The Open UniversitySkip to content
 

Relation Discovery from Web Data for Competency Management

Zhu, J.L.; Goncalves, A; Uren, V.; Motta, E.; Pacheco, R; Eisenstadt, M. and Song, D. (2007). Relation Discovery from Web Data for Competency Management. Web Intelligence and Agent Systems, 5(4) pp. 405–417.

Full text available as:
[img]
Preview
PDF (Not Set) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (312Kb)
URL: http://iospress.metapress.com/app/home/contributio...
Google Scholar: Look up in Google Scholar

Abstract

This paper describes a technique for automatically discovering associations between people and expertise from an analysis of very large data sources (including web pages, blogs and emails), using a family of algorithms that perform accurate named-entity recognition, assign different weights to terms according to an analysis of document structure, and access distances between terms in a document. My contribution is to add a social networking approach called BuddyFinder which relies on associations within a large enterprise-wide "buddy list" to help delimit the search space and also to provide a form of 'social triangulation' whereby the system can discover documents from your colleagues that contain pertinent information about you. This work has been influential in the information retrieval community generally, as it is the basis of a landmark system that achieved overall first place in every category in the Enterprise Search Track of TREC2006.

Item Type: Journal Article
ISSN: 1570-1263
Academic Unit/Department: Knowledge Media Institute
Mathematics, Computing and Technology > Computing & Communications
Interdisciplinary Research Centre: Centre for Research in Computing (CRC)
Item ID: 8165
Depositing User: Users 7283 not found.
Date Deposited: 22 Jun 2007
Last Modified: 25 Jun 2012 06:43
URI: http://oro.open.ac.uk/id/eprint/8165
Share this page:

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk