A major change in rate of climate niche envelope evolution during hominid history

How to cite:
Mondanaro, Alessandro; Melchiona, Marina; Di Febbraro, Mirko; Castiglione, Silvia; Holden, Philip B.; Edwards, Neil R.; Carotenuto, Francesco; Maiorano, Luigi; Modafferi, Maria; Serio, Carmela; Diniz-Filho, José A.F.; Rangel, Thiago; Rook, Lorenzo; O'Higgins, Paul; Spikins, Penny; Profico, Antonia and Raia, Pasquale (2020). A major change in rate of climate niche envelope evolution during hominid history. iScience, 23(11), article no. 101693.

© 2020 The Authors

https://creativecommons.org/licenses/by-nc-nd/4.0/

Link(s) to article on publisher’s website:
A Major Change in Rate of Climate Niche Envelope Evolution during Hominid History

Alessandro Mondanaro, Marina Melchionna, Mirko Di Febbraro, ..., Penny Spikins, Antonio Profico, Pasquale Raia

pasquale.raia@unina.it

HIGHLIGHTS

Homo sapiens oversteps our ecological niche limits by means of culture

The origin of Homo niche-construction ability is unknown

We found Homo species other than H. sapiens were able to construct their own niche
A Major Change in Rate of Climate Niche Envelope Evolution during Hominid History

Alessandro Mondanaro,1,2 Marina Melchionna,1 Mirko Di Fedbraro,3 Silvia Castiglione,1 Philip B. Holden,4 Neil R. Edwards,4 Francesco Carotenuto,1 Luigi Maiorano,5 Maria Modafferi,1 Carmela Serio,6 José A.F. Diniz-Filho,7 Thiago Rangel,1 Lorenzo Rook,2 Paul O’Higgins,8 Penny Spikins,8 Antonio Profico,8 and Pasquale Raia1,9,*

SUMMARY
Homo sapiens is the only species alive able to take advantage of its cognitive abilities to inhabit almost all environments on Earth. Humans are able to culturally construct, rather than biologically inherit, their occupied climatic niche to a degree unparalleled within the animal kingdom. Precisely, when hominins acquired such an ability remains unknown, and scholars disagree on the extent to which our ancestors shared this same ability. Here, we settle this issue using fine-grained palaeoclimatic data, extensive archaeological data, and phylogenetic comparative methods. Our results indicate that whereas early hominins were forced to live under physiologically suitable climatic conditions, with the emergence of H. heidelbergensis, the Homo climatic niche expanded beyond its natural limits, despite progressive harshening in global climates. This indicates that technological innovations providing effective exploitation of cold and seasonal habitats predated the emergence of Homo sapiens.

INTRODUCTION
The genus Homo has existed for some three million years (Harmand et al., 2015; Villmoare et al., 2015). For one third of this stretch of time, human species were confined to tropical and sub-tropical Africa, which is the homeland of the genus (Carotenuto et al., 2016; Lordkipanidze et al., 2007) and is rich in the warm, savanna-like environments to which most early hominins were best adapted (Lee-Thorp et al., 2010; White et al., 2009). With the emergence of Homo erectus some 2 Ma ago, Homo began to disperse outside of Africa but remained confined to low latitudes, possibly because of physiological limits to cold tolerance (Dunbar et al., 2014) combined with the inevitable constraints of biogeographical barriers and habitat variability. However, later Homo species were able to expand their distribution to Northern Europe and Western Siberia, even as the contemporaneous establishment of full glacial cycles was making global temperatures colder than ever before during the history of the genus. Findings in Happisburgh and Pakefield (UK) date the earliest occurrence of Homo at the southern edge of the boreal zone at some 0.7–0.9 Ma (Parfitt et al., 2010). The occupation of such northern temperate and boreal zones presents a number of notable challenges. Not only was the cold itself challenging for hominins physiologically adapted to African climates but also seasonality imposes extreme annual resource fluctuations, which imply a reliance on hunted meat for survival (Pearce et al., 2014). Adaptations facilitating survival in cold environments may have included the use of fire, shelters or clothing, weapons useful to bring down large game species (Thieme, 1997), as well as extended social networks, with vulnerable infants being particularly susceptible to mortality (Spikins et al., 2019; Martin et al., 2020).

