</td>
<td>2.29</td>
<td>2.32</td>
<td>2.44</td>
</tr>
</tbody>
</table>

Isotopic ratios

* Mg# assumes Fe³⁺/Total Fe = 0.1.

Kazbek samples have overlapping ⁸⁷Sr/⁸⁶Sr (0.70415–0.70456). For a given ⁸⁷Sr/⁸⁶Sr, the Gudauri Formation has lower ¹⁴³Nd/¹⁴⁴Nd (Mt. Kazbek, 0.51274–0.51280, εNd = 0.48–3.18; Gudauri Formation, 0.51268–0.51274, εNd = 0.87–1.93). The Qabarjina Formation plots with more radiogenic Sr (⁸⁷Sr/⁸⁶Sr = 0.70487–0.70495) and lower Nd (¹⁴³Nd/¹⁴⁴Nd = 0.51266–0.51269, εNd = 0.41–1.02) isotopes. Within the Mt. Kazbek samples, Stage II is more radiogenic than Stage III, while Stage IV shows a displacement to lower ¹⁴³Nd/¹⁴⁴Nd, comparable to that...
Table 2: Geochemical analyses of samples from the Greater Caucasus; Kazbek Stage II

<table>
<thead>
<tr>
<th>Sample</th>
<th>13-038</th>
<th>13-040</th>
<th>13-043</th>
<th>13-059</th>
<th>13-062</th>
<th>13-067</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat. (°N)</td>
<td>42 41.665</td>
<td>42 40.266</td>
<td>42 40.266</td>
<td>42 37.859</td>
<td>42 37.705</td>
<td>42 37.253</td>
</tr>
<tr>
<td>Long. (°E)</td>
<td>44 38.501</td>
<td>44 37.842</td>
<td>44 37.842</td>
<td>44 36.759</td>
<td>44 36.245</td>
<td>44 35.523</td>
</tr>
<tr>
<td>Major elements (wt %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>61.9</td>
<td>58.6</td>
<td>61.9</td>
<td>63.2</td>
<td>61.8</td>
<td>62.0</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.77</td>
<td>0.98</td>
<td>0.80</td>
<td>0.64</td>
<td>0.73</td>
<td>0.77</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.9</td>
<td>16.4</td>
<td>16.4</td>
<td>15.8</td>
<td>16.6</td>
<td>16.4</td>
</tr>
<tr>
<td>Fe₂O₃ TOT</td>
<td>4.76</td>
<td>5.95</td>
<td>5.02</td>
<td>4.14</td>
<td>4.97</td>
<td>5.09</td>
</tr>
<tr>
<td>MnO</td>
<td>0.08</td>
<td>0.10</td>
<td>0.09</td>
<td>0.07</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>MgO</td>
<td>3.64</td>
<td>4.31</td>
<td>3.07</td>
<td>2.87</td>
<td>3.43</td>
<td>3.40</td>
</tr>
<tr>
<td>CaO</td>
<td>4.66</td>
<td>4.46</td>
<td>4.57</td>
<td>4.72</td>
<td>4.27</td>
<td>4.36</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.93</td>
<td>1.82</td>
<td>1.93</td>
<td>1.79</td>
<td>2.04</td>
<td>2.11</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.30</td>
<td>0.34</td>
<td>0.29</td>
<td>0.21</td>
<td>0.26</td>
<td>0.28</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.08</td>
<td>0.10</td>
<td>0.09</td>
<td>0.07</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Total</td>
<td>98.8</td>
<td>98.5</td>
<td>99.0</td>
<td>98.0</td>
<td>99.0</td>
<td>99.1</td>
</tr>
<tr>
<td>LOI</td>
<td>0.44</td>
<td>0.56</td>
<td>0.61</td>
<td>1.18</td>
<td>0.12</td>
<td>0.07</td>
</tr>
<tr>
<td>Mg#*</td>
<td>62.76</td>
<td>61.44</td>
<td>57.38</td>
<td>60.46</td>
<td>60.28</td>
<td>59.49</td>
</tr>
<tr>
<td>Trace elements (ug g⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>1.14</td>
<td>13.5</td>
<td>12.9</td>
<td>10.6</td>
<td>13.2</td>
<td>12.9</td>
</tr>
<tr>
<td>V</td>
<td>114</td>
<td>109</td>
<td>86.3</td>
<td>99.5</td>
<td>102</td>
<td>107</td>
</tr>
<tr>
<td>Cr</td>
<td>106</td>
<td>163</td>
<td>67.0</td>
<td>72.2</td>
<td>102</td>
<td>107</td>
</tr>
<tr>
<td>Co</td>
<td>16.8</td>
<td>22.3</td>
<td>15.5</td>
<td>14.4</td>
<td>16.3</td>
<td>15.2</td>
</tr>
<tr>
<td>Ni</td>
<td>74.9</td>
<td>69.7</td>
<td>60.9</td>
<td>29.7</td>
<td>49.3</td>
<td>44.6</td>
</tr>
<tr>
<td>Rb</td>
<td>562</td>
<td>516</td>
<td>54.0</td>
<td>52.2</td>
<td>62.9</td>
<td>68.0</td>
</tr>
<tr>
<td>Sr</td>
<td>562</td>
<td>654</td>
<td>584</td>
<td>511</td>
<td>527</td>
<td>555</td>
</tr>
<tr>
<td>Y</td>
<td>12.8</td>
<td>16.4</td>
<td>12.8</td>
<td>11.4</td>
<td>15.9</td>
<td>16.5</td>
</tr>
<tr>
<td>Zr</td>
<td>120</td>
<td>180</td>
<td>158</td>
<td>141</td>
<td>130</td>
<td>146</td>
</tr>
<tr>
<td>Nb</td>
<td>7.47</td>
<td>11.2</td>
<td>7.96</td>
<td>6.04</td>
<td>8.56</td>
<td>14.8</td>
</tr>
<tr>
<td>Cs</td>
<td>3.59</td>
<td>3.12</td>
<td>4.39</td>
<td>3.37</td>
<td>2.37</td>
<td>2.61</td>
</tr>
<tr>
<td>Ba</td>
<td>483</td>
<td>506</td>
<td>443</td>
<td>386</td>
<td>425</td>
<td>449</td>
</tr>
<tr>
<td>La</td>
<td>29.9</td>
<td>32.2</td>
<td>28.5</td>
<td>23.7</td>
<td>30.2</td>
<td>32.1</td>
</tr>
<tr>
<td>Ce</td>
<td>51.7</td>
<td>63.3</td>
<td>54.2</td>
<td>45.6</td>
<td>60.1</td>
<td>63.8</td>
</tr>
<tr>
<td>Pr</td>
<td>6.39</td>
<td>7.39</td>
<td>6.02</td>
<td>5.01</td>
<td>6.71</td>
<td>7.14</td>
</tr>
<tr>
<td>Nd</td>
<td>22.3</td>
<td>26.7</td>
<td>21.2</td>
<td>17.6</td>
<td>23.8</td>
<td>25.2</td>
</tr>
<tr>
<td>Sm</td>
<td>4.01</td>
<td>5.12</td>
<td>3.91</td>
<td>3.19</td>
<td>4.45</td>
<td>4.70</td>
</tr>
<tr>
<td>Eu</td>
<td>1.18</td>
<td>1.41</td>
<td>1.16</td>
<td>1.00</td>
<td>1.23</td>
<td>1.27</td>
</tr>
<tr>
<td>Gd</td>
<td>3.53</td>
<td>4.09</td>
<td>3.18</td>
<td>2.77</td>
<td>3.72</td>
<td>4.19</td>
</tr>
<tr>
<td>Tb</td>
<td>0.46</td>
<td>0.58</td>
<td>0.44</td>
<td>0.39</td>
<td>0.53</td>
<td>0.54</td>
</tr>
<tr>
<td>Dy</td>
<td>2.33</td>
<td>2.98</td>
<td>2.28</td>
<td>2.02</td>
<td>2.80</td>
<td>2.88</td>
</tr>
<tr>
<td>Ho</td>
<td>0.44</td>
<td>0.55</td>
<td>0.44</td>
<td>0.39</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>Er</td>
<td>1.21</td>
<td>1.44</td>
<td>1.20</td>
<td>1.09</td>
<td>1.56</td>
<td>1.53</td>
</tr>
<tr>
<td>Yb</td>
<td>1.01</td>
<td>1.21</td>
<td>1.01</td>
<td>0.93</td>
<td>1.32</td>
<td>1.32</td>
</tr>
<tr>
<td>Lu</td>
<td>0.15</td>
<td>0.18</td>
<td>0.15</td>
<td>0.14</td>
<td>0.20</td>
<td>0.19</td>
</tr>
<tr>
<td>HF</td>
<td>3.09</td>
<td>4.12</td>
<td>3.39</td>
<td>3.48</td>
<td>3.93</td>
<td>3.93</td>
</tr>
<tr>
<td>Pb</td>
<td>9.39</td>
<td>10.0</td>
<td>8.38</td>
<td>8.11</td>
<td>8.88</td>
<td>9.42</td>
</tr>
<tr>
<td>U</td>
<td>2.53</td>
<td>2.27</td>
<td>2.21</td>
<td>2.28</td>
<td>2.09</td>
<td>2.29</td>
</tr>
</tbody>
</table>

Isotopic ratios

| 87Sr/86Sr | 0.704475 | 0.704557 | 0.704341 |
| 3s.d. | 0.000004 | 0.000004 | 0.000004 |

143Nd/144Nd	0.512770
3s.d.	0.000011
εNd	2.57

206Pb/204Pb	18.644
3s.d.	0.001
207Pb/204Pb	15.624
3s.d.	0.001
208Pb/204Pb	38.747
3s.d.	0.003

* Mg# assumes Fe³⁺/Total Fe = 0.1.

of the Gudauri Formation. The Greater Caucasus samples overlap slightly with Lesser Caucasus samples (Neill et al., 2013, 2015; Sugden et al., 2019) but extend to less radiogenic Nd isotope values.

