Towards a 21st Century Personalised Learning Skills Taxonomy

Conference or Workshop Item

How to cite:

For guidance on citations see FAQs.

© 2021 IEEE

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/EDUCON46332.2021.9453883

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page.
Towards a 21st Century Personalised Learning Skills Taxonomy

Rupert Ward
School of Computing & Engineering
University of Huddersfield
Huddersfield, UK
rupert.ward@hud.ac.uk

Tom Crick
School of Education
Swansea University
Swansea, UK
thomas.crick@swansea.ac.uk

Alan Hayes
Department of Computer Science
University of Bath
Bath, UK
a.hayes@bath.ac.uk

Oliver Phillips
School of Computing & Engineering
University of Huddersfield,
Huddersfield, UK
oliver.phillips@hud.ac.uk

James H. Davenport
Department of Computer Science
University of Bath
Bath, UK
j.h.davenport@bath.ac.uk

Alastair Irons
Faculty of Technology
University of Sunderland
Sunderland, UK
alastair.irons@sunderland.ac.uk

David Bowers
School of Computing & Commun.
Open University
Milton Keynes, UK
david.bowers@open.ac.uk

Paul Hanna
Faculty of Computing, Engineering and the Built Environment
Ulster University
Newtownabbey, UK
jrp.hanna@ulster.ac.uk

Tom Prickett
Dept. Computing & Info. Sciences
Northumbria University
Newcastle upon Tyne, UK
tom.prickett@northumbria.ac.uk

Abstract— There exists a significant gap between the requirements specified within higher education qualifications and the requirements sought by employers. The former, commonly expressed in terms of learning outcomes, provide a measure of capability, of what skills have been learnt (an input measure); the latter, commonly expressed in terms of role descriptions, provide a measure of competency, of what a learner has become skilful in (an output measure). Accreditation traditionally provides a way of translating and embedding industry-relevant content into education programmes but current approaches make fully translating and describing a skill, of what skill have been learnt, and demonstrating a skill, (an input measure) and competency (output) measurement for capability, of what skill have been learnt, and demonstrating a skill, (an input measure) and competency (output). The concept of C21 Skills Hours as a new input measurement for learning within qualifications is introduced, and an illustrative example is presented to show the C21 skills taxonomy in action. The paper concludes with a discussion of how such a taxonomy can also be used to support a microcredentialing framework that aligns to existing competency frameworks, enabling formal, non-formal and informal learning to all be recognized. A C21 Skills taxonomy can therefore be used to bridge the gap between capability (input) and competency (output), providing a common language both for learning and demonstrating a skill. This approach has profound implications for addressing current and future skills gaps as well as for supporting a transition to more personalised learning within schools, colleges and universities and more lifelong learning both during and outside of employment.

Keywords— Personalised Learning, Skills Taxonomy, Micro-credential, Framework, Accreditation.

I. INTRODUCTION

The first attempt to harmonise the component parts that engineering graduates should gain within higher education (HE) internationally was agreed in 1989 by the signatories of the Washington Accord [1]. The Washington Accord, along with the Sydney [2] and Dublin [3] Accords for shorter programme lengths, provided twelve differentiating characteristics for graduate attributes alongside thirteen differentiating characteristics for professional competency, mapping these to learning outcomes for professional engineers, engineering technologists and engineering technicians respectively. The success of this common agreement on competencies spawned a similar approach within the computing professional bodies through the Seoul Accord [4] and demonstrated how a broader comparability of qualifications across HE can work using learning outcomes. These memoranda supported the internationalisation of curricula and the global promotion of consistency and parity across engineering education. The organisations that are responsible for defining and executing such accreditation processes vary by jurisdiction. In the United States of America (USA), for example, the Accreditation Board for Engineering and Technology (ABET) [5] is a non-profit organisation that accredits college and university programmes in applied and natural sciences, computing, engineering and engineering technology both within the USA and elsewhere. In the United Kingdom (UK), accreditation to the Washington Accord is coordinated by the Engineering Council [6], but delegated to individual professional bodies.

Irrespective of whether accreditation is completed by a central organisation or individual professional body, the process of accreditation involves confirming whether the exit standards of the programme, as outlined in the programme specification and its underlying module specifications, are appropriate for the level of accreditation sought. This is done in two ways:

i) Programme quality is evaluated by reviewing standards for entry, progression, retention, awards and graduate employability alongside external examiners reports, the most recent internal and external review information, evidence of employer involvement and linkages to research. Together these evidence that a programme is of an appropriate quality to support accreditation.

ii) Programme relevance is evaluated by mapping learning outcomes to the appropriate international memoranda, with exit standards reviewed within the frame of reference of the accrediting body. In the UK, for example, the Institute of Physics would not accredit a computing degree; but both BCS, the Chartered Institute for IT and the Institute
of Physics can accredit courses within their disciplines that align with Chartered Engineer accreditation criteria.