Unfortunately, clothing manufacturing leaves very little in the way of fossil remains (Hosfield, 2016). The first microwear evidence of hide scraping (for manufacturing clothes) at Hoxne (UK), Brāče-Saint-Vaast, Pech de l’Azé and Abri Peyrony (France), and Šöningen (Germany) (d’Errico and Henshilwood, 2007; Gilligan, 2010; Henshilwood et al., 2002) is just some 50 ka old at the most (Kittler et al., 2003; Gilligan, 2007). Only the two most recent human species, H. neanderthalensis and H. sapiens, left incontrovertible evidence that they were able to produce complex, cold-proof clothing at that time. To make things more complex, in the particular case of H. neanderthalensis, biological adaptation, besides material culture, was possibly involved in their ability to withstand the cold. H. neanderthalensis possessed relatively short limbs,
and a large midface and nasal cavity proposed to be specific cold adaptations, to heat and humidify inspired air, although the issue is far from resolved and there is evidence for the contrary (Rae et al., 2011; Benito et al., 2017; Wroe et al., 2018). In contrast to any other Homo, H. sapiens is considered the only species in the genus able to occupy cold regions through a genuinely cultural process, driven by our technology, including the mastering of fire, ever improving clothing craftsmanship, and construction of shelters (Boivin et al., 2016; Gilligan, 2010; Hiscock, 2013; Laland et al., 2001). The archaeological record of Homo sapiens shows our own species was able to construct its own niche, using technologies transmitted over large regions and across generations via cultural interactions. Homo sapiens could thus exploit climatic variability over time and space, rather than being physiologically limited by it (Banks et al., 2006, 2008, 2011, 2013; Dunbar et al., 2014; Spikins et al., 2019; Nicholson, 2019; Xu et al., 2020).

This view sets H. sapiens apart from any other human species in terms of cognitive skills and implicitly rejects the idea that older Homo may have had sufficiently modern material culture to overcome climatic harshness (Roberts and Stewart, 2018). With such a poor fossil record of clothes and tools to produce them and because of great uncertainty about deep past local paleoclimates and human dispersal timing and direction, the issue of when humans first became cognitively and culturally able to extend their climatic tolerance beyond their physiological limits remains very difficult to decipher.

Here, we address the more restricted issue of when during the history of Homo the limits of climatic tolerance expanded and which species were involved. We do not specifically address the cultural and social adaptations that might underlie such tolerance but rather consider the implications of our findings for the timing of such adaptations. We model the evolution of climatic tolerance (i.e. niche) limits in the Homo genus by associating paleoclimatic values with fossil occurrences in the archaeological record. Specifically, we test the hypothesis that H. sapiens developed greater climatic tolerance relative to H. heidelbergensis and H. neanderthalensis against the alternative that the exploration of climates outside natural physiological limits had already begun with the earliest of these species.

To test this hypothesis, we estimated the rate of change of climatic tolerance limits across the human phylogenetic tree and searched for possible shifts in the rate. We apply a method which allows us to compute the rate of evolution of climatic niche limits at each branch in the tree. In the present context, shifts in the rate of evolution of climatic tolerance that accrue to the clade including the Happisburgh/Pakefield hominins, H. heidelbergensis, plus H. neanderthalensis, and H. sapiens (modern Homo species, MHS, hereafter) would indicate these hominins were the first to acquire the capacity to develop cold climate-related technological skills and cultural adaptations. Conversely, if either no rate shift occurs or the rate shift coincides with different clades (e.g. early Homo species, EHS, hereafter), the colonization of Northern habitats would not be indicative of any sudden increase in the ability to face environmental harshness.

The human fossil data set we used includes 2,597 occurrences of hominid remains and artifacts associated with 727 archaeological sites. The time range of our record spans from the first occurrence of Australopiths in East Africa dated to some 4.2 Ma to the definitive advent of H. sapiens in Eurasia almost coincident with the demise of H. neanderthalensis dated at 0.040 Ma (see Data S1, Raia et al., 2020). Such a wide range of hominin taxa provides a thorough phylogenetic context for the analyses.