Lead isotopes also show small variations (Fig. 11). Positive trends are formed between 206Pb/204Pb and 207Pb/204Pb or 208Pb/204Pb, which are resolvable because of the high-precision double spike measurements. Similarly to Sr and Nd isotopes, the Gudauri Formation forms the least radiogenic part of the trend (206Pb/204Pb = 18.59–18.61). Mt. Kazbek extends to the most radiogenic values (206Pb/204Pb = 18.59–18.67), while the Qabarjina
Table 2: Geochemical analyses of samples from the Greater Caucasus; Kazbek Stage III

<table>
<thead>
<tr>
<th>Sample</th>
<th>13-025</th>
<th>13-056</th>
<th>13-070</th>
<th>13-071</th>
<th>13-072</th>
<th>13-073</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat (°N)</td>
<td>42 40.019</td>
<td>42 39.556</td>
<td>42 40.273</td>
<td>42 40.273</td>
<td>Float</td>
<td>Float</td>
</tr>
<tr>
<td>Long (°E)</td>
<td>44 37.799</td>
<td>44 34.576</td>
<td>44 37.235</td>
<td>44 37.235</td>
<td>Float</td>
<td>Float</td>
</tr>
<tr>
<td>Major elements (wt %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>59.0</td>
<td>55.8</td>
<td>59.5</td>
<td>58.6</td>
<td>60.1</td>
<td>59.9</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.03</td>
<td>1.30</td>
<td>1.05</td>
<td>1.03</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.8</td>
<td>16.3</td>
<td>15.8</td>
<td>15.7</td>
<td>16.2</td>
<td>16.1</td>
</tr>
<tr>
<td>Fe₂O₃ TOT</td>
<td>6.04</td>
<td>7.63</td>
<td>6.14</td>
<td>6.01</td>
<td>5.30</td>
<td>5.35</td>
</tr>
<tr>
<td>MnO</td>
<td>0.09</td>
<td>0.12</td>
<td>0.09</td>
<td>0.09</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>CaO</td>
<td>5.88</td>
<td>6.46</td>
<td>5.95</td>
<td>5.79</td>
<td>5.73</td>
<td>5.77</td>
</tr>
<tr>
<td>MgO</td>
<td>4.93</td>
<td>5.93</td>
<td>5.06</td>
<td>4.90</td>
<td>4.70</td>
<td>4.75</td>
</tr>
<tr>
<td>CaO</td>
<td>5.88</td>
<td>6.46</td>
<td>5.95</td>
<td>5.79</td>
<td>5.73</td>
<td>5.77</td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.51</td>
<td>4.54</td>
<td>4.53</td>
<td>4.40</td>
<td>4.48</td>
<td>4.53</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.78</td>
<td>1.65</td>
<td>1.79</td>
<td>1.76</td>
<td>1.69</td>
<td>1.70</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.32</td>
<td>0.40</td>
<td>0.33</td>
<td>0.31</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>Total</td>
<td>99.5</td>
<td>100.1</td>
<td>100.3</td>
<td>98.6</td>
<td>99.4</td>
<td>99.4</td>
</tr>
<tr>
<td>LOI</td>
<td>−0.08</td>
<td>−0.24</td>
<td>−0.12</td>
<td>−0.16</td>
<td>−0.07</td>
<td>0.11</td>
</tr>
<tr>
<td>Mg#</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Mg# assumes Fe³⁺/Total Fe = 0.1.

Trace elements (ug g⁻¹)

<table>
<thead>
<tr>
<th></th>
<th>Sample 13-025</th>
<th>13-056</th>
<th>13-070</th>
<th>13-071</th>
<th>13-072</th>
<th>13-073</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sc</td>
<td>16.1</td>
<td>15.8</td>
<td>16.7</td>
<td>16.0</td>
<td>13.4</td>
<td>14.5</td>
</tr>
<tr>
<td>V</td>
<td>107</td>
<td>138</td>
<td>131</td>
<td>138</td>
<td>105</td>
<td>118.9</td>
</tr>
<tr>
<td>Cr</td>
<td>158</td>
<td>188</td>
<td>148</td>
<td>167</td>
<td>158</td>
<td>154</td>
</tr>
<tr>
<td>Co</td>
<td>21.1</td>
<td>32.0</td>
<td>23.0</td>
<td>23.5</td>
<td>21.0</td>
<td>21.0</td>
</tr>
<tr>
<td>Ni</td>
<td>16.3</td>
<td>93.2</td>
<td>84.0</td>
<td>86.5</td>
<td>93.5</td>
<td>95.6</td>
</tr>
<tr>
<td>Rh</td>
<td>43.5</td>
<td>39.4</td>
<td>42.0</td>
<td>46.7</td>
<td>48.3</td>
<td>45.3</td>
</tr>
<tr>
<td>Sr</td>
<td>670</td>
<td>681</td>
<td>665</td>
<td>699</td>
<td>646</td>
<td>625</td>
</tr>
<tr>
<td>Y</td>
<td>12.7</td>
<td>18.7</td>
<td>12.7</td>
<td>13.7</td>
<td>13.3</td>
<td>12.9</td>
</tr>
<tr>
<td>Zr</td>
<td>92.2</td>
<td>197</td>
<td>124</td>
<td>131</td>
<td>174</td>
<td>173</td>
</tr>
<tr>
<td>Nb</td>
<td>7.92</td>
<td>12.7</td>
<td>8.0</td>
<td>9.6</td>
<td>8.9</td>
<td>9.4</td>
</tr>
<tr>
<td>Cs</td>
<td>2.42</td>
<td>0.95</td>
<td>1.6</td>
<td>2.0</td>
<td>2.2</td>
<td>3.0</td>
</tr>
<tr>
<td>Ba</td>
<td>403</td>
<td>546</td>
<td>399</td>
<td>418</td>
<td>421</td>
<td>410</td>
</tr>
<tr>
<td>La</td>
<td>26.7</td>
<td>29.1</td>
<td>25.9</td>
<td>27.5</td>
<td>27.8</td>
<td>27.3</td>
</tr>
<tr>
<td>Ce</td>
<td>51.6</td>
<td>58.3</td>
<td>51.2</td>
<td>53.8</td>
<td>53.9</td>
<td>52.7</td>
</tr>
<tr>
<td>Pr</td>
<td>5.88</td>
<td>6.97</td>
<td>5.85</td>
<td>6.25</td>
<td>6.17</td>
<td>5.96</td>
</tr>
<tr>
<td>Nd</td>
<td>20.9</td>
<td>25.9</td>
<td>21.1</td>
<td>22.6</td>
<td>22.0</td>
<td>21.1</td>
</tr>
<tr>
<td>Sm</td>
<td>3.89</td>
<td>5.25</td>
<td>3.90</td>
<td>4.30</td>
<td>4.16</td>
<td>3.84</td>
</tr>
<tr>
<td>Eu</td>
<td>1.21</td>
<td>1.56</td>
<td>1.24</td>
<td>1.43</td>
<td>1.19</td>
<td>1.19</td>
</tr>
<tr>
<td>Gd</td>
<td>3.28</td>
<td>4.42</td>
<td>3.37</td>
<td>3.45</td>
<td>3.27</td>
<td>3.22</td>
</tr>
<tr>
<td>Tb</td>
<td>0.44</td>
<td>0.65</td>
<td>0.46</td>
<td>0.48</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>Dy</td>
<td>2.27</td>
<td>3.39</td>
<td>2.39</td>
<td>2.47</td>
<td>2.40</td>
<td>2.30</td>
</tr>
<tr>
<td>Ho</td>
<td>0.43</td>
<td>0.64</td>
<td>0.45</td>
<td>0.47</td>
<td>0.45</td>
<td>0.44</td>
</tr>
<tr>
<td>Er</td>
<td>1.16</td>
<td>1.65</td>
<td>1.23</td>
<td>1.23</td>
<td>1.18</td>
<td>1.21</td>
</tr>
<tr>
<td>Yb</td>
<td>0.90</td>
<td>1.37</td>
<td>0.98</td>
<td>1.01</td>
<td>1.03</td>
<td>1.02</td>
</tr>
<tr>
<td>Lu</td>
<td>0.14</td>
<td>0.19</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Hf</td>
<td>2.54</td>
<td>4.48</td>
<td>3.10</td>
<td>3.19</td>
<td>4.19</td>
<td>4.21</td>
</tr>
<tr>
<td>Pb</td>
<td>9.5</td>
<td>13.6</td>
<td>8.8</td>
<td>10.0</td>
<td>14.4</td>
<td>11.6</td>
</tr>
<tr>
<td>Th</td>
<td>6.09</td>
<td>8.92</td>
<td>7.10</td>
<td>8.11</td>
<td>9.38</td>
<td>8.47</td>
</tr>
<tr>
<td>U</td>
<td>1.33</td>
<td>2.16</td>
<td>1.98</td>
<td>2.15</td>
<td>2.38</td>
<td>2.34</td>
</tr>
</tbody>
</table>

