The Open UniversitySkip to content

Thermomechanical fatigue of Sn–37 wt.% Pb model solder joints

Liu, X.W. and Plumbridge, W.J. (2003). Thermomechanical fatigue of Sn–37 wt.% Pb model solder joints. Materials Science and Engineering A, 362(1-2) pp. 309–321.

DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


The fatigue of Sn–37 wt.% Pb model solder joints has been investigated under thermomechanical and thermal cycling. Based upon an analysis of displacements during thermomechancial cycling, a model solder joint has been designed to simulate actual joints in electronic packages. The strain–stress relationship, characterised by hysteresis loops, was determined during cycling from 30 to 125 °C, and the stress-range monitored throughout. The number of cycles to failure, as defined by the fall in stress range, was correlated to strain range and strain energy. The strain hardening exponent, k, varied with the definition of failure and, when a stress-range drop of 50% was used, it was 0.46. Cracks were produced during pure thermal cycling without external strains applied. These arose due to the local strains caused by thermal expansion mismatches between the solder and Cu6Sn5 intermetallic layer, between the phases of solder, and due to the anisotropy of the materials. The fatigue life under thermomechanical cycling was significantly inferior to that obtained in isothermal mechanical cycling. A factor contributing to this inferiority is the internal damage produced during temperature cycling.

Item Type: Journal Item
ISSN: 0921-5093
Extra Information: Some of the symbols may not have transferred correctly into this bibliographic record and/or abstract.
Keywords: Sn–Pb solder; Model joint; Thermomechanical fatigue; Thermal cycling
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 7667
Depositing User: Martin Rist
Date Deposited: 15 May 2007
Last Modified: 04 Oct 2016 10:00
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU