Aeonium is a small, popular genus of Crassulaceae comprising 39 currently recognised species together with many more hybrids (both natural and artificial), variegates and cristates. The name Aeonium is derived from the Greek ‘aionion’ meaning ‘everlasting plant’, in recognition of the succulent nature and assumed longevity of the plants. The genus has an interesting natural distribution. Most species are endemic to the Atlantic Islands where the majority occur on just a single island. Travelling eastwards, there is a single species with a very localised distribution along the Atlantic coast of Morocco. The final two species occur in tropical east to northeast Africa and Yemen. The focus here is on the island species since I have yet to visit the three mainland African species in habitat. In terms of species totals therefore, I am surveying the 33 species that occur naturally in the Canary Islands (Bañares Baudet, 2015), together with two from Madeira and the lone species from the Cape Verde Islands.

Across this wide geographical range the genus exhibits a moderate degree of diversity, ranging from small stemless rosettes that resemble houseleeks (sempervivums) to large, well-branched shrubs (Fig. 1). Flower colour is mainly yellow, but others are white, cream, pink or red. The interesting disjunct distribution of the species has led to several studies into the evolution of this genus. The Atlantic Islands are species rich with diversity being greatest on the mountainous western islands. In contrast there are only three species in mainland Africa: one in Morocco, with a large disjunction between this and the two species in tropical northeast Africa and Yemen. In terms of evolution of the genus, the concept of adaptive radiation is applicable here, whereby evolution has been greatest on islands compared to the neighbouring continental land mass of Africa. The theory to explain this is that progenitor plants – most likely in the form of seed, which is dust-like – arrived by wind on the newly formed volcanic Atlantic islands and the resulting plants evolved rapidly to occupy the newly emerging habitats. Meanwhile, the large gap in the distribution across north Africa is probably due to the expansion of the inhospitable Sahara Desert leaving only remnants of a previously much more widespread genus in coastal Morocco and tropical northeast Africa and Yemen (Liu, 1989).

In addition to this interesting natural distribution, aeoniums have become naturalized in several parts of the world, a topic to which Schulz (2007) devotes a whole chapter of his book. Of particular note are records of established populations in several New Zealand coastal areas around Wellington and Christchurch. Other recorded locations are in coastal Australia, California (including around Alcatraz Prison near San Francisco), Chile, Gibraltar and Sicily. In terms of cultivation these plants are generally easy to grow, easy to propagate and relatively trouble free. One exception here is Aeonium appendiculatum which in my limited experience I’ve found very difficult to grow for no obvious reasons. Aeoniums though are magnets for mealy bugs, particularly because most have rosettes of densely packed leaves where these bugs can easily hide and evade observation and subsequent treatment. Diligence and standard treatments are all I can advise, since I cannot offer a foolproof quick fix to rid a collection of these persistent pests.

The growing regime is interesting but straightforward if a few basic rules are followed. All the species from the Atlantic Islands grow naturally in the wetter winters in the northern hemisphere and flower when mature the following spring. In cultivation they can be readily persuaded to grow all year around and my protocol here in the UK, which obviously needs to be adjusted to New Zealand conditions, is set out here. In the winter I give my plants some heat; this can be little more than maintenance of frost-free temperatures. However, some of my plants have the luxury of life in the conservatory, where temperatures rarely drop below 12˚C and they do benefit from these slightly higher winter temperatures. Since the plants are naturally in active growth at this time I water them regularly and generously. In the spring once the danger of frost is past I move the plants outdoors, generally following a report. They’re then either rained upon (which occurs often in Scotland!) or they are watered weekly during dry periods. Propagation is easy, either from stem or leaf cuttings or by seed raising. All aeoniums are monocarpic, so once a rosette has flowered it dies. Many branch, some profusely, so that after some rosettes have flowered there are more to continue the life of the plant. If a plant has flowered profusely leaving just one or two rosettes it is best to restart the plant from cuttings otherwise untidy and even top-heavy specimens can result. A few of the smaller-growing species are very amenable to growing as a bonsai, as discussed and illustrated later.