II. CURRENT SITUATION

Within the UK engineering domain, 35 Professional Engineering Institutions (PEIs) are licensed by the Engineering Council for Chartered Engineer accreditation. Originally this approach developed from a lack of industry acceptance of an overly-academic set of Standards and Routes to Registration (SARTOR) [7], but it has subsequently led to the development of a new approach to accreditation through the Accreditation of Higher Education Programmes handbook (AHEP) [8], which has been used by the UK Quality Assurance Agency (QAA) since 2006. AHEP’s fourth edition was launched in August 2020, with full implementation, across PEIs, expected by the beginning of 2022. AHEP 4 supports the UK Standard for Professional Engineering Competence (UK-SPEC) [9], which defines Chartered Engineer and other professional standards for registration within engineering professional bodies. AHEP 4 also aligns with the European Network for Accreditation of Engineering Education through the EUR-ACE Framework Standards and Guidance [10].

AHEP 4 focuses on an agreed set of learning outcomes to underpin engineering competence. The number of learning outcomes have been significantly reduced in the latest edition to 18 areas of learning, grouped into 5 themes, namely “Science and Mathematics”, “Design and Innovation”, “The Engineer and Society”, “Engineering Analysis and Engineering Practice”. There has also been a distinct shift away from demonstrating competence purely in engineering domains to more general transferability in response to employer needs [11].

In terms of qualifications, in the late 1990s the Sorbonne declaration [12] and the Bologna declaration [13] demonstrated a desire within European countries for the establishment of a method of comparison of learning between different countries and qualifications. These declarations led to the establishment of the Bologna Process through which European countries have agreed common qualification structures and transferability between qualifications with the aim of improving mobility, employability and development amongst their citizens. The Bologna declaration, in particular, highlighted a need for easily readable and comparable qualification transcripts between countries and the need to establish a European Credit Transfer System (ECTS), for use both within and outside of HE.

Building on this work, in 2008 the European Qualifications Framework (EQF) [14] was launched providing an eight-level structure that defined qualifications in terms of learning outcomes with knowledge, skills and responsibility, and autonomy descriptors. The EQF provides a mechanism for comparing and translating qualifications between the national qualification frameworks of European countries. It has also since been piloted with Australian, New Zealand and Hong Kong Qualifications Frameworks. UNESCO are also taking steps to agree global qualifications comparability through its Global Convention on the Recognition of Qualifications concerning Higher Education.

Alongside work on agreeing common standards for accreditation and qualifications there has also been significant work in attempting to define the underpinning role competencies and how these relate to specific occupations. In terms of digital skills, for example, the Skills Framework for the Information Age (SFIA) [15] was launched in 2000 (based on work dating back to the 1980s), and it describes 102 professional skill areas for the computing sector. A range of generic skills, depending on level of responsibility, are also specified. A more universal approach to competencies is provided by the European Skills, Competences and Occupations (ESCO) classification, which describes 13,485 skills and 2,942 occupations [16]. ESCO is meant to be a reference language for education and employment, including aligning with non-formal and informal learning through open badges and digital credentialing, providing a link between qualifications, skills, microcredentialing frameworks and employment. At the European level, the European Skills Agenda [17] highlights twelve actions including developing a new Europass Platform, increasing STEM graduates and fostering entrepreneurial and transversal skills. The Europass framework [18] should support transparency and understanding of formal, non-formal and informal qualifications and skills as identified, for example, through ESCO. The associated Digital Education Action Plan [19] then specifically seeks to incorporate micro-credentials within all educational levels by aligning micro-credentials with the existing Bologna Process tools. In summary then, at a European level there is a strong strategic focus on better aligning what is learnt with what can be used i.e. learning outcomes with skills, capabilities and competencies and through this better aligning formal, non-formal and informal qualifications with occupations.

In terms of the skills themselves, there has long been discussion and debate over the need for, and definition of, 21st Century (C21) skills. These debates tend to focus on sub-categories representing the knowledge, skills and dispositions required to work in the modern world. ATC21S [20], for example, consider ten C21 skills within four main categories (ways of thinking, working and living, plus the tools to work) however many other authors present similar but different combinations of categories [21]. One reason why this discussion persists and is so important is that there is an increasing interest in and emphasise on both lifelong learning and adaptability within the global workforce. Amazon, for example, is set to spend over $700M to retrain its workforce in response to technological developments [22], and Google is recognising microcredentials as part of its recruitment process [23]. Both examples point to a broader trend to better define credentials and microcredentials, and industry demand for a more cohesive and coherent way to recognise credentials in their broadest sense within employment and careers.

