Examining interaction within STEM Web Broadcasts

Conference or Workshop Item

How to cite:

For guidance on citations see FAQs.

© 2018 Venetia Brown; 2018 Trevor Collins; 2018 Nick Braithwaite

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Version of Record

Link(s) to article on publisher’s website:
https://www.open.ac.uk/about/teaching-and-learning/esteem/events/the-7th-estatem-annual-conference-stem-futures-delivering-excellence-through-scholarship-2018-

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Examining Interactions in STEM Web Broadcasts
Venetia Brown, Trevor Collins, Nick Braithwaite

Aim

To investigate the impact of embedded interactive tools (widgets) in live web-broadcasts on learning.

Context

Inquiry and experiential learning are key pedagogical methods in STEM curricula. As part of the OU’s supported opening learning approach, lab-based broadcasts provide online and distance students an opportunity to observe and engage in practical science demonstrations through synchronous (real-time) methods.

Interaction is crucial to maximise student learning. Empirical data (Martin, Parker & Deale, 2012; Kim, Kim & Han, 2013) suggest that synchronous media:

- Add value to learning through real time discussions
- Provide instantaneous feedback
- Enhance student connectedness, interest and engagement

There remains a gap in the type of pedagogical strategies that promote interactivity in synchronous environments.

Lab-based Broadcasts vs. Online Tutorials

<table>
<thead>
<tr>
<th></th>
<th>Stadium Live Lab-Based Broadcasts</th>
<th>Adobe Connect Online Tutorials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Students</td>
<td>~ 10 - > 100</td>
<td>~ 5 - 25</td>
</tr>
<tr>
<td>Focus</td>
<td>lab-bench experiment field</td>
<td>whiteboard shared screen</td>
</tr>
<tr>
<td>Interactive Techniques</td>
<td>pre-prepared Q&A widgets, chat box</td>
<td>on-screen activities, polling, raise hand, applaud, chat box, microphone</td>
</tr>
<tr>
<td>Instructional Strategy</td>
<td>situated presentation</td>
<td>dialogue</td>
</tr>
<tr>
<td>Motivational Factors</td>
<td>curiosity excitement</td>
<td>support isolation learning</td>
</tr>
<tr>
<td>Technology</td>
<td>multiple HDI cameras, video mixing desk</td>
<td>restricted camera on device</td>
</tr>
<tr>
<td>Logistics</td>
<td>production team, presenter and assistant</td>
<td>tutor and assistant</td>
</tr>
</tbody>
</table>

Approach

Observations

- Teaching practice
- Video content analysis

Surveys

- Stakeholders attitudes & perceptions

Tests

- Instructional strategies
- Pre test/post test

Draft Research Questions

The study will address the following areas:

i) Ways collaboration happens between students and presenters.

ii) Adaptations to encourage equality of knowledge development.

iii) Perceptions of stakeholders (i.e. students, lecturers and production teams) on live web-broadcasts.

Figure 1. Schemata of live-stream web-broadcast

```
Interactive widget data visualisation

Live streamed

STADIUM web-broadcast

Q & A widgets and chat

Presenter

Students learning

Figure 1. Schemata of live-stream web-broadcast
```