Aeoniums have been well treated in terms of literature. The key modern books are those by Bañares Baudet (2015), Liu (1989), Lodé (2010) and Schulz (2007). Several books on the Canary Island flora, notably Bramwell & Bramwell (2001), cover aeoniums in some detail, as do more general books on the Crassulaceae. I briefly introduced the genus in my survey of the succulents of the Canary Islands and Morocco following my presentation at the New Plymouth convention (Walker, 2000). In the following two decades Marjorie and I made seven trips visiting five islands new to us. So here all the Atlantic Island aeoniums will be surveyed in more detail, island by island, starting with the Canary Islands, followed by Madeira and the Cape Verde Islands.

Gran Canaria

I begin with this island because this was the first one I visited on my honeymoon with Marjorie in the summer of 1983. It is a roughly circular island with the highest point being Cruz de Tejeda at around 1,600 m (Bramwell & Bramwell, 2001). Seven aeoniums occur on this island of which four are endemic.
Aeonium simsii (Fig. 2) is the smallest growing of all the aeoniums forming large clumps of small stemless rosettes. As a montane species growing mainly above 1,200 m, it is one of the least succulent species which most closely resembles a Sempervivum (houseleek) and perhaps is closest to the type of ancestral stock from which the genus evolved. In the summer resting state the leaves dry up substantially to form clumps of tightly inrolled leaves, often growing amongst cracks in the rock, making it very difficult to find. When growing it forms a more open rosette with bright green leaves mottled or striped in deep red with well ciliated leaf margins. The yellow flowers are typical of the majority of species.

Aeonium canariense is another Sempervivum-like – but larger-growing – plant that has a wide distribution across the five western Canary Islands, hence its name. Four subspecies occur on the islands of Tenerife (var. canariense), La Palma and El Hierro (var. christii), Gomera (subsp. latifolium), whilst subsp. virgineum is endemic to Gran Canaria. Aeonium percarneum is a larger growing, moderately branched shrub up to 1.5 m tall with smooth or fissured bark. Its spoon-shaped (spathulate) leaves have short hairs on their margins, are arranged in terminal rosettes up to 20 cm across. The leaves are bright green when fully growing but with a pinkish hue, hence the name *percarneus* meaning ‘flesh-coloured’, but turn even dark pink in the summer resting period (Fig. 4). Flowers are whitish with pink streaks. On Gran Canaria it has a wide distribution from 100–1,300 m.

Fig. 3 Aeonium canariense var. virgineum in the Barranco de Virgin, N. Gran Canaria.

Aeonium canariense is the smallest growing of all the aeoniums forming large clumps of small stemless rosettes. As a montane species growing mainly above 1,200 m, it is one of the least succulent species which most closely resembles a Sempervivum (houseleek) and perhaps is closest to the type of ancestral stock from which the genus evolved. In the summer resting state the leaves dry up substantially to form clumps of tightly inrolled leaves, often growing amongst cracks in the rock, making it very difficult to find. When growing it forms a more open rosette with bright green leaves mottled or striped in deep red with well ciliated leaf margins. The yellow flowers are typical of the majority of species.

Aeonium percarneum has a wide distribution across all five western islands: La Palma, El Hierro, La Gomera, Tenerife and Gran Canaria. This species, along with three others, was formerly separated in the genus *Greenovia*, based on the principal feature of having a larger number of flower parts (up to 32 or more petals, etc). However, molecular studies showed that the four *greenovias* are not really distinct and so were merged into *Aeonium*. This species grows on banks in soft soils (Figs. 6 & 7) or on vertical cliffs. In the summer the stemless rosettes contract to form tight cups or even hollow balls surrounded by the dried leaf remains. In contrast when growing in the winter the rosettes open out to form rosettes of relatively thin succulent glaucous grey-green hairless leaves somewhat resembling a Mexican species of *Echeveria* (Fig. 8). Single unbranched rosettes die after producing the well-branched heads of yellow flowers, hence the name *aureum*. On Gran Canaria *A. aureum* occurs in the moist or forest zone in the centre of the island. Similar former species of *Greenovia* are *A. aizoon* (Tenerife), *A. diplocyclus* (El Hierro, La Palma and La Gomera) and *A. dodrantale* (Tenerife).
The other Gran Canarian species not discussed here are A. arboreum and A. spathulatum.