A few key further points need to be emphasised from the above discussion. Firstly, there is clearly a strong need for a common classification system to represent learning, both within Engineering and in other subjects, in order to enable seamless transferability. Secondly, that discussions have focussed on competences, qualifications, skills and learning outcomes. Thirdly, that work is still ongoing in terms of fully aligning skills classifications with competences and qualifications, and that the transferability between formal, non-formal and informal qualifications and skills is yet to be fully specified.

III. STRUCTURAL CHALLENGES

At this critical point in reviewing and hopefully addressing these issues, this paper seeks to highlight two key structural issues with the current direction of travel and to propose a
solution to these issues. At the heart of the discussion that follows are fundamental difficulties with both the input measures used to define learning (learning outcomes) and the output measures sought by occupations (competencies). In particular the role of learning outcomes as the common connection between these systems is called into question. It is argued that the specification of learning outcomes within qualifications is, like the current classifications of skills through frameworks such as SFIA and ESCO, too detailed to be practical in providing a common understanding between HE and employers. The rationalisation of AHEP 4 learning outcomes to a much more manageable number of around twenty clearly demonstrates this. Using learning outcomes to translate between qualifications and skills is unnecessarily complex as different terms, phrases and content can express the same learning requirements and this complexity means it becomes very difficult to match qualifications to competencies. There are very many learning outcomes to match to very many competencies. As a common learning language, therefore, learning outcomes are not the right solution for communicating competencies to employers, or indeed for communicating with learners who then need to be able to communicate their learning to employers. Whilst learning outcomes communicate what is learnt, they do not communicate how well it is learnt. Both learner and employer would therefore be better suited with a more coherent, clearer and simpler approach. In terms of output, qualifications identify graduate attributes as a list of expected capabilities but do not focus on the competencies sought by employers. Furthermore, graduate attributes tend to be individualised to institutions, making them difficult to use as a basis for transferability and common understanding. What exists therefore is a Capability-Competency Chasm, a gap between the capabilities learnt within a qualification, as stated in terms of learning outcomes, and the competencies required of job roles, as listed in job specifications. This study proposes a solution to bridge this chasm, as shown in Figure 1. The solution is to develop a more manageable classification system linking learning outcomes and qualifications to skills, competencies and occupations, through using a C21 skills taxonomy linking capabilities to competencies.

Figure 1: The Capability-Competency Chasm

The common learning language underpinning this new C21 skills taxonomy system is a revised input measure known as C21 skills hours i.e. the number of hours spent learning 21st Century skills. C21 skills hours are calculated by dividing the learning hours of a course into the hours spent acquiring specific 21st Century skills using the number of learning outcomes and the module assessment weightings. Skills hours can be used with any learning (formal, non-formal, informal) that specifies learning hours and learning outcomes. As it can be used to abstract learning outcomes within any discipline it provides a universal learning language enabling seamless transference and comparability between qualifications, credentials and microcredentials.

The skills hours approach also has the added benefit of enabling learning building blocks to be more clearly communicated as output measures to align with competencies and occupations, through frameworks such as ESCO and SFIA. A much simpler skills framework approach can be developed and used, based on this 21st Century skills taxonomy categorisation, enabling better alignment between qualifications and occupations. By focusing on acquisition of learning blocks, rather than learning outcomes, a competency-based rather than capability-based approach can be developed to better summarise graduate attributes.

This study focuses on answering two key questions that underpin a skills hours approach. Firstly, what is the minimum number of C21 skills descriptors that can comprehensively account for all learning outcomes from a variety of HE programmes? Secondly, how are the skills gained from these learning outcomes distributed across a programme? To answer the first of these questions a process of codification and templating was used across a range of disciplines to ensure coverage and to test proof of concept. To answer the second question, a finalised template was applied to a specific programme. Whilst the programme chosen could have represented humanities, health or education, for example, a computing course was chosen as it is also accredited for engineering, and hence subject to the international accords discussed above. This enabled testing across two disciplines that already share some commonality. Indicative learning hours for each skills descriptor were calculated by separately associating each learning outcome with subject specific and transferable skills acquisition. In so doing this approach demonstrates how the subject specific and transferable competencies sought by AHEP 4 and others may be recognised, recorded and communicated for use by different educational stakeholders. Before addressing these issues though, it is important first to understand the role of competency within qualifications and occupations, as this directly impacts on how learning outcomes should be specified and how skills hours may reflect competence.