Isotopic ratios

<table>
<thead>
<tr>
<th></th>
<th>87Sr/86Sr</th>
<th>2s.d.</th>
<th>0.704318</th>
<th>0.704214</th>
<th>0.704305</th>
<th>0.704407</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>143Nd/144Nd</td>
<td>2s.d.</td>
<td>0.512801</td>
<td>0.512770</td>
<td>0.512783</td>
<td>0.512783</td>
</tr>
<tr>
<td></td>
<td>εNd</td>
<td>0.000007</td>
<td>0.000007</td>
<td>0.000011</td>
<td>2.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>206Pb/204Pb</td>
<td>2s.d.</td>
<td>18.636</td>
<td>15.619</td>
<td>15.619</td>
<td>15.619</td>
</tr>
<tr>
<td></td>
<td>207Pb/204Pb</td>
<td>0.000007</td>
<td>0.000007</td>
<td>0.000007</td>
<td>0.000007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>208Pb/204Pb</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td></td>
</tr>
</tbody>
</table>

Formation plots at intermediate values (206Pb/204Pb = 18.59–18.63). 207Pb/204Pb has a very restricted composition (207Pb/204Pb = 15.614–15.626), while 208Pb/204Pb ranges from 38.65–38.76. The trends run sub-parallel to the northern hemisphere reference line (NHRL, Hart, 1984), with all samples lying above the NHRL, although a single sample from the Qabajina Formation plots off the trend closer to the NHRL. In detail, the Gudauri and Kazbek Group IV lavas plot as a resolvable group at a lower 206Pb/204Pb for a given 207Pb/204Pb (Neill et al., 2013, 2015). The Mt. Kazbek samples plot close to contemporaneous volcanic rocks in the Lesser Caucasus (Neill et al., 2013, 2015).
Table 2: Geochemical analyses of samples from the Greater Caucasus; Kazbek Stage IV

<table>
<thead>
<tr>
<th>Sample</th>
<th>H5</th>
<th>H6</th>
<th>KZ1</th>
<th>13-012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat. (' N)</td>
<td>42 36.277</td>
<td>42 36.344</td>
<td>42 36.243</td>
<td>42 34.571</td>
</tr>
<tr>
<td>Long. (' E)</td>
<td>44 34.457</td>
<td>44 34.484</td>
<td>44 34.486</td>
<td>44 34.476</td>
</tr>
<tr>
<td>Major elements (wt %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>64.0</td>
<td>59.6</td>
<td>61.3</td>
<td>62.0</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.67</td>
<td>0.79</td>
<td>0.72</td>
<td>0.71</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.3</td>
<td>17.9</td>
<td>17.3</td>
<td>17.1</td>
</tr>
<tr>
<td>Fe₂O₃ TOT</td>
<td>4.47</td>
<td>5.66</td>
<td>5.16</td>
<td>5.05</td>
</tr>
<tr>
<td>MnO</td>
<td>0.08</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>MgO</td>
<td>3.41</td>
<td>2.96</td>
<td>2.93</td>
<td>2.96</td>
</tr>
<tr>
<td>CaO</td>
<td>4.76</td>
<td>5.87</td>
<td>5.48</td>
<td>5.33</td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.47</td>
<td>3.83</td>
<td>3.97</td>
<td>4.03</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.89</td>
<td>2.40</td>
<td>2.39</td>
<td>2.36</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.23</td>
<td>0.29</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>Total</td>
<td>100.2</td>
<td>99.4</td>
<td>99.6</td>
<td>99.9</td>
</tr>
<tr>
<td>LOI</td>
<td>0.05</td>
<td>0.11</td>
<td>0.00</td>
<td>0.13</td>
</tr>
<tr>
<td>Mg#</td>
<td>62.70</td>
<td>53.52</td>
<td>55.99</td>
<td>56.35</td>
</tr>
<tr>
<td>Trace elements (ug g⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>35.0</td>
<td>39.2</td>
<td>39.7</td>
<td>12.1</td>
</tr>
<tr>
<td>V</td>
<td>82.7</td>
<td>116</td>
<td>105</td>
<td>79.7</td>
</tr>
<tr>
<td>Cr</td>
<td>112</td>
<td>27.7</td>
<td>52.2</td>
<td>65.6</td>
</tr>
<tr>
<td>Co</td>
<td>16.4</td>
<td>13.8</td>
<td>13.6</td>
<td>12.4</td>
</tr>
<tr>
<td>Ni</td>
<td>61.4</td>
<td>8.9</td>
<td>13.5</td>
<td>37.2</td>
</tr>
<tr>
<td>Nb</td>
<td>56.1</td>
<td>75.3</td>
<td>76.3</td>
<td>70.2</td>
</tr>
<tr>
<td>Sr</td>
<td>529</td>
<td>928</td>
<td>809</td>
<td>719</td>
</tr>
<tr>
<td>Y</td>
<td>13.5</td>
<td>20.6</td>
<td>18.9</td>
<td>16.5</td>
</tr>
<tr>
<td>Zr</td>
<td>107</td>
<td>158</td>
<td>135</td>
<td>119</td>
</tr>
<tr>
<td>Nb</td>
<td>7.47</td>
<td>8.89</td>
<td>8.53</td>
<td>7.04</td>
</tr>
<tr>
<td>Cs</td>
<td>3.88</td>
<td>4.94</td>
<td>5.38</td>
<td>5.22</td>
</tr>
<tr>
<td>Ba</td>
<td>387</td>
<td>655</td>
<td>612</td>
<td>589</td>
</tr>
<tr>
<td>La</td>
<td>27.8</td>
<td>34.9</td>
<td>32.9</td>
<td>30.6</td>
</tr>
<tr>
<td>Ce</td>
<td>53.6</td>
<td>70.1</td>
<td>66.1</td>
<td>60.9</td>
</tr>
<tr>
<td>Pr</td>
<td>5.89</td>
<td>8.00</td>
<td>7.33</td>
<td>6.89</td>
</tr>
<tr>
<td>Nd</td>
<td>20.9</td>
<td>28.9</td>
<td>26.3</td>
<td>24.1</td>
</tr>
<tr>
<td>Sm</td>
<td>3.86</td>
<td>5.15</td>
<td>4.72</td>
<td>4.31</td>
</tr>
<tr>
<td>Eu</td>
<td>1.03</td>
<td>1.42</td>
<td>1.28</td>
<td>1.22</td>
</tr>
<tr>
<td>Gd</td>
<td>3.17</td>
<td>4.26</td>
<td>3.88</td>
<td>3.61</td>
</tr>
<tr>
<td>Tb</td>
<td>0.45</td>
<td>0.62</td>
<td>0.57</td>
<td>0.53</td>
</tr>
<tr>
<td>Dy</td>
<td>2.37</td>
<td>3.37</td>
<td>3.14</td>
<td>2.91</td>
</tr>
<tr>
<td>Ho</td>
<td>0.46</td>
<td>0.68</td>
<td>0.64</td>
<td>0.59</td>
</tr>
<tr>
<td>Er</td>
<td>1.24</td>
<td>1.92</td>
<td>1.77</td>
<td>1.71</td>
</tr>
<tr>
<td>Yb</td>
<td>1.10</td>
<td>1.80</td>
<td>1.65</td>
<td>1.52</td>
</tr>
<tr>
<td>Lu</td>
<td>0.16</td>
<td>0.27</td>
<td>0.25</td>
<td>0.24</td>
</tr>
<tr>
<td>Hf</td>
<td>2.65</td>
<td>3.78</td>
<td>3.37</td>
<td>3.31</td>
</tr>
<tr>
<td>Pb</td>
<td>15.9</td>
<td>18.5</td>
<td>19.9</td>
<td>20.2</td>
</tr>
<tr>
<td>Th</td>
<td>8.42</td>
<td>10.2</td>
<td>10.3</td>
<td>10.1</td>
</tr>
<tr>
<td>U</td>
<td>1.95</td>
<td>2.27</td>
<td>2.39</td>
<td>2.47</td>
</tr>
<tr>
<td>Isotopic ratios</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⁸⁷Sr/⁸⁶Sr</td>
<td>0.704505</td>
<td>0.704360</td>
<td>0.704339</td>
<td>0.704633</td>
</tr>
<tr>
<td>₂s . d.</td>
<td>0.000004</td>
<td>0.000004</td>
<td>0.000004</td>
<td>0.000004</td>
</tr>
<tr>
<td>¹⁴³Nd/¹⁴⁴Nd</td>
<td>0.512738</td>
<td>0.512738</td>
<td>0.512756</td>
<td>0.512756</td>
</tr>
<tr>
<td>₂s . d.</td>
<td>0.000004</td>
<td>0.000004</td>
<td>0.000012</td>
<td>0.000012</td>
</tr>
<tr>
<td>εNd</td>
<td>1.96</td>
<td>2.30</td>
<td>2.30</td>
<td>2.30</td>
</tr>
<tr>
<td>²⁰⁶Pb/²⁰⁴Pb</td>
<td>18.592</td>
<td>18.600</td>
<td>18.604</td>
<td>18.606</td>
</tr>
<tr>
<td>₂s . d.</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>²⁰⁷Pb/²⁰⁴Pb</td>
<td>15.617</td>
<td>15.617</td>
<td>15.615</td>
<td>15.620</td>
</tr>
<tr>
<td>₂s . d.</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>²⁰⁸Pb/²⁰⁴Pb</td>
<td>38.665</td>
<td>38.662</td>
<td>38.666</td>
<td>38.682</td>
</tr>
<tr>
<td>₂s . d.</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
</tbody>
</table>

* Mg# assumes Fe³⁺/Total Fe = 0.1.

but have consistently lower ²⁰⁶Pb/²⁰⁴Pb, ratios, while they have similar ²⁰⁶Pb/²⁰⁴Pb ratios than lavas from Mt. Elbrus but with distinctly lower ²⁰⁸Pb/²⁰⁴Pb ratios and particularly ²⁰⁷Pb/²⁰⁴Pb ratios (Lebedev et al., 2010; Chugaev et al., 2013).