Tenerife

This is the largest of the Canary Islands, most developed and hence very popular with tourists. Tenerife is roughly triangular in shape about 80 km long and 60 km wide at its widest point. The island is dominated by the central volcanic peak of El Teide (3,707 m), the highest point in the Canary Islands (Bramwell & Bramwell, 2001), which Marjorie and I visited by coach and cable car. The views from the top were stunning, but aeonium-free I regret to report! The focus of our two visits to this island was rest and relaxation rather than plant hunting. Consequently I have yet to see most of the 17 endemic aeoniums (Bañares Baudet, 2015) in their natural environment, so here just four of the most distinctive of these species are discussed.

Aeonium haworthii only occurs in Anaga, a small area in northwestern Tenerife, where it grows commonly on dry cliffs and rocks from sea level to 1,000 m altitude (Liu, 1989). It is a small shrublet growing up to 60 cm tall forming a moderately branched tortuously-branched stems that produce many adventitious roots. The fleshy leaves are shiny or glaucous grey-green with ciliate margins forming rosettes up to 40 cm in diameter, growing amongst loose rocks and boulders beneath the high vertical cliffs of the valley below the hamlet of Masca. It is highly localised and probably the rarest of the Canary Island aeoniums (Bramwell, 1982). Since then it has had a somewhat chequered history. Its limited distribution suggested a hybrid origin with *A. haworthii* and *A. sedifolium* as the putative parents (Liu, 1989). Schulz (2007) adopted this approach and hence did not recognise this species. However, it was resurrected as a distinct species by Bañares Baudet (2015). It is a delicate, dwarf-growing shrublet with stems only up to 25 cm tall with twiggy stems. The leaves are spathulate, shiny, streaked with red, velvety and edged with fine hairs (Fig. 10). The flowers are white to pale pink, in contrast to the yellow flowers of *A. haworthii*. In my limited experience it is a relatively slow growing, moderately branching plant. Whatever the final outcome of the deliberations over this most controversial species are, its unique features make it attractive compared to other larger and faster growing aeoniums.

Fig. 10 *Aeonium mascaense* in a 10 cm pot.

The Barranco de Masca is a remote region in western Tenerife characterised by sheer cliffs and striking ravines resulting in stunning scenery and panoramic vistas. *Aeonium mascaense* (Fig. 10) was described from here in 1982 as a new species closely related to *A. haworthii*. It occurs at 400 m, growing amongst loose rocks and boulders beneath the high vertical cliffs of the valley below the hamlet of Masca. It is highly localised and probably the rarest of the Canary Island aeoniums (Bramwell, 1982). Since then it has had a somewhat chequered history. Its limited distribution suggested a hybrid origin with *A. haworthii* and *A. sedifolium* as the putative parents (Liu, 1989). Schulz (2007) adopted this approach and hence did not recognise this species. However, it was resurrected as a distinct species by Bañares Baudet (2015). It is a delicate, dwarf-growing shrublet with stems only up to 25 cm tall with twiggy stems. The leaves are spathulate, shiny, streaked with red, velvety and edged with fine hairs (Fig. 10). The flowers are white to pale pink, in contrast to the yellow flowers of *A. haworthii*. In my limited experience it is a relatively slow growing, moderately branching plant. Whatever the final outcome of the deliberations over this most controversial species are, its unique features make it attractive compared to other larger and faster growing aeoniums.

Fig. 11 *Aeonium smithii* in cultivation.