IV. COMPETENCY

A competency is a behavioural or performance attribute that enables us to be effective, efficient and successful when attempting tasks. The ACM IEEE Computing Curricula 2020 Project (CC2020) [20] highlights the importance of competency as the basis of both learning and effective behaviour and performance within a job role. Competency involves more than simply learning how to do something, it requires us to be able to do something well. Gaining a skill (capability) and being skilful (competency) represent different levels of learning. Professional competence, for example, is often measured through becoming Chartered. This indicates the point at which individuals are deemed “competent” within their discipline. Typically, to be Chartered requires an accredited degree (or equivalent), followed by a period demonstrating their competence in the relevant sector. Indeed, this is at the basis of the CC2020 competency model where
competency is specified in terms of the intersection of knowledge (know-what), skills (know-how) and dispositions (know-why) as observed within a work task. What is learnt is, therefore, best defined in terms of a competency outcome i.e. through its application to a professional practice task. Using learning outcomes to achieve this goal is problematic for the following reasons:

a) A lack of a common language for specification

Whilst there are frameworks to help identify the level of a learning outcome (such as Bloom’s original Taxonomy [26], and the revised version published in 2001 [27]), the same skill is often specified in different ways. How learning outcomes are expressed varies by institutions, subjects, authors and local quality assurance conventions. In the context of computing, for example, some authors of learning outcomes may use language relating to the use of specialist software whilst others may write about an ability to develop algorithms when both are wanting learners to be able to deliver high quality coding solutions. This lack of specificity in the language of both programme and module learning outcomes is due to a focus on cognition (input) rather than on competence (output). This makes it difficult for employers to understand exactly what a student can do and how well, and also for employers to distinguish between programmes. Couple that with the plethora of titles that exist within each discipline, and the terminology risks becoming so vague as to be devoid of any clearly understandable meaning. When university degree transcripts are provided, they tend only to specify modules and grades, together with an overall degree classification, grade point average or percentage and not include learning outcomes. It is no wonder therefore that employers find it so hard to ascertain what graduates can do and how one graduate is likely to perform compared to another.

b) Often written at a high level of abstraction

In the UK, learning outcomes are specified for both individual modules as well as the programme overall. Whilst those at module level may have some degree of detail, even here they are often abstract and perhaps also poorly written, such that their meaning is lost amongst learners, employers and perhaps even fellow academics. When collated to programme level, the level of abstraction increases, making it difficult for employers, or indeed anyone else, to be sure what skills a potential graduate employee is actually offering. Add to this the further level of abstraction that is necessary when defining Professional, Statutory and Regulatory Bodies’ (PSRBs) accreditation criteria, that are designed to be applied across a particular sector, and also potentially contextualised within international accords, and the terminology risks becoming so vague as to be devoid of any clearly understandable meaning. When university degree transcripts are provided, they tend only to specify modules and grades, together with an overall degree classification, grade point average or percentage and not include learning outcomes. It is no wonder therefore that employers find it so hard to ascertain what graduates can do and how one graduate is likely to perform compared to another.

c) Are typically only assessed / demonstrated once

Given the need to reduce student assessment loads, many module learning outcomes are only assessed once. As discussed below, Bowers, Petre and Howson [28] suggest that this is insufficient to demonstrate competence: a single assessment often covers more than one learning outcome and hence “passing” the assessment does not always guarantee achievement of each learning outcome. How do we then ensure graduates have developed a particular set of skills? Have repeatedly shown their capability? And have developed their competence?

A potential solution could be through the more widespread adoption of existing skills frameworks, such as the Skills Framework for the Information Age (SFIA) [15]. SFIA, “describes the skills and competencies required by professionals in roles involved in information and communication technologies, digital transformation and software engineering” and claims to have “become the globally accepted common language for the skills and competencies related to information and communication technologies, digital transformation and software engineering” [15]. SFIA underpins, for example, the professional accreditation and registration schemes operated by BCS, The Chartered Institute for IT, and by the Australian Computer Society, and is deployed widely across the public sectors of both countries. SFIA is currently translated into 10 languages, and is used in 180 countries, with some, such as Saudi Arabia, holding a nationwide licence.

Skills frameworks align with discipline areas and identify the range of skills that fit within that discipline. For example, SFIA identifies a number of categories and sub-categories with the skills required within each aspect. Typically, each skill can be demonstrated at different levels but not all skills are defined at all levels. SFIA, for example, defines seven different levels but, data visualisation is only defined at levels 4 and 5, whereas security administration is defined at level 1 through to 6.

As SFIA is structured by categories, sub-categories, skills and levels, it is also possible to use the framework to provide the required levels of abstraction (the second issue with learning outcomes). These are required when moving from specifying modules to programmes to PSRB requirements. Individual modules would develop particular skills at an appropriate level, programmes would abstract these skills to sub-categories or categories within the framework, and PSRBs would select categories or sub-categories, and the specific skills, that are necessary to meet accreditation criteria. Modules and programmes could identify the specific aspects of the framework they intend to deliver and assess, providing a common language, which employers could then use to directly compare programmes and indeed graduates within STEM disciplines, as in the accreditation standard developed by the Institute of Coding [29]. However, it would be problematic to extend a SFIA-based approach more broadly to social science disciplines, for example. SFIA’s generic attributes of autonomy, influence, complexity, knowledge and business skills are insufficiently granular to enable accurate competency representation for disciplines outside of the IT industry. ESCO could provide a solution but with more than 13,000 skills listed, directly including ESCO within programme and module specification would be unrealistic.

Bowers, Petre and Howson [28] advocate consideration of competency rather than knowledge, combining Bloom’s [26] taxonomy with Simpson’s [30] taxonomy for the psychomotor domain as it focuses on practical application of skills. Their comparison is reproduced in Table 1. The apparent gaps in the table arise due to the divergence of the taxonomies. However, it is notable that there is relatively good alignment at lower levels but much less so at higher levels. Bowers, Petre and Howson [28] suggest that their comparison indicates how assessing proficiency (which they equate to unconscious
competence) might differ from assessing capability (the minimal knowledge/cognitive level required to underpin competence), suggesting that, “proficient graduates must have completed appropriate tasks more than once (reproducible), without significant errors (reliable), and ideally with an element of innovation (creative)” [28].

Whilst Bloom’s Taxonomy can be demonstrated by learners in different ways at different levels both within and outside of formal education, traditional university education tends to do a good job of delivering Levels 1-3 in Table 1 i.e. those that underpin capability. Placements and internships are common approaches within universities of moving beyond capability to demonstrate competency. The veterinary profession, who have a clear statement [31] of competencies and proficiencies that they do (and do not) expect a recent graduate to have, provide an example of a professional education with subject-specific competencies within it. This is not trivial, however: the degree is typically five years in England (as opposed to three years for Computing), and requires substantial exposure to “real world” problems, e.g. Cambridge University’s “The Department operates small animal and equine hospitals and equine and farm animal clinical services in order to provide clinical teaching material, as well as using the state of the art 200 cow university dairy herd and sheep flock”.

What should be clear from the above discussions is that to be deemed competent, usually requires a period of practical experience applying the skills that have been developed. During that experience, individuals are likely to develop a deeper understanding of the skills they have gained, a greater ability to apply those skills and make fewer mistakes as a result of practice. This suggests that learners need to be given several opportunities to apply a skill before they can be deemed competent to apply it and that this needs to be visible to programme specifiers. Using a C21 skills framework can provide this visibility when specifying modules and programmes, and it also addresses the issues arising from over-specificity and abstract learning outcomes. A further benefit is that it enables micro-credentialing to be aligned to existing qualification frameworks by supporting a “building block” approach at the right level of granularity. By enabling C21 skills to be demonstrated across several “projects” at several levels to develop competency as learners move from capability to proficiency, from input to output, it can also clearly map to competency frameworks such as ESCO and SFIA. The Institute of Coding [51] is currently developing such an approach for computing through its Flexible Modular Framework, which should enable knowledge gained from different computing courses to be mapped into a degree meeting the IoC standard, which is based on the SFIA framework. A similar approach matching C21 skills gained at a particular competency level with ESCO and the European Qualifications Framework would work in much the same way across disciplines and across European countries.

A competency-based approach also supports better communication between employers and HE institutions, by differentiating where and how competency is developed. This makes it easier for employers to both feed into the curriculum as well as to understand the skills of, and differences between, graduates on a particular programme. This, ultimately, enables skills gaps to be addressed. CC2020, for example, has considered how to visualise and represent competency using appropriate scales, together with discussing the challenges and the benefits gained from taking such an approach. A C21 skills approach provides a mechanism for addressing these challenges and for providing these standardised scales.

A final benefit of a building block approach, as outlined many years ago in Stephenson and Weil’s discussions regarding records of achievement [32] and more recently in Ward’s discussions of badging and microcredentialing in the context of Personalised Learning [33], is that progression can be easily understood and tracked by the learner. Mastery motivation is a powerful intrinsic driver for acquiring competence. Clearly understanding the steps required to develop capability and to then become proficient enable learners, and indeed educators and employers, to reflect and respond optimising learner progress.

In summary, what is required is a common language that can be used to express learning from capability to competency, and a recognised method for assessing and certifying from capability to competency, from qualifications to job roles. Such an approach should be sufficiently granular to provide transparency but not too granular to make it difficult to use and understand. It should align with existing qualifications structures and the strategic efforts for a better synergy of learning with job roles as outlined above. What is required is a way to codify and specify qualifications by translating learning outcomes into their capabilities and competencies by considering their underpinning knowledge, skills and dispositions. A C21 skills approach enables this to happen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Recognition: Knows what the problem is.</td>
<td>Perception: Responds to cues in real world</td>
<td>Remember: Recall facts and basic concepts</td>
</tr>
<tr>
<td>2</td>
<td>Understands: Knows how to deal with the problem</td>
<td>Set: Ready to apply a known sequence of steps</td>
<td>Understand: Describe ideas of concepts</td>
</tr>
<tr>
<td>3</td>
<td>Capable: Has done it least once</td>
<td>Guided response: Imitation and practice</td>
<td>Apply: Relate information to new situations</td>
</tr>
<tr>
<td>4</td>
<td>Consciously competent: Doesn’t make mistakes</td>
<td>Mechanism: Learned responses with confidence and proficiency</td>
<td>Analyse: Draw connections among ideas</td>
</tr>
<tr>
<td>5</td>
<td>Proficient: Reproducible, reliable, creative</td>
<td>Explicit overt response: Quick accurate and coordinated performance</td>
<td>Evaluate: Justify a stand or decision</td>
</tr>
</tbody>
</table>