DISCUSSION

Fractional crystallisation

The most primitive compositions (from the Gudauri Formation) are SiO₂-rich basaltic andesites, with Mg# ~65. All other centres have MgO <5 wt %. None of the lavas...
Table 2: Geochemical analyses of samples from the Greater Caucasus; Variscan Granites

<table>
<thead>
<tr>
<th>Sample</th>
<th>13-020</th>
<th>13-021</th>
<th>13-022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat (° N)</td>
<td>42 42.620</td>
<td>42 42.620</td>
<td>42 42.620</td>
</tr>
<tr>
<td>Long (° E)</td>
<td>44 37.638</td>
<td>44 37.638</td>
<td>44 37.638</td>
</tr>
<tr>
<td>Major elements (wt %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>—</td>
<td>65.9</td>
<td>—</td>
</tr>
<tr>
<td>TiO₂</td>
<td>—</td>
<td>0.61</td>
<td>—</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>—</td>
<td>15.7</td>
<td>—</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>—</td>
<td>5.14</td>
<td>—</td>
</tr>
<tr>
<td>MnO</td>
<td>—</td>
<td>0.10</td>
<td>—</td>
</tr>
<tr>
<td>MgO</td>
<td>—</td>
<td>1.77</td>
<td>—</td>
</tr>
<tr>
<td>CaO</td>
<td>—</td>
<td>4.45</td>
<td>—</td>
</tr>
<tr>
<td>Na₂O</td>
<td>—</td>
<td>3.22</td>
<td>—</td>
</tr>
<tr>
<td>K₂O</td>
<td>—</td>
<td>2.83</td>
<td>—</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>—</td>
<td>0.19</td>
<td>—</td>
</tr>
<tr>
<td>Total</td>
<td>—</td>
<td>99.9</td>
<td>—</td>
</tr>
<tr>
<td>LOI</td>
<td>—</td>
<td>1.12</td>
<td>—</td>
</tr>
<tr>
<td>Mg#</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Trace elements (ppm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>14.8</td>
<td>12.8</td>
<td>7.2</td>
</tr>
<tr>
<td>V</td>
<td>95.7</td>
<td>95.1</td>
<td>—</td>
</tr>
<tr>
<td>Cr</td>
<td>28.9</td>
<td>49.7</td>
<td>24.2</td>
</tr>
<tr>
<td>Co</td>
<td>—</td>
<td>7.1</td>
<td>7.5</td>
</tr>
<tr>
<td>Ni</td>
<td>7.9</td>
<td>7.1</td>
<td>—</td>
</tr>
<tr>
<td>Rb</td>
<td>64.1</td>
<td>82.2</td>
<td>100.0</td>
</tr>
<tr>
<td>Sr</td>
<td>226</td>
<td>200</td>
<td>236</td>
</tr>
<tr>
<td>Y</td>
<td>27.4</td>
<td>24.0</td>
<td>16.4</td>
</tr>
<tr>
<td>Zr</td>
<td>161</td>
<td>152</td>
<td>150</td>
</tr>
<tr>
<td>Nb</td>
<td>10.1</td>
<td>8.7</td>
<td>7.7</td>
</tr>
<tr>
<td>Cs</td>
<td>1.73</td>
<td>2.33</td>
<td>2.71</td>
</tr>
<tr>
<td>Ba</td>
<td>152</td>
<td>502</td>
<td>603</td>
</tr>
<tr>
<td>La</td>
<td>36.3</td>
<td>33.5</td>
<td>35.3</td>
</tr>
<tr>
<td>Ce</td>
<td>72.0</td>
<td>66.4</td>
<td>67.0</td>
</tr>
<tr>
<td>Pr</td>
<td>8.04</td>
<td>7.39</td>
<td>7.06</td>
</tr>
<tr>
<td>Nd</td>
<td>29.0</td>
<td>26.4</td>
<td>23.5</td>
</tr>
<tr>
<td>Sm</td>
<td>5.79</td>
<td>5.26</td>
<td>3.99</td>
</tr>
<tr>
<td>Eu</td>
<td>1.05</td>
<td>1.01</td>
<td>1.09</td>
</tr>
<tr>
<td>Gd</td>
<td>5.22</td>
<td>4.63</td>
<td>3.20</td>
</tr>
<tr>
<td>Tb</td>
<td>0.81</td>
<td>0.72</td>
<td>0.48</td>
</tr>
<tr>
<td>Dy</td>
<td>4.70</td>
<td>4.15</td>
<td>2.67</td>
</tr>
<tr>
<td>Ho</td>
<td>0.94</td>
<td>0.82</td>
<td>0.53</td>
</tr>
<tr>
<td>Er</td>
<td>2.64</td>
<td>2.33</td>
<td>1.35</td>
</tr>
<tr>
<td>Yb</td>
<td>2.45</td>
<td>2.17</td>
<td>1.50</td>
</tr>
<tr>
<td>Lu</td>
<td>0.35</td>
<td>0.32</td>
<td>0.22</td>
</tr>
<tr>
<td>Hf</td>
<td>0.14</td>
<td>0.22</td>
<td>0.11</td>
</tr>
<tr>
<td>Pb</td>
<td>12.6</td>
<td>16.6</td>
<td>21.1</td>
</tr>
<tr>
<td>Th</td>
<td>14.6</td>
<td>13.3</td>
<td>15.2</td>
</tr>
<tr>
<td>U</td>
<td>2.71</td>
<td>1.83</td>
<td>2.53</td>
</tr>
<tr>
<td>Isotopic ratios</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⁸⁷Sr/⁸⁶Sr</td>
<td>—</td>
<td>0.711836</td>
<td>—</td>
</tr>
<tr>
<td>2 s. d.</td>
<td>—</td>
<td>0.000006</td>
<td>—</td>
</tr>
<tr>
<td>¹⁴₃Nd/¹⁴⁴Nd</td>
<td>—</td>
<td>0.512186</td>
<td>—</td>
</tr>
<tr>
<td>2 s. d.</td>
<td>—</td>
<td>0.000012</td>
<td>—</td>
</tr>
<tr>
<td>εNd</td>
<td>—</td>
<td>−8.82</td>
<td>—</td>
</tr>
<tr>
<td>²⁰⁶Pb/²⁰⁴Pb</td>
<td>20.020</td>
<td>19.420</td>
<td>18.935</td>
</tr>
<tr>
<td>2 s. d.</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>²⁰⁷Pb/²⁰⁴Pb</td>
<td>15.757</td>
<td>16.316</td>
<td>15.71</td>
</tr>
<tr>
<td>2 s. d.</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>²⁰⁸Pb/²⁰⁴Pb</td>
<td>41.371</td>
<td>41.594</td>
<td>39.552</td>
</tr>
<tr>
<td>2 s. d.</td>
<td>0.006</td>
<td>0.004</td>
<td>0.004</td>
</tr>
</tbody>
</table>

has Mg# or Ni contents that are high enough to be in equilibrium with mantle olivine and therefore no lava we collected from the Mt. Kazbek region represents a primary magma from a peridotitic mantle source. However, the presence of minor olivine and clinopyroxene, both with Mg-rich cores, make it a reasonable assumption that all lavas from the Greater Caucasus have previously undergone significant fractionation of olivine, pyroxene and Cr-spinel.