Aeonium smithii is another small-growing Tenerife endemic (Fig. 11). It grows up to 60 cm tall forming a moderately branched shrublet. The unique feature clearly shown in Fig. 11 is the hairy covering to the stems, exhibited by no other *Aeonium*. The hairs, technically known as multicellular trichomes, are up to 8 mm long, making them particularly obvious even to the naked eye. The undulate leaves are also hairy bearing a mixture of very small unicellular trichomes c. 0.3 mm long, and larger multicellular trichomes up to 0.5 mm long, which require a microscope to examine and appreciate in all their glory. This is not a unique species in having two different types of hairs and as yet, the function of these is unknown. The inflorescence is only about 15 cm tall bearing yellow flowers. This species occurs on rocks and cliffs most commonly in the forest zone at 150–2,150 m. It was named for Christen Smith (1785–1816), professor of botany at the University of Christiana (Oslo, Norway) (Liu, 1989).

Fig. 12 *Aeonium tabuliforme* featuring the overlapping leaves and prominent marginal hairs.

The fourth Tenerife species is the equally unique *A. tabuliforme* (Fig. 12). The name means literally ‘table-like’, for the flattened rosette up to 40 cm in diameter, produced at the end of a short rarely visible stem up to 25 cm tall. It produces a single monocarpic rosette, so once it reaches maturity and flowers it promptly dies. However, I’ve been successful in propagating this species from leaf cuttings: the leaves need to be carefully removed so that the base of the leaf with its dormant lateral bud is removed...
from the stem intact. If complete leaves can be secured then rooting is generally highly efficient in my experience. Another way to propagate this desirable species is from the cristate clone which is commonly available in cultivation: this readily produces normal shoots which can be removed and rooted. Fig. 12 also illustrates clearly another attractive feature of this species: the long hairs (trichomes) on the leaf edges up to 2 mm long and again clearly visible to the naked eye. The inflorescence is up to 30 cm long bearing typical yellow flowers. Aeonium tabuliforme is common in crevices of rocks, soil banks and cliffs in fairly moist habitats up to 850 m in the northern sector of Tenerife (Liu, 1989).

La Gomera
This island closely resembles a smaller version of Gran Canaria being roughly circular in outline and indeed it is amongst the smallest of the inhabited islands. It rises to about 1,450 m in the centre from which a large number of barrancos (valleys) radiate. These are flanked by steep-sided cliffs and open narrowly to the sea. The south is hot and dry whilst the north is cooler and wetter (Bramwell & Bramwell, 2001).

La Gomera is home to 10 aeoniums of which seven are endemic, but here just one is considered: the unique A. castello-paivae. It is common on rocks, soil banks and cliffs at 200–900 m. It was named in honour of Barao [Baron] do Castello de Paiva, a Portuguese officer who promoted scientific activities in the Canaries in the 19th century (Liu, 1989). It forms an attractive dwarf subshrub up to 1 m tall. The plant forms a small, modestly branched subshrub up to 1 m tall. The pale brown to grey surface of the stems is rough, bearing smooth reticulate lines and prominent leaf scars. The leaves are obovate (inverted egg-shaped) up to 12 cm long, green to yellowish-green with a pink tinge and the margins are moderately hairy with prominent unicellular trichomes about 1 mm long.

The inflorescence is dome-shaped up to 30 cm tall bearing flowers that are whitish with median pink-variegation (Fig. 14). I have only flowered this species once when the largish plant produced four inflorescences resulting in the plant toppling over out of its pot due to being too heavy. I then discovered that for a large plant it was very shallowly rooted, hence the instability! I subsequently removed the two non-flowering rosettes and treated these as cuttings.

La Palma
This island is roughly pear-shaped, very rugged and mountainous with a large central crater. La Gran Caldera de Tabouriente, the outer rim of which forms the highest point on the island, Roque de los Muchachos [boys’ rock] at 2,483 m. A caldera is a crater formed from the collapse of a volcano and this island is still volcanically active with an eruption occurred only as recently as 1971 (Bramwell & Bramwell, 2001).

Fig. 14 Aeonium valverdense.

Fig. 13 Aeonium castello-paivae grown as a bonsai.

Fig. 15 Aeonium nobile in cultivation.