V. CODIFICATION

In order to demonstrate how qualifications can be codified into competency areas as knowledge, skills and dispositions, a set of cross-disciplinary English HE degree programmes were selected, representing accredited programmes from seven professional bodies. The subjects and bodies were Engineering (IET accredited), Computing (BCS accredited), Accountancy (ICAEW accredited), Marketing (CIM
A template was developed based on C21 skills areas, collated from existing studies via a systematic review, and organised into six different C21 skills themes that also reflect different levels of learning within the traditional Bloom’s taxonomy categorisation. The six C21 skills themes are A) Understanding, B) Context, C) Solutions, D) Delivery, E) Behaviour and F) Reporting. These C21 skills themes were iteratively mapped to both programme and module level learning through the programme and module specifications of the programmes. At programme level, the learning outcomes map to both professional body and QA requirements and therefore both were included in the codification process. The QA benchmarks providing an initial list of learning requirements, which were filtered through the professional body requirements before being categorised in terms of C21 skills terms and grouped within the six skills themes. An example of such mapping is shown in Table 2. From this, subject-specific skills could be identified i.e. skills areas that are developed which are specifically aligned to the subject being studied. Examples of these are shown in Table 3.

Table 2: Table Outlining C21 Skills, Examples and Reasoning Behind This

<table>
<thead>
<tr>
<th>Initiative & Self-Directed</th>
<th>Understanding of the principles of managing computing processes (Computing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leadership & Responsibility</td>
<td>Understanding of subject knowledge which would not be classed as a transferable skill (Psychology)</td>
</tr>
<tr>
<td>Flexibility & Adaptability</td>
<td>The ability to deploy appropriate theory, practices and tools for the specification, design and implementation of software (Psychology)</td>
</tr>
<tr>
<td>Social & Cross-Cultural Skills</td>
<td>Subject-related tasks which require an individual to take into account business needs specifically related to the field (Law)</td>
</tr>
</tbody>
</table>

Table 3: Table Outlining Subject-Specific Skills, Examples and Reasoning Behind This

<table>
<thead>
<tr>
<th>SUBJECT-SPECIFIC SKILLS</th>
<th>EXAMPLE</th>
<th>REASONING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Knowledge</td>
<td>Understanding of subject knowledge which would not be classed as a transferable skill (Psychology)</td>
<td></td>
</tr>
<tr>
<td>Process and Production</td>
<td>The ability to deploy appropriate theory, practices and tools for the specification, design and implementation of software (Psychology)</td>
<td></td>
</tr>
<tr>
<td>Business Requirements and Applications</td>
<td>Subject-related tasks which require an individual to take into account business needs specifically related to the field (Law)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: List of All 25 Skills, Including Short Descriptions for Each

<table>
<thead>
<tr>
<th>SKILLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1A</td>
</tr>
<tr>
<td>S2B</td>
</tr>
<tr>
<td>S1C</td>
</tr>
<tr>
<td>S4D</td>
</tr>
<tr>
<td>S5E</td>
</tr>
<tr>
<td>S6F</td>
</tr>
</tbody>
</table>

Transferable

T1A	A - Information Literacy	Integrated abilities encompassing discovery, production and evaluation of information
T2B	B - Business Alignment	Recognition of organisational purpose, aims and objectives
T3B	B - Entrepreneurship	Developing and managing business strategies
T4B	B - Numeracy	Use of numbers to solve real-life problems
T5B	B - Analysis	Gaining an understanding through simplifying a complex topic
T6C	C - Creativity	Creating new things
T7C	C - Problem Solving	Finding new solutions to complex issues
T8D	D - Technical Proficiency	Applying technical knowledge and skills to specialist roles and responsibilities
T9D	D - Self-Regulation	Managing oneself in order to achieve goals
T10D	D - Leadership	Motivating others to achieve goals
T11D	D - Management	Planning, organising, directing or controlling physical, financial, human and informational resources efficiently and effectively to achieve organisational goals
T12E	E - Professionalism	Professional status, methods, character or standards
T13E	E - Ethics	Concepts and principles determining behaviour that helps or harms others
T14E	E - Evaluation	Assessing the amount, number or value of something
T15E	E - Risk Analysis	Identifying and analysing potential negative impacts on goals
T16E	E - Sustainability	Maintaining resources in ecological balance
T17E	E - Social Learning	Understanding and applying behaviours within social contexts
T18E	E - Collaboration	Produces where two or more people work together to complete tasks or goals
T19F	F - Communication	Understanding and communicating with others