The presence of complex zoning in plagioclase, amphibole and clinopyroxene and of disequilibrium features such as embayed pyroxenes, reaction rims,
sieved plagioclase and rounding of grains is indicative that samples may record multiple pulses of magmatism and mixing of melts. Furthermore, the phenocryst-rich nature of some of the lavas may obscure some of the fractionation trends, such as the variation in Al_2O_3 and Cr at constant SiO_2 observed in the Gudauri Formation. However, some clear conclusions can be made on the fractionation history. Overall, there are strong negative correlations between CaO, $\text{Fe}_2\text{O}_3^{\text{Tot}}$, MgO, MnO and TiO_2 with SiO_2. These trends are consistent with fractionation of the observed mineral assemblage (plagioclase, orthopyroxene, clinopyroxene, amphibole and $\text{Fe}-\text{Ti}$ oxide) in approximately the proportions found in the phenocryst assemblages. There is a limited range in Al_2O_3 concentrations, with no distinct overall trend, apart from in Stage IV of Mt. Kazbek and the Qabarjina Formation, where there are good negative correlations. These observations require plagioclase to be a crystallising phase over the whole range of SiO_2 as the crystal extract has to have enough Al_2O_3 to keep the Al_2O_3 relatively constant for most lava groups. Additionally, samples from the Qabarjina Formation and from the youngest (Stage IV) Kazbek lavas have (1) larger negative Eu anomalies ($\text{Eu}/\text{Eu}^* = 0.79-0.90$) and (2) strong negative correlations between Al_2O_3 and Sr with SiO_2, which together suggest that the proportion of plagioclase crystallising increases at high SiO_2 and in the youngest magmas. Potassium shows very little variation with SiO_2, indicating it may be buffered by a potassic phase such as amphibole consistent with petrographic observations. By contrast, Mt. Kazbek Stage IV lavas have an inflection in K_2O at \sim62 wt % SiO_2, where it behaves compatibly. Amphiboles from Stage IV are typically the most potassic (Bewick, 2016), and biotite is also observed in these lavas suggesting that the appearance of these phases on the liquidus could explain this inflection, and similar infections seen with Rb and Ba. Finally, P_2O_5 behaves compatibly, presumably due to amphibole crystallising, except in the Gudauri Formation, which have SiO_2 lower than the amphibole saturation point, which based on the inflection point (Fig. 7b) is at \sim59 wt % SiO_2.

The major element data (Fig. 6) are consistent with crystallisation of the phenocryst assemblages and do not define a single liquid line of descent, but rather suggest that there are two distinct groupings in the lava suites, which may reflect different melting and fractionation histories. Lavas from the Gudauri Formation and Mt. Kazbek Stage IV have similarities in the major element chemistry generally having lower Na_2O and higher K_2O and Al_2O_3 for a given SiO_2 compared to other lava groups. They also contain high-Al pyroxenes (Table 1), which may represent crystallisation at higher pressures (Putirka, 2008), consistent with different crystallisation history to the other lavas. These differences are also clear in the middle to HREE content (e.g. Dy/Yb ratio) of these two lava groups and in their Pb isotope data (see Fig. 11b).

To explore the differences between the lava groups with respect to their MREE to HREE contents and to determine how they might be utilised to understand mantle melting, it is important to consider the effects of crystal fractionation. This is particularly true for continental arc rocks because they fractionate amphibole, but also because some Greater Caucasus lavas contain high-Al pyroxenes. Both clinopyroxene and amphibole preferentially host MREEs significantly over LREEs and to a lesser extent over HREEs (Davidson et al., 2007), producing concave down REE profiles (Davidson et al., 2013). Fractionation of both clinopyroxene and amphibole can have a similar effect, but as $K_{\text{amph}} > K_{\text{cpx}}$ (Davidson et al., 2007) for MREE, amphibole is likely to be the dominant cause of variation, but it is important to consider the high-Al clinopyroxenes. REE partitioning of amphiboles changes as the magmatic system becomes more...
evolved, with both the absolute values of partitioning REE coefficients and the relative MREE/HREE partitioning ratio increasing (e.g. Sisson, 1994). Clinopyroxene REE partitioning is sensitive to the Al and Na content of the pyroxene (Wood & Blundy, 1997; Blundy et al., 1998). Although Dy/Yb partitioning is approximately unity in clinopyroxene, high-pressure aluminous clinopyroxenes can have Dy/Yb partitioning less than unity, with Yb being compatible (Blundy et al., 1998). Therefore, the absolute abundance of Dy and Yb during fractionation also needs to be considered along with Dy/Yb.

Figure 12a illustrates how [Dy/Yb]_N covaries with SiO_2 for the various lava groups. Groups I–III and the Qabarjina Formation define trends whereby [Dy/Yb]_N smoothly decreases with increasing SiO_2, whereas Yb contents are relatively constant (Fig. 7f), consistent with amphibole ± plagioclase and pyroxene fractionation, although it should be noted that Group II and III lavas
with less than 59 wt % SiO₂ have relatively constant [Dy/Yb]ₕ ratios of ~1.68, which requires a reduced role for amphibole in the least evolved samples. Gudauri Formation and Mt. Kazbek Stage IV have relatively constant [Dy/Yb]ₕ ratios of ~1.28 except at high SiO₂ where the ratio increases to ~1.55, while the Yb content drops throughout fractionation (Fig. 7f). These data are consistent with both amphibole and high-Al pyroxene ± plagioclase crystallising. The increase in [Dy/Yb]ₕ in the evolved compositions is hard to reconcile with crystallisation of any observed phenocrysts, but rather might record the removal of amphibole via melt reaction or mixing with evolved melt composition similar to the Qabarjina Formation (Fig. 12a), which is consistent with Pb isotopic data. What is clear is that the [Dy/Yb]ₕ ratio in the evolved samples is modified by fractionation and that the Mt. Kazbek region is fed by distinct high and low [Dy/Yb]ₕ melts. This point is also emphasised in Fig. 12b,
which illustrates that Th/Yb correlates well with SiO₂, indicating it is controlled by fractional crystallisation, but defines two broad groups, which must have had different primary Th/Yb ratios.

In conclusion, it is not surprising that there is no single liquid line of descent that describes all of the data given the lavas in this study were erupted over a 450 Ka time period. However, major and trace element data suggest that various lava groups can be described by two different liquid lines of descent reflecting two different primary liquids.

Crustal contamination

Crustal contamination has been suggested to play a role in the petrogenesis of magmas from Eastern Turkey (Keskin et al., 1998), the Lesser Caucasus (Neill et al., 2013, 2015; Sugden et al., 2019), Mt. Elbrus (Lebedev et al., 2010; Chugaev et al., 2013) and the magmatic centres of Chegem and Týrnyauz (Bindeman et al., 2021). Therefore, it seems unlikely that lavas in the Mt. Kazbek region could have passed through greatly thickened crust (>60 km) without some crustal interaction. Crustal xenoliths are present in at least one flow from Stage II. This xenolith has a similar appearance to Hercynian granite exposed <20 km away (e.g. sample 13-021), suggesting that such material might be a potential crustal contaminant. Investigation of Sr–Nd isotopes (Fig. 10) indicates that lavas from the Mt. Kazbek region have compositions that lie within the mantle array, as do the majority of the lavas from the Lesser Caucasus whereas those from Mt. Elbrus are displaced to more radiogenic Sr isotope values. Previous studies indicate that crustal contamination is minimal within the Lesser Caucasus lavas (Neill et al., 2013, 2015; Sugden et al., 2019), whereas Lebedev et al. (2010) suggest that crustal contamination plays a significant role in modifying the composition of lavas from Mt. Elbrus. Similarly, Pb isotopic data for Mt. Elbrus, particularly 207Pb/204Pb ratios, indicate some contamination with local Greater Caucasus crust (Chugaev et al., 2013).
To assess the role of simultaneous AFC isotope ratios are plotted against SiO$_2$ (Fig. 13). The correlations are scattered for Nd and Pb isotopes, with only 87Sr/86Sr having a broad positive correlation with SiO$_2$, although there is little systematic behaviour within individual lava groups, with some variation in all of the isotopes at similar SiO$_2$ contents for a given group. This observation makes modelling of AFC processes of limited use in providing quantitative constraints on crustal contamination. However, some qualitative observations can be made. Lavas from the evolved Qabarjina Formation have the most radiogenic Sr and least radiogenic Nd isotopes and their relatively low Sr and Nd contents make them most sensitive to contamination. They could be reasonably modelled using AFC equations to have been contaminated with the local Variscan granitic crust such that they increase their 87Sr/86Sr by 0.0007 from the most unradiogenic lava we measured with small assimilation/crystallisation rates (see DePaolo, 1981, for AFC model). By contrast, to increase from least to the most radiogenic Gudauri Formation, lava would require excessive amounts of crustal assimilation, inconsistent with its bulk chemistry. It should be noted that Parfenov et al. (2019) have suggested that Jurassic sediments from the Mt. Kazbek region could be a potential candidate for a crustal contaminant, but although they have elevated 87Sr/86Sr ratios (0.718621), their low Sr content (80 μg g$^{-1}$) would again require large...
Fig. 10. Radiogenic neodymium versus strontium isotope data for the Mt. Kazbek region plotted with fields for Lesser and Greater (GC and Elbrus) Caucasus region lavas. Arrows point to local crustal material for each of the regions, all of which lie off the plot. Fields for the Kapan Arc from Mederer et al. (2013) and Lori Arc from Neill et al. (2015). The mantle array is from Zindler & Hart (1986) and the Bulk Silicate Earth (horizontal and vertical lines) is from Workman & Hart (2005). Symbols, fields and data sources are the same as Fig. 5 and 2σ uncertainties are smaller than symbol size.

amounts of crustal assimilation inconsistent with our observations.

In Pb-isotope space (Fig. 11), the lavas define well-resolved positive linear trends, albeit over a limited range of 206Pb/204Pb. The three Variscan Granite samples that we measured for Pb isotopes have more radiogenic compositions than the lavas, but contrasting 206Pb/204Pb and 208Pb/204Pb ratios compositions (they plot off Fig. 11 in the direction of the GC crust arrows). The linear variation in Pb isotopes could be explained by assimilation of the granitic basement but the basement has similar to lower Pb concentrations to the lavas and so any assimilation would produce small variations in the Pb isotopes of the lavas. In contrast to Sr and Nd isotopes, the evolved Qabarjina Formation does not have the most radiogenic Pb isotopes as would be expected for a simple AFC model. An alternative model for crustal contamination in continental arcs with thickened crust is the melting, assimilation, storage and homogenisation (MASH) model of Hildreth & Moorbath (1988), where there is no expectation of a relationship between radiogenic isotopes and SiO2. This model can be explored by considering the relationship between Th/Yb and Pb isotopes, both of which are elevated in the Hercynian Granites. There is no positive relationship between Th/Yb and Pb isotopes (not shown), although each lava group having a distinct Th/Yb ratio (see Fig. 12b). Therefore, it could be argued that the MASH process sets the Th/Yb ratio. To test this, one can consider two potential end-member compositions for uncontaminated lavas being the least radiogenic Pb isotope values found for the Mt. Kazbek region or a melt produced by melting of a depleted MORB mantle (DMM)-like mantle. In the first case, small amounts of assimilation could produce the variation in the Pb isotopes, but it would have limited effect on Th/Yb and other key trace element ratios indicative of a subduction-zone modified source (e.g. Ba/Th, Nb/Nb†). In the second model, the Pb isotopes can be reproduced but would not produce any of the key trace element ratios observed in the lavas. Therefore, while we cannot completely exclude some small shifts in the Pb isotope composition due to crustal contamination, neither an AFC- nor a MASH-type model fits the data. We suggest below there are other models for generating the Pb isotopic variation.

Overall, we conclude that there is some evidence for minor crustal contamination, but it is restricted to slightly increasing the 87Sr/86Sr of some evolved lavas and that the isotopic and trace element composition of the lavas provides insights into the composition of the mantle source.

Chemical nature of the source region

Trace elements

The trace element patterns for the lavas from the various centres of the Greater Caucasus are typical of arc lavas, in that they contain positive and negative anomalies compared to the smooth primitive-mantle normalised pattern expected for MORB and OIB. Key observations from the multi-element variation diagrams (Fig. 8) are negative anomalies in HFSEs (Nb and Ti) relative to LILEs and LREEs, although not in Zr, and enrichment in fluid-mobile elements such as Pb, Ba, Cs and Sr and a striking enrichment in Th. We have already demonstrated that crustal contamination does not produce the distinctive trace element signatures found in these lavas. In terms of understanding the origin of these trace element signatures, we will also compare the composition of the lavas in this study with those from the Lesser Caucasus because there may be common mantle and/or subducted components to both localities.

Modern arc systems can be divided into ‘fluid dominated’ and ‘sediment dominated’ by using key trace element ratios (e.g. Elliott, 2003; Plank, 2005). Fractional crystallisation has limited effect on the Ba/Th ratio and slightly increases [La/Sm]N, but Fig. 14a illustrates that lavas from the Caucasus have a clear ‘sediment dominated’ signature, characterised by relative enrichment in Th and the LREE and that the source of the lavas has to be LREE-enriched relative to DMM and the primitive mantle. We can further assess trace-element enrichment by using plots of immobile trace element ratios, such as Th/Yb, Zr/Yb and Nb/Yb (Pearce and Peate, 1995; Pearce, 2008). Arc lavas define an array in Th/Yb versus Nb/Yb space that sits at elevated Th/Yb compared to the MORB–OIB array (Pearce, 2008). Additionally, continental arc rocks have enriched composition, with Nb/Yb ratios greater than 1. The Mt. Kazbek region data not only sit above the MORB–OIB array but also at elevated Th/Yb ratios compared with most continental arc rocks including the rocks from the Lesser Caucasus (Fig. 14b), suggesting these rocks have significant Th enrichment. Most continental arc rocks sit in the enriched portion on a Zr/Yb versus Nb/Yb plot.
\[\frac{206}{204} \text{Pb} / \frac{204}{204} \text{Pb}, \frac{208}{204} \text{Pb} / \frac{204}{204} \text{Pb}, \frac{207}{204} \text{Pb} / \frac{204}{204} \text{Pb} \]

NHRL

Elbrus Crust

Lori Arc

GC Crust

15.40

15.45

15.50

15.55

15.60

15.65

15.70

15.75

37.50

38.00

38.50

39.00

39.50

40.00

17.0 17.5 18.0 18.5 19.0 19.5

Indian Ocean

MORB

Kapan Arc

J Pg

UJ-LC

a

c

15.595

15.605

15.615

15.625

15.635

38.60

38.65

38.70

38.75

38.80

18.55 18.60 18.65 18.70

\[\frac{206}{204} \text{Pb} / \frac{204}{204} \text{Pb} \]

b
d

37.50

38.00

38.50

39.00

39.50

40.00

15.635

15.65

15.655

15.66

15.665

15.67

15.68

15.685

15.69

15.695

15.70

15.705

15.71

15.715

15.72

15.725

15.73

15.735

15.74

15.745

15.75

15.755

15.76

15.765

15.77

15.775

15.78

15.785

15.79

15.795

15.80

15.805

15.81

15.815

15.82

15.825

15.83

15.835

15.84

15.845

15.85

15.855

15.86

15.865

15.87

15.875

15.88

15.885

15.89

15.895

15.90

15.905

15.91

15.915

15.92

15.925

15.93

15.935

15.94

15.945

15.95

15.955

15.96

15.965

15.97

15.975

15.98

15.985

15.99

15.995

20

21

F i g . 11. Radiogenic Pb isotope data for the Mt. Kazbek region plotted with fields for Lesser and Greater Caucasus region lavas. (a) and (b) \(\frac{207}{204} \text{Pb} / \frac{204}{204} \text{Pb} \) versus \(\frac{206}{204} \text{Pb} / \frac{204}{204} \text{Pb} \) and (c) and (d) \(\frac{208}{204} \text{Pb} / \frac{204}{204} \text{Pb} \) versus \(\frac{206}{204} \text{Pb} / \frac{204}{204} \text{Pb} \). In (a) and (c) Greater Caucasus data are from Chugaev et al. (2013). Fields for the Kapan Arc from Mederer et al (2015) (where UJ is Upper Jurassic, LC is Lower Cretaceous, J is Jurassic and Pg is Paleogene) and Lori Arc from (Neill et al., 2015). Arrows point to local crustal material for the Mt. Kazbek region, which lie off the plot (GC). Northern hemisphere reference line (NHRL) is from Hart (1984). Symbols, fields and data sources are the same as Fig. 5b. (d) Represents a close up of the Mt. Kazbek data (area is illustrated by dotted rectangular box in a and c). Where 2 se uncertainties are larger than the symbols they are illustrated as error bars.

(Fig. 14c) relative to rocks from depleted sources such as MORB (Pearce et al., 1990) and this is true for the Greater Caucasus lavas. These plots clearly show that the Gudauri and Group IV lavas plot separately from the other lava groups and that the most primitive Group II and III lavas sit slightly above the depleted-enriched array and lavas from the Lesser Caucasus, a feature that is consistent with addition of slab-derived silicic melts (Pearce and Peate, 1995).

Source enrichment prior to melting is the most likely explanation of the multi-element pattern, with slab-derived fluids the most likely metasomatic agent, which requires a slab to have been present beneath the Greater Caucasus, or that subduction-zone enriched lithosphere has survived for some considerable time following initial collision. Slab-derived silicic melts, or super-critical fluids at depth, result in enrichment of all elements, even HFSEs and HREEs that are not enriched by simple H2O-rich dehydration and the production of aqueous fluids (Kessel et al., 2005). The super-critical fluids refer to fluids released after the critical endpoint and this may occur at depths as shallow as 100 km (Mibe et al., 2011) or as deep as 180 km (Kessel et al., 2005). However, water released from dehydration in the deep basaltic and ultramafic portions of the slab can trigger fluid-present partial melting within the trace-element enriched, sedimentary part of the slab (Hermann et al., 2006), which can produce a similar signature to that seen in the lavas analysed in this study. Specifically, the lavas in this study have large negative HFSE anomalies and enrichment in Th and Zr. Negative HFSE anomalies can be the result of residual HFSE-bearing minerals left in the slab after dehydration processes, or as relics of dehydrated sediment (Hermann & Rubatto, 2009). Addition of Th and Zr requires melting beyond allanite-out and zircon-out, respectively (Hermann & Rubatto, 2009; Skora & Blundy, 2010), which requires relatively high degrees of melting of sediments within the slab. One scenario for producing these trace element signatures is that a subducted slab beneath the Greater Caucasus has been extensively heated by upwelling asthenosphere producing extensive melting of sediments within the slab.