The growth form of this species makes it an ideal candidate for treatment as a bonsai subject (Fig. 13). It grows readily from cuttings and it takes little effort to produce an attractive bonsai in quite a short time. As is typical of bonsai trees, the inflorescence grows out of proportion to the bonsai plant. In my experience only one or two rosettes flower simultaneously, so it is easy to maintain the specimen by pruning away the dead branches after flowering, leaving barely noticeable scars.

Aeonium castello-paivae appears to be closely related to A. haworthii and A. mascaense, both of which are equally suitable as bonsai subjects (see Walker, 2021, for a bonsai specimen of A. haworthii ‘Dream Color’).
Fig. 17 Aeonium davidbramwellii top view.

Aeonium davidbramwellii was first described by Liu (1989) to commemorate the English botanist David Bramwell, who spent most of his career studying the Canary Island flora as Director of the Jardin Canaria, Gran Canaria. He, together with his wife Zoe, published two landmark books on the subject, such that the second of these remains the ‘go to’ guidebook on plants for visitors to these wonderful islands (Bramwell & Bramwell, 2001). His eponymous species is common on rocks, soil banks and cliffs up to 1,000 m (Liu, 1989).

This plant forms subshrubs up to 1 m tall (Fig. 16). Although the stem can be either unbranched or branched, all my specimens have remained unbranched in the 15 years I’ve been growing this species. I therefore suspect that branching is strongly genetically determined and I have material sampled from a population of non-branching individuals. The stem surface is reticulately smooth and marked by prominent leaf scars. The leaves which form a tightly flat-topped rosette (Fig. 17), are obovate to spatulate, up to 12 cm or more long, 4 cm wide and relatively thick and succulent. They are dark green to yellow-green with a reddish margin and often red or brown tinged, especially if plants are kept dry in the winter when the whole rosette can turn an attractive pale chocolate-brown. Leaf margins are hairy with unicellular trichomes only 0.5 mm long. The inflorescence is dome-shaped and up to 35 cm tall bearing white flowers with green variegation (Fig. 18).

My friend Tina Wardhaugh first raised seedlings of this species for me from seed distributed by the BCSS in 2005. The first batch of seedlings took around 7 years to reach flowering size and since the plants were all solitary and monocarpic they all died after flowering. However, I collected seed from which I raised a second batch of seedlings (Fig. 19) which are now reaching maturity with the first two specimens flowering in February–April 2021 (Fig. 18). The rest of this second batch of seedlings will most likely flower in 2022.
Bañares Baudet (2017) records 49 interspecific hybrids amongst the Canary Island aeoniums, all of which have received names, of which just one is considered here from La Palma: *A. x nogalesii* (*A. sedifolium* x *A. canariense var. christii*). It forms short branching stems with smallish rosettes of green, moderately hairy and sticky leaves (Fig. 21).

Fig. 21 *Aeonium* *x* **nogalesii**.

Lanzarote & Fuerteventura

These are the two most easterly of the Canary Islands and the closest to the African coast with the shortest distance between Fuerteventura and Morocco being a mere 90 km. Lanzarote is less mountainous than the western islands reaching only about 700 m in the north which is dominated by the mountain range of the Famara (Fig. 22). Virtually all of the endemic plants of Lanzarote are concentrated in the Famara centred around the town of Haria. South of the Famara, the centre and south the island is composed of a low area with volcanic peaks and craters. The northern part of Fuerteventura consists of hill plains. The remote and rugged Jandía Peninsula, occupying the southwest corner, is the highest part of this island, now a national park with restricted access via a single dirt track road leading to a lighthouse. No aeoniums occur here but it is home to the localised endemic *Euphorbia handiensis* (Bramwell & Bramwell, 2001). Just two aeoniums occur on these two eastern islands: *A. balsamiferum* grows on both islands whereas *A. lancerottense* is endemic to Lanzarote.

Despite the distribution map provided by Bañares Baudet (2017) showing several locations on both islands, *A. balsamiferum* appears to be a rare plant which I’ve found only twice on Lanzarote and failed to locate on Fuerteventura. *Aeonium balsamiferum* is also said by Liu (1989) to be “common on cliffs in north and central parts of Lanzarote, Canary Islands, usually associated with *Aeonium lancerottense*; cultivated and naturalized in Fuerteventura”.