This initial iteration of both subject specific and transferable skills provided a template that could then be applied at module level in a second iteration. Here the entire set of modules from the set of programmes of study were reviewed and codified using a template consisting of the six skills themes, the six subject-specific skills shown in Table 3 and the C21 transferable skills listed in Table 2. This second iteration, as is common with template-based approaches, led to a revised list of transferable skills, consisting of nineteen descriptors that represented all learning outcomes within these programmes of study. The combined set of twenty-five skills are listed in Table 4. The first six are coded S1A to S6F to indicate they are subject-based skills and which of the six
The HE programmes studied represented 3,600 learning hours. The HE programme profile provided as an example within this paper consisted of a set of 16 modules studied across three years. Each module contained a different number of learning outcomes. These were codified using the skills listed in Table 4. Knowing the learning hours associated with each module (in this case 200 or 400 hours), together with the number of learning outcomes assessed in each assessment component and their associated assessment weightings, the 3,600 skill hours for the programme were calculated both as subject-specific skill hours and transferable skill hours.

For the six subject-based skills, this calculation was done assuming an equal weighting of learning between the learning outcomes per assessment component. For example, if a 60% assessment component in a 400-hour module covered 2 learning outcomes each of these learning outcomes would equate to 120 hours when allocated to skills. For subject-based skills, learning outcomes were mapped one-to-one to skills. For transferable skills, the mapping was more complex as learning outcomes often mapped to more than one of the nineteen skills. Given this, a further step was required where skills hours associated with a learning outcome would be split amongst the skills areas. So, for the example above, the 120 hours would be allocated equally between the transferable skills associated with the learning outcome. This approach makes the assumptions that learning hours, and therefore skills hours, represent an accurate and consistent amount of learning for all learners and that it is valid to split hours up equally into skills hours. Both assumptions are incidental to the purpose of this study. The point is not at this stage to demonstrate a perfectly accurate representation of skills hours, but rather to show how the translation occurs. It would then be the role of the programme and module specifiers (academics) to review and revise how they actually allocate skills hours. The skills hours approach used here therefore represents the starting point for both these discussions and those regarding a common skills taxonomy itself, providing an alternative input measure as skills are learnt.

Table 5, 6, 7 and 8 summarise the skills hours calculations by year of study together with the total skills hours for each skill across the degree, the equivalent European Credit Transfer System (ECTS) credits based on learning hours (1 ECTS = 25 learning hours) and the percentage of the degree represented by these skills hours. Reviewing these tables, and Figures 2 – 4, we note that Theory and Process and Production (themes A and D) represent the vast majority of subject-based skills acquisition (70%), with Self-Reflection regarding legal, social, ethical and professional issues making up much of the rest. For transferable skills, Context thematic skills (Business Alignment, Numeracy and Analysis) play a much larger role than for subject-based skills acquisition (28% vs. 7%). As a general pattern the thematic skills distribution is much more even for transferable skills than it is for subject-based skills. This is in part down to the one-to-many mapping of learning outcomes to transferable skills, but is also indicative of transferable skills being less distinctly specified within degrees compared to subject-based skills, and a traditional focus on Theory and Process and Production within many STEM degrees.
VII. IMPACT ON ACCREDITATION

Accreditation is recognised as a kitemarking exercise, supporting a globally portable workforce [32]. Accreditation audits promote internationally recognisable standards, raising output standards, disseminating good practice and ensuring curricula and industry relevance [35]. However, accreditation remains controversial in some quarters; criticisms include that accreditation is unnecessarily bureaucratic and that it constrains rather than fosters innovation [36]; that it generates revenue streams for the accrediting organisation but does not benefit the discipline or wider society [32]; and that it can be colonial and paternalistic if the accreditor is not from the same jurisdiction as the university or college being accredited [37]. Irrespective of individual viewpoints, one commonly agreed limitation of accreditation arises from using a broad set of exit standards based on expected programme learning outcomes. Whilst in many ways this is a strength, there are four consequences from this approach:

Firstly, exit standards handle minimum expectations and hence minimum graduate capabilities that can be evidenced, through programme learning outcomes, regardless of the route learners have taken through a course. Exit standards do not therefore measure specific competences developed within modules, work placements and dissertations. Secondly, accreditation is based on a whole programme of study. Individual elements, minors and majors are not easily accredited within professional body accreditation regimes. Most STEM disciplines suffer from skills shortages, and yet these potential additional skills pipeline are not recognised. Thirdly, accreditation is broad, but not broad enough. Fine-grained learning detail is not captured either within or between disciplines as they only focus on their own subjects. To illustrate this point, programmers and software development professionals remain in high demand from industry [38][39], and good quality graduates can be produced by several related disciplines, such as computer science, electrical engineering and mathematics. A core set of software development skills could be in evidence from graduates from a variety of disciplines, and yet there remains a challenge with accrediting syllabus elements, such as software development.