Isotopes

Trace element data strongly suggest an enriched source for the lavas, similar to those found in modern arc settings and therefore the isotopic composition should provide further insight into the origins of this source. The
isotopic composition of intra-oceanic arc lavas is thought to be controlled by the composition of the mantle wedge, which is assumed to have a DMM composition, a slab component with contributions from the subducted oceanic plate, which are thought to be dominated by dehydration fluids from various depths with the oceanic crust and a melt/fluid component from the subducted sediment. For a given arc system, there is usually enough geochemical data to have reasonable constraints on the composition of these components. By contrast, the geodynamics of the Greater Caucasus make it harder to estimate these input parameters. The mantle wedge could be relatively young Eurasian mantle lithosphere or lithosphere associated with the Trans-Caucasian back-arc basin. Subducted slabs of oceanic crust from the Palaeo-Tethys and Trans-Caucasian back-arc basin potentially sit underneath Mt. Kazbek, and both plates could carry Tethyan margin sediments. Finally, any potential asthenospheric component (i.e. upwelling due to lithospheric delamination) most likely has affinities with Indian MORB mantle.

Previous studies on post-collision volcanics in the Lesser Caucasus from Iran (Allen et al., 2013) and Armenia (Sugden et al., 2019) have modelled the Sr and Nd isotope composition of these lavas by mixing DMM (from Workman & Hart, 2005) with two potential subducted sedimentary compositions: the global average subducted sediment from Plank & Langmuir (1998) and a sandstone sample from a Tethyan flysch sequence (Prelevi´c et al., 2008) that is potentially representative of subducted sediment on the Tethyan plate. We have produced similar mixing calculations, which are illustrated in Fig 15a. Previous studies (e.g. Sugden et al., 2019) find the bulk mixing models plot close to the lava compositions but always lie at Sr isotope composition that is too radiogenic for a given 143Nd/144Nd. This issue is compounded for the Mt. Kazbek region samples because these data generally plot further to the left in the mantle array at lower 87Sr/86Sr ratios than samples from the Lesser Caucasus. Moreover, the modelling in the previous papers used the least radiogenic composition of the Tethyan sediments from Prelevi´c et al. (2008), whereas using an average value pushes the curve further from the data (Fig. 15a). A more realistic approach than bulk mixing of the sediment would be to add a sediment melt from the putative slab to the mantle wedge. Using appropriate bulk distribution coefficients from Skora & Blundy (2010), the effect is simply to increase the Sr/Nd ratio of the melt relative to the bulk sediment, but the mixing curves still miss the data. Finally, the choice of DMM as the mantle end-member may be incorrect, and a more enriched source such as E-DMM (Workman & Hart, 2005) places the mixing curves slightly closer to the data.

Simple binary mixes between a mantle and slab component do not fit the data and are inconsistent with modern views on Sr and Nd isotopic systematics in arc systems (e.g. Elliott, 2003). In any mantle source that has been modified by subduction-zone input, the Sr can be sourced from the mantle wedge, subducted sediment, altered oceanic crust (AOC) and fluid from the deeper portions of the subducted slab. Therefore, we can assess whether the source of the Kazbek lavas is consistent such a subduction-zone origin. A useful way to forward model the mixing of these components is via simple mass balance equations and a Monte Carlo model, in which the proportion of Sr from the four components can be varied. The advantage of this type of modelling is that it does not require the Sr and Nd concentrations of the components. We follow the methodology of Klaver et al. (2020) using an appropriate range of compositions for the components

![Fig. 12. Plots of (a) [Dy/Yb]_N and (b) Th/Yb versus SiO2 for the Mt. Kazbek region lavas. Melt 1 and Melt 2 represent the proposed [Dy/Yb]_N of two distinct primary melts. Crystal fractionation vectors in (a) calculated using partitioning data from Sisson (1994), Wood & Blundy (1997), Blundy et al. (1998) and Wood & Blundy (2003) and mineral chemistry data from Bewick (2016). Vectors represent 30% crystallisation, except for oxide (10%) and plagioclase (50%), but will vary slightly depending on composition of initial melt. Abbreviations are olivine (ol), orthopyroxene (opx), clinopyroxene (cpx), high-pressure clinopyroxene (HP-cpx), plagioclase (plag), oxide (ox), amphibole crystallising from a basaltic (hbB), amphibole crystallising from a basaltic andesite (hbBA) and amphibole crystallising from an andesite (hbA).](https://academic.oup.com/petrology/article/63/5/egac037/6569182)
illustrates a range of melting models (see Table 3). We ran $\sim 10^6$ models and a successful run reproduces the Sr and Nd isotope and Sr/Nd ratios of the Kazbek lavas (excluding samples from the Qabarjina formation, which are the most evolved and thus, potentially, their Sr isotope compositions have been slightly modified by crustal contamination). Results from the modelling indicate the following proportions from each of the components; mantle wedge (0.154), subducted sediment (0.109), AOC (0.133) and fluid (0.604). The results indicate that the Sr budget is controlled by fluids from deeper within the subducted slab, which have less-radiogenic Sr isotope ratios. These results are consistent with other arc systems, including those that have 'sediment dominated' trace element signatures (Klaver et al., 2020). Implicit in these results is that the trace element signature of the Mt. Kazbek region lavas requires significant input from a subducted slab, with deep-sourced fluids fluxing the slab, although the timing of this enrichment is not constrained by the modelling.

The least radiogenic Pb isotopic data for the Mt. Kazbek region lavas lie between recent volcanic rocks from the Lesser Caucasus (Neill et al., 2013, 2015) and lavas from the middle Jurassic to Cenozoic Kapan arc in southern Armenia (Mederer et al., 2013). Neill et al. (2013, 2015) ascribe the trend in the Lesser Caucasus data to lower 206Pb/204Pb as being related to AFC processes whereby pre-existing arc crust from the Kapan arc is assimilated during magma transport. Such a process is unlikely to explain the composition of the Mt. Kazbek region lavas given its position much further north within the collision zone. However, plots of 207Pb/204Pb and particularly 208Pb/204Pb versus 206Pb/204Pb indicate that regressions through the Mt. Kazbek and Lesser Caucasus data meet at a common Pb isotopic composition with a 206Pb/204Pb of 18.6, 207Pb/204Pb 15.60–15.61 and 208Pb/204Pb of 38.6 (Fig. 15b). The most likely explanation of this is a common lithospheric source for both suites of lavas. This common source can be explained by either a long-standing mantle source similar to the Kapan arc beneath the modern day Caucasus that has evolved to more radiogenic Pb isotope composition, or a subduction-zone modified lithospheric source that may be present across the Caucasus, although the proportion and timing of inputs may vary across the region. Moreover, Sr, Nd and particularly Pb isotopic data for Mt. Kazbeg are inconsistent with simple mixing between the common Caucasus mantle composition of Lebedev et al. (2014) and local continental crust.

Partial melting model

Trace element and isotopic systematics indicate that the lavas from the Mt. Kazbeg region were derived from melting a source with a LREE-enriched composition. This is most likely a lithospheric source that had been modified by melts and/or fluids from material subducted before and through the collisional event. Potential candidates for the lithospheric source include both fertile and depleted mantle that is variably enriched with easily fusible pyroxenitic veins and/or mantle that contain hydrous phases such as amphibole or phlogopite. It is difficult to compare mantle-melting models across the Greater Caucasus, as the silicic melts from the western part of the range are masked by significant amounts of crustal input. By contrast, modelling of Lesser Caucasus lavas has concluded that in SW Armenia some melting occurred at depths that required garnet to be a residual phase (Sugden et al., 2019), whereas in Central and NW Armenia melting is shallower and restricted to the spinel-peridotite facies, although a depleted source (an amphibole-bearing harzburgite) has been invoked to be the source of some of the lavas from Yerevan (Central Armenia) (Neill et al., 2015).

REEs are particularly useful for understanding melting of the mantle, because they are dependent on melt fraction, source composition and source mineralogy, particularly the ratio of MREE to HREE (e.g. Dy/Yb), which is sensitive to garnet and amphibole in the mantle source. Figure 16 illustrates a range of melting models plotted on the [Dy/Yb]N versus [La/Yb]N diagram. We have constructed melting curves for garnet- and spinel-peridotite melting and for a decompression melting path, where melting is initiated in the garnet peridotite facies and continues into the spinel-peridotite facies, with the
melts being pooled. Additionally, we have modelled the effects of melting an amphibole-peridotite and of garnet-and spinel-bearing pyroxenites (see figure caption for details of melting models). Trace element ratios such as La/Sm suggest the source is LREE-enriched (see Fig. 14a) and so we model the source of the lavas consistent with the La/Sm ratio (corrected from fractional crystallisation) to yield a source with a [La/Yb]N ratio of 2 and a [Dy/Yb]N of 1.