Aeonium balsamiferum is named for the intense odour of balsam emitted by the plants – a unique characteristic of this plant. It forms a subshrub up to 1.5 m tall, branches moderately often just at the stem tips and forms dense heads of terminal rosettes up to 18 cm in diameter (Fig. 23). The leaves are spatulate, up to 7 cm long, greyish-grey with occasional brown stripes. They are velvety, slightly sticky to the touch and edged with small hairs up to 1 mm long. The inflorescence is up to 25 cm tall bearing yellow flowers, although none of my specimens has yet to oblige despite being in cultivation for 9 years.

Fig. 22 View from the Famara, N. Lanzarote.

Aeonium lancerottense is only distantly related to *A. balsamiferum* but is actually most closely related to *A. haworthii* according to Liu (1989). It is endemic to the Famara of Lanzarote (Fig. 24) where it is locally very common on rocks, rocky slopes and crevices, usually along streams or near water sources at 200–600 m (Liu, 1989). It is a well branched subshrub up to 60 cm tall with leaf rosettes up to 18 cm diameter. The leaves are obovate to spatulate, up to 9 cm long, green to yellowish-green with pink tinges, especially if kept dry during the winter. The dome-shaped inflorescence is up to 30 cm tall and 8–25 cm diameter, bearing pinkish flowers (Fig. 25).

Madeira

Madeira is an autonomous Portuguese island in the Atlantic Ocean about 800 km off the north coast of Africa. This is an archipelago of three islands which originated more than 20 million years ago as a result of volcanic activity. The main inhabited island of Madeira is about 57 km long and 22 km wide and is very rugged and mountainous. Nearly 50% of the land lies above 700 m with the highest point being Pico Ruivo de Santana
at 1,862 m. There is very little flat coastal land and there are virtually no natural beaches but there are stunning vertical cliffs up to 600 m tall! This is the home to two endemic aeoniums.

Fig. 26 Aeonium glandulosum in habitat on Madeira.

Fig. 27 Aeonium glandulosum in cultivation, about 12 cm diameter.

Aeonium glandulosum is a coastal cliff-dwelling (cremnophytic) species which forms large populations along the steep north-facing cliffs of a narrow belt running along the north of the island. It is especially abundant along the northern coast road. It favours the wetter and shadier north of the island. Its single stemless rosettes are flattish up to 25 cm across (Figs. 26 & 27) although most are often only half this size. Plants in the shade remain green whereas those fully exposed to the sun can turn bright red to deep burgundy. It grows naturally in the winter with peak flowering in May into June. This species has two different types of trichomes on the leaves. The larger trichomes on the leaf edge are each about 0.6 mm long. On the leaf surface away from the margin there are smaller trichomes only 0.2 mm long that glisten. These are glandular (hence the name of the species) and have been reported to secrete mucilage and so make the leaf surface slightly sticky. The inflorescence is up to 25 cm tall bearing yellow flowers (Fig. 28). The plants are unbranched and monocarpic, hence die after flowering, so this species is not often grown because of the need to raise it from seed on a regular basis.

Fig. 28 Aeonium glandulosum in flower.

Fig. 29 Aeonium glutinosum in habitat on Madeira with the author for scale. Photo: Marjorie Thorburn.

Fig. 30 Close up of the rosettes of *A. glutinosum* in cultivation on Madeira.

Fig. 31 A section of stem (1) and inflorescence (2) of *Aeonium glutinosum* (from Launay & Loiseleur-Deslongchamps, 1820, as Sempervivum glutinosum). inflorescences about 1 m long bearing golden yellow flowers (Fig. 31).

Fig. 26 Aeonium glandulosum in habitat on Madeira.

Fig. 27 Aeonium glutinosum in cultivation, about 12 cm diameter.

Fig. 28 Aeonium glandulosum in flower.