Figure 3: Transferable skills hours within an example degree programme by year of study (calculated using module credits, assessment weightings and learning outcomes).

Figure 4: Thematic skills hours within an example degree programme by year of study (calculated using module credits, assessment weightings and learning outcomes) presented in terms of both subject-specific and transferable skills.
competencies, across a range of subject disciplines. Fourthly, in recent years the range of educational opportunities have extended. There has been a significant growth in Massive Open Online Courses (MOOCs), with more than 900 universities supplying at least one MOOC and over 100 million students having studied one [40]. Alongside MOOCs there has also been significant growth in bite-size learning. Such courses can offer some advantages over a traditional university course such as enabling graduates to strongly evidence soft skills such as teamwork, independent learning, passion and persistence [41].

Vendor-aligned courses have also become more popular, with Coursera, for example, transitioning away from MOOCs to focus on vendor endorsement and certification linked to specific job roles. They join a growing list of companies offering such credentialing [23]. Vendor-aligned courses, and credentialing and microcredentialing more broadly, are not solutions that generally suit HE. Limiting the amount of original course content developed by an institution tends to leave learners questioning the value proposition of their studies. Current professional body accreditation processes can also make accrediting such courses very challenging, limiting their recognition and transferability, but we are starting to see changes to these processes [35, 46, 49, 50, 54].

VIII. CONCLUSIONS AND FUTURE DEVELOPMENTS

Globally, there is significant demand for a more effective and robust way of linking learning with employment in a transferable, integrated and seamless way. Traditional international accreditation and qualification framework approaches have used learning outcomes and graduate attributes to make a connection between learning and job roles, but they have failed to provide the level of clarity required by employers. Vendor certification, credentials and micro-credentials are a growing area, attempting to fill this gap, by recognising learning in more granular and job-related ways.

However, neither approach addresses the fundamental issue which is the need for a common language to translate learning to earning [23]. Skills frameworks provide incredibly granular ways of identifying job-related skills, whilst educational institutions provide learning which is specified by bespoke learning outcomes which are then mapped to standardised quality assurance and professional body specifications. Multiple approaches are being taken currently to try to address this disconnect between many learning outcomes and the competencies required of many job roles, from the analysis of curriculum using learning analytics [43], for example, through to analysing continent-wide qualifications frameworks that can accommodate micro-credentials [44].

This paper highlights two key issues with current structures and proposes a solution to this fundamental educational problem. Firstly, current systems do not provide a simple, understandable language to translate learning to job roles because they use learning outcomes. This shortcoming can be addressed through using a 21st Century (C21) skills taxonomy as an input measure, that can be applied across disciplines to translate learning outcomes to a common standard which can then be mapped to job role competencies. In so doing it enables existing educational providers to maintain their current provision and to undertake simple learning outcome-based calculations to add a C21 skills profile to their courses. It provides employers with a simple understanding of the C21 skills profiles of graduates, and it enables micro-credentialing to be accommodated within existing education by removing some of the current barriers to the recognition of lifelong and bite-sized learning. Secondly, accreditation and qualifications frameworks focus on capability rather than competency within formal qualifications. A commonly agreed C21 skills taxonomy can also then be used as an output measure, as skillfulness is demonstrated, by mapping to existing competency frameworks. This approach also enables micro-credentials to be mapped to existing national and international qualification frameworks and provides the foundations for a common system accommodating formal, non-formal and informal learning. Such a system can be used to enable greater fluidity of learning and employment as well as greater understanding of national and international competencies for labour organisations, educational providers and governments. Skills gaps can therefore be more easily identified and addressed based on this common learning language, and education can become more responsive to employment needs and, at the same time, better facilitate personalised learning. Through a more personalised approach to learning, overall learning capabilities and competencies can be improved and a more capable, motivated and better aligned workforce developed.

Finally, we acknowledge the continued impact of the COVID-19 pandemic to education systems, across all settings and contexts; in particular the challenges of “emergency remote teaching” and the opportunities presented by a shift to online and blended learning modules [47, 53]. Alongside the issues presented in this paper, there are a range of specific challenges across pedagogy and practice for computing and cognate engineering/technology disciplines [48], especially with learning, teaching and assessment [56, 57]; recognition of wider skills [54]; academic and pastoral support [52]; and supporting educational pathways into these disciplines [55].

REFERENCES