None of the melts in this study is primary but the Mg# of the least evolved samples is \(\sim 65 \), suggesting that they have undergone fractionation of mafic phases, most likely olivine and Cr-spinel that will not have significantly modified the REE ratios of interest. The least evolved Gudauri Formation and Kazbek Group IV lavas plot on or near to the spinel-peridotite melting curve. Their exact positioning of these lavas relative to the curve depends on how LREE-enriched the source is and on the melt fraction, but require small (<3%) degrees of partial melting to produce the shape of the REE pattern. The source region could accommodate a small amount of amphibole (~2%), but larger proportions would produce melts with too low [Dy/Yb]N. In detail,

Table 3: Parameters used for Sr–Nd isotopic modelling

<table>
<thead>
<tr>
<th>Component</th>
<th>Prop. of Sr</th>
<th>(^{87}\text{Sr}/^{86}\text{Sr})</th>
<th>(^{143}\text{Nd}/^{144}\text{Nd})</th>
<th>Sr/Nd</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMM</td>
<td>0–0.3</td>
<td>0.7023–0.7028</td>
<td>0.5130–0.5132</td>
<td>13–15</td>
</tr>
<tr>
<td>Sediment</td>
<td>0–0.3</td>
<td>0.711203–0.71883</td>
<td>0.51211–0.512165</td>
<td>3.3–33.4</td>
</tr>
<tr>
<td>AOC</td>
<td>0–0.3</td>
<td>0.7039–0.7051</td>
<td>0.51312–0.51315</td>
<td>8.3–40</td>
</tr>
<tr>
<td>Fluid</td>
<td>0–1</td>
<td>0.7024–0.7040</td>
<td>0.51314</td>
<td>90–500</td>
</tr>
</tbody>
</table>

*Each column represents the range of each parameter that is allowed to vary randomly in each mixing simulation (see Klaver et al. (2020) for details). The proportion of Sr relates to the proportion of Sr contributed by each of the four components to the mixture. Compositions of these components are from the following sources; DMM (Workman & Hart, 2005), Tethyan sediment data (Prelevič et al., 2008) and AOC and Fluid (Klaver et al., 2020).
while the trace element ratios are consistent with melting in the spinel field, the modelled MREE–HREE abundances are too high compared with the lavas. This could be resolved by (1) melting of a slightly more depleted source or (2) slight compatibility of HREE in the aluminous clinopyroxene during the initial stages of melting in the spinel field (Robinson et al., 1998). Immobile trace element contents such as Ti suggest that the source is not depleted and we prefer that the HREE contents are simply controlled by the mantle mineralogy and partitioning.

The least evolved of the Group II and III lavas from Mt. Kazbek have distinctly elevated [Dy/Yb]N ratios that require some melting in the garnet peridotite facies. Modelling of these lavas is consistent with melting starting in the garnet peridotite and continuing into the spinel facies or potentially lying in the garnet-spinel transition zone. It is not possible to distinguish between these processes, or to preclude the possibility that a small amount of amphibole is present in the mantle, but in any case the required melt fraction is 3–4%. We suggest small differences in the depth of melting are related to small differences in the thickness of the lithosphere.
Trigger for mantle melting

The region of recent magmatism in the Greater Caucasus is coincident with the area of rapid young cooling, determined from recent thermochronometric studies (Vincent et al., 2020), and enhanced exhumation during the Pliocene–Quaternary (Morton et al., 2003; Avdeev & Niemi, 2011). Modelling of the thermochronometric data is consistent with buoyancy effects associated with mantle upwelling, with a wavelength of several 100 km. However, differences in lithospheric structure/composition may modulate the wavelength of exhumation, consistent with observations across the Greater Caucasus (Vincent et al., 2020). The influence of mantle upwelling beneath regions of thickened lithosphere and its likely effects on magmatism have been considered by several studies (e.g. Pearce et al., 1990). Factors that need explanation in the Greater Caucasus are (1) that magmatism is concentrated in regions of thickened crust, (2) that magmatism occurs ~30 Ma after the initial collision and (3) the potential for a remnant subducted slab beneath the mountain belt associated with either the Pontides or the Trans-Caucasian back-arc basin.

Viscosity contrasts caused by small amounts of H₂O in the asthenosphere (a few hundred μg/g H₂O) can result in small-scale convection, which can produce small delamination events (or drips) at the base of the lithosphere every few million years (Kaisianniemi et al., 2014). Such events will allow asthenosphere to rise and produce small volumes of asthenospheric decompression melts or more importantly provide a heat source to the overlying lithosphere. The lithosphere will preferentially melt over the asthenosphere due to the higher water content, and its more fusible amphibole-rich mineralogy. In the Greater Caucasus, late Cenozoic lithospheric shortening and thickening (Morton et al., 2003; Avdeev & Niemi, 2011) would have enabled drips to form, and, in combination with mantle upwelling, could produce volcanism over the thickest region of crust recognised in the Greater Caucasus.

Other proposed mechanisms for generating magmatism in the Arabia–Eurasia collision are slab break-off of the subducted oceanic plate beneath the collision zone (e.g. Omrani et al., 2008) and wholesale delamination of the lower lithosphere (e.g. Pearce et al., 1990). The slab break-off model has the general problem that unless break-off occurs at a very shallow depth, the thermal perturbation to the adjacent mantle takes place at too great a depth to cause melting that reaches the surface (Freeburn et al., 2017). There is also a regional problem in that magmatism in the Arabia–Eurasia collision zone occurs as scattered centres across a vast area, initiated many millions of years after the initial continental collision, and without a discernible pattern in the location or composition of volcanic centres (Kaisianniemi et al., 2014). This is different behaviour to that of recent magmatism in the Tibetan Plateau where spatial–temporal trends have been picked out from the age data (e.g. Law & Allen, 2020). Wholesale loss of the lower lithosphere faces a similar issue: why should a single, major, reconfiguration of the Eurasian plate produce such scattered magmatism across the width and breadth of the collision zone?

Figure 17 draws together recent seismic data, geodynamic constraints and observations on the geochemistry to produce a snapshot of what triggers melting in the Greater Caucasus. The geochemistry of the Mt. Kazbek region lavas is consistent with melting of mantle that has been extensively modified by subduction zone fluids and melts. Isotopic data suggest an underlying common lithospheric source to volcanism from across the Lesser and Greater Caucasus, but the lavas in the Mt. Kazbek region are produced from a source that is enriched, suggesting either a greater slab input or one that is different in composition compared to the Lesser Caucasus. Recent geophysical studies (e.g. Zabelina et al., 2016) are hard to reconcile with a wholesale slab lying directly beneath Mt. Kazbek, but it is reasonably to propose that Transcaucasus oceanic basement material, including Tethyan sediments, is located within the collision zone and would provide a source for additional trace element enrichment. Additionally, we can identify two distinct geochemical lineages, with melting occurring at depths just below and just above the garnet-spinel peridotite transition, indicating some local lithospheric control on melting depth. Small-scale convection related to mantle upwelling provides a plausible mechanism for the Greater Caucasus magmatism during the late Cenozoic, while local lithospheric and crustal heterogeneity may explain the difference in composition between lavas erupted in the Mt. Kazbek region and Mt. Elbrus (~170 km to the NW).
CONCLUSIONS

We have analysed Quaternary volcanic rocks from the Mt. Kazbek region, Georgia, in the central part of the Greater Caucasus. Samples are classified by age and location into three main groups: around Mt. Kazbek itself, and the nearby Gudauri and Qabarjina formations. The Mt. Kazbek volcanics are further divided into four stages (I–IV), corresponding with previous studies, field observations and age determinations (Lebedev et al., 2014). The lavas are calc-alkaline in nature with compositions in the range of basaltic andesite to dacite (57–67 wt % SiO₂) and trace element patterns with a supra-subduction signature, with large negative Nb anomalies and enrichment in LILE, particularly Th. Although the lavas were erupted through thick continental crust, there is little evidence for extensive modification by crustal contamination. The lavas can be placed into two distinct groups, based on their mineralogy, trace element and Pb isotopic compositions. Furthermore, REE signatures for the two groups represent melting just above and below the garnet-spinel peridotite transition, suggesting some local lithospheric control on melting. In common with Quaternary post-collisional volcanic rocks across the Caucasus, a subduction-zone
related, fluid-enriched source remained intact after initial Arabia–Eurasia continental collision, although the trace element signature is more enriched in the Mt. Kazbek region (Fig 17) with a characteristic sediment melting signature, which requires recent recycling of sediment into the source region beneath Mt. Kazbek during collision.

The Greater Caucasus volcanism is only a small domain of a much wider collection of late Cenozoic magmatic centres that has developed across the Arabia–Eurasia collision zone (Pearce et al., 1990; Chiu et al., 2013). Several mechanisms have previously been proposed for generating this magmatism: break-off of the Neo-Tethyan oceanic slab, wholesale delamination of the lower lithosphere, and small-scale convection around the lithosphere-asthenosphere boundary (Pearce et al., 1990; Keskin, 2003; Omran et al., 2008; Kaislanemi et al., 2014). Both slab break-off and wholesale delamination models are inconsistent with the scattered, apparently random nature of the distribution of magmatic centres across the collision zone. The geochemistry of the Mt. Kazbek area lavas is consistent with small-scale convection associated with mantle upwelling as the mechanism for generating the magmatism around Mt. Kazbek and elsewhere in the Greater Caucasus and would explain the chemical variation between volcanic centres.

DATA AVAILABILITY
The data underlying this article are available in the article and in its online supplementary data.

SUPPLEMENTARY DATA
Supplementary data are available at Journal of Petrology online.

FUNDING
This work was supported by a PhD studentship funded by the Natural Environment Research Council held by SB (reference NE/K501074/1).

ACKNOWLEDGEMENTS
We thank the three anonymous reviewers for their constructive comments on the manuscript and Georg Zellmer and Tod Waight for their swift handling of the editorial process.

References
Chugaev, A. V., Chernyshev, I. V., Lebedev, V. A. & Eremina, A. V. (2013). Lead isotope composition and origin of the Quaternary lavas of
Elbrus Volcano, the Greater Caucasus: high-precision MC-ICP-MS data. Petrology 21, 16–27.

and dynamic melting beneath the Kenya rift. Chemical Geology 234, 148–168.