Fig. 29 Aeonium glutinosum in habitat on Madeira with the author for scale. Photo: Marjorie Thorburn.

Fig. 30 Close up of the rosettes of *A. glutinosum* in cultivation on Madeira.

Fig. 31 A section of stem (1) and inflorescence (2) of *Aeonium glutinosum* (from Launay & Loiseleur-Deslongchamps, 1820, as Sempervivum glutinosum).

Both *A. glandulosum* and *A. glutinosum* are very common on the cliffs of coastal Madeira and where their ranges overlap (termed sympathy) hybridisation occurs, albeit infrequently. I observed overlapping

Fig. 26 Aeonium glandulosum in habitat on Madeira.

Fig. 27 Aeonium glandulosum in cultivation, about 12 cm diameter.

Fig. 28 Aeonium glandulosum in flower.

Fig. 29 Aeonium glutinosum in habitat on Madeira with the author for scale. Photo: Marjorie Thorburn.

Fig. 30 Close up of the rosettes of *A. glutinosum* in cultivation on Madeira.

Fig. 31 A section of stem (1) and inflorescence (2) of *Aeonium glutinosum* (from Launay & Loiseleur-Deslongchamps, 1820, as Sempervivum glutinosum).

inflorescences about 1 m long bearing golden yellow flowers (Fig. 31).

Both *A. glandulosum* and *A. glutinosum* are very common on the cliffs of coastal Madeira and where their ranges overlap (termed sympathy) hybridisation occurs, albeit infrequently. I observed overlapping

Fig. 26 Aeonium glandulosum in habitat on Madeira.

Fig. 27 Aeonium glandulosum in cultivation, about 12 cm diameter.

Fig. 28 Aeonium glandulosum in flower.

Fig. 29 Aeonium glutinosum in habitat on Madeira with the author for scale. Photo: Marjorie Thorburn.

Fig. 30 Close up of the rosettes of *A. glutinosum* in cultivation on Madeira.

Fig. 31 A section of stem (1) and inflorescence (2) of *Aeonium glutinosum* (from Launay & Loiseleur-Deslongchamps, 1820, as Sempervivum glutinosum).

inflorescences about 1 m long bearing golden yellow flowers (Fig. 31).

Both *A. glandulosum* and *A. glutinosum* are very common on the cliffs of coastal Madeira and where their ranges overlap (termed sympathy) hybridisation occurs, albeit infrequently. I observed overlapping

Fig. 26 Aeonium glandulosum in habitat on Madeira.

Fig. 27 Aeonium glandulosum in cultivation, about 12 cm diameter.

Fig. 28 Aeonium glandulosum in flower.

Fig. 29 Aeonium glutinosum in habitat on Madeira with the author for scale. Photo: Marjorie Thorburn.

Fig. 30 Close up of the rosettes of *A. glutinosum* in cultivation on Madeira.

Fig. 31 A section of stem (1) and inflorescence (2) of *Aeonium glutinosum* (from Launay & Loiseleur-Deslongchamps, 1820, as Sempervivum glutinosum).

inflorescences about 1 m long bearing golden yellow flowers (Fig. 31).

Both *A. glandulosum* and *A. glutinosum* are very common on the cliffs of coastal Madeira and where their ranges overlap (termed sympathy) hybridisation occurs, albeit infrequently. I observed overlapping

Fig. 26 Aeonium glandulosum in habitat on Madeira.

Fig. 27 Aeonium glandulosum in cultivation, about 12 cm diameter.

Fig. 28 Aeonium glandulosum in flower.

Fig. 29 Aeonium glutinosum in habitat on Madeira with the author for scale. Photo: Marjorie Thorburn.

Fig. 30 Close up of the rosettes of *A. glutinosum* in cultivation on Madeira.

Fig. 31 A section of stem (1) and inflorescence (2) of *Aeonium glutinosum* (from Launay & Loiseleur-Deslongchamps, 1820, as Sempervivum glutinosum).

inflorescences about 1 m long bearing golden yellow flowers (Fig. 31).

Both *A. glandulosum* and *A. glutinosum* are very common on the cliffs of coastal Madeira and where their ranges overlap (termed sympathy) hybridisation occurs, albeit infrequently. I observed overlapping

Fig. 26 Aeonium glandulosum in habitat on Madeira.

Fig. 27 Aeonium glandulosum in cultivation, about 12 cm diameter.

Fig. 28 Aeonium glandulosum in flower.

Fig. 29 Aeonium glutinosum in habitat on Madeira with the author for scale. Photo: Marjorie Thorburn.

Fig. 30 Close up of the rosettes of *A. glutinosum* in cultivation on Madeira.

Fig. 31 A section of stem (1) and inflorescence (2) of *Aeonium glutinosum* (from Launay & Loiseleur-Deslongchamps, 1820, as Sempervivum glutinosum).

inflorescences about 1 m long bearing golden yellow flowers (Fig. 31).

Both *A. glandulosum* and *A. glutinosum* are very common on the cliffs of coastal Madeira and where their ranges overlap (termed sympathy) hybridisation occurs, albeit infrequently. I observed overlapping

Fig. 26 Aeonium glandulosum in habitat on Madeira.

Fig. 27 Aeonium glandulosum in cultivation, about 12 cm diameter.

Fig. 28 Aeonium glandulosum in flower.

Fig. 29 Aeonium glutinosum in habitat on Madeira with the author for scale. Photo: Marjorie Thorburn.

Fig. 30 Close up of the rosettes of *A. glutinosum* in cultivation on Madeira.

Fig. 31 A section of stem (1) and inflorescence (2) of *Aeonium glutinosum* (from Launay & Loiseleur-Deslongchamps, 1820, as Sempervivum glutinosum).

inflorescences about 1 m long bearing golden yellow flowers (Fig. 31).

Both *A. glandulosum* and *A. glutinosum* are very common on the cliffs of coastal Madeira and where their ranges overlap (termed sympathy) hybridisation occurs, albeit infrequently. I observed overlapping

Fig. 26 Aeonium glandulosum in habitat on Madeira.

Fig. 27 Aeonium glandulosum in cultivation, about 12 cm diameter.

Fig. 28 Aeonium glandulosum in flower.

Fig. 29 Aeonium glutinosum in habitat on Madeira with the author for scale. Photo: Marjorie Thorburn.

Fig. 30 Close up of the rosettes of *A. glutinosum* in cultivation on Madeira.

Fig. 31 A section of stem (1) and inflorescence (2) of *Aeonium glutinosum* (from Launay & Loiseleur-Deslongchamps, 1820, as Sempervivum glutinosum).

inflorescences about 1 m long bearing golden yellow flowers (Fig. 31).

Both *A. glandulosum* and *A. glutinosum* are very common on the cliffs of coastal Madeira and where their ranges overlap (termed sympathy) hybridisation occurs, albeit infrequently. I observed overlapping
distributions at two sites (Fig. 32) but did not myself see any hybrids. However, this means that together with the 49 named natural hybrids recorded by Bañares Baudet (2015) for the Canaries, there is a remarkable total of at least 50 naturally occurring Aeonium hybrids on record for the Atlantic Islands.

Cape Verde Islands
This archipelago is about 1,200 km south of the Canary Islands and lies fully within the tropics. Here Aeonium gorgoneum is the single endemic species that occurs on the three northernmost mountainous islands, but is absent from the other low-lying islands. It is a very distinctive species with no obvious really close relatives. However, of the species discussed here, it is apparently closest to A. glutinosum – which it resembles in habit – and A. nobile according to Liu (1989). It is distinguished by its extremely glaucous leaves and reddish leaf margins. It was named for the Gorgades, an old name for these islands. Marjorie and I have yet to visit these islands, so a report on this species, virtually unknown in cultivation, awaits a future sojourn south. However, for those wishing to know more about this species, it is discussed and illustrated by Schulz (2007).

Acknowledgements
My wife Marjorie is thanked for taking the photo of me on Madeira and for commenting on an earlier draft of this article.

References