Deriving spatiotemporally detailed climate data for the past requires dynamic climate modeling, but the timescales for human evolution exceed the possibilities of direct model simulation by several orders of magnitude. To circumvent this limitation, we combine direct simulation using a computationally efficient, intermediate complexity Earth system model, the Planet Simulator–Grid-Enabled Integrated Earth system model (PLASIM-GENIE), with statistical modeling, to create PALEO-PGEM, a paleoclimate emulator, capable of performing multi-million year simulations forced by observationally derived proxy time series for ice sheet state, CO₂ concentration, and orbital forcing (Holden et al., 2016, 2019). To model the realized climatic niche evolution, we applied phylogenetic ridge regression (“RRphylo”, Castiglione et al., 2018). “RRphylo” allows us to compute evolutionary rates for each branch of the phylogeny and to estimate the ancestral phenotypes (Raia et al., 2018; Melchionna et al., 2020b; Baab, 2018). Here, the “phenotype” comprises climatic tolerance limits.

By using past annual maxima and minima for temperature, precipitation, and net primary productivity from PALEO-PGEM, we reconstructed and projected onto the geographical space the climatic niche limits
corresponding to the ancestral species distributions (the nodes in the tree) in our fossil database. Using “RRphylo”, we were then able to infer climatic niche tolerance limits (Quintero and Wiens, 2013) for each node in the tree and to assess whether the rate of climatic niche evolution shows any shift (i.e., acceleration or deceleration) consistent with our starting hypothesis, while accounting for the effect of shared inheritance. We accounted for phylogenetic uncertainty by perturbing the tree node ages and the tree topology randomly one hundred times. By incorporating phylogenetic uncertainty in this way, we were able to define an overall “habitat quality” (HQ) metric, representing the number of times (out of 100 repetitions) a geographic cell was found habitable (i.e., fell within climatic tolerance limits) for a given ancestor in the tree.

RESULTS

The Association between the Distribution of Fossil Species and Habitat Quality

We used the area under the curve (AUC) metric to measure the association between HQ and the location of fossil occurrences. At AUC = 1, the association would be perfect. AUC = 0 would indicate perfect inverse relation, whereas AUC ~ 0.5 indicates random association. We found that despite the enormous geographic variation in both the preservation potential and the intensity of paleontological sampling (Carotenuto et al., 2010), there is a strong association between the geographic position of archaeological remains and the inferred suitability of the environmental conditions, for both EHS (AUC = 0.80, Figure 1 left, AUC after subsampling the most abundant species = 0.71) and MHS (AUC = 0.81, Figure 1 right, AUC after subsampling the most abundant species = 0.82). This strong association remains valid for all nodes in the hominin tree (Figures S1 and S2, Tables 1 and S2) and suggests that climatic variation in time and space strongly controlled the geographic ranges of our ancestors. Excluding extreme climatic values (i.e., climatic records beyond the 90th percentile of the individual variable distributions) in order to mitigate the effect of potential errors in the paleoclimate emulator, the AUC value for EHS decreased to 0.68, whereas it increased to as much as 0.82 for MHS (Table S3, Figure S3). We repeated this test by randomly placing species fossil occurrences throughout their biogeographical domain (Table S4, Figure S4) to simulate a scenario of no association between the archaeological record and HQ. Under this simulation, the AUC values drop toward 0.5, which indicate non-significant association between the two variables (EHS AUC = 0.56; 95%, confidence interval: 0.52–0.61; MHS AUC = 0.58, confidence interval: 0.56–0.60). This finding reinforces the notion that the geographic position of archaeological sites is a non-random process guided by climatic variability.

Rates of Hominin Climatic Niche Limit Evolution

We found that the clade identified by *H. heidelbergensis*, *H. neanderthalensis*, and *H. sapiens* and their common ancestor experienced a significant evolutionary rate shift toward wider climatic tolerance (Figure 2). The rate shift does not depend on the specific phylogenetic hypothesis (tree topology) assumed,
which human cultural traits have changed the human adaptive niche and in turn selective pressures and

For some, the process of cultural niche construction (Laland et al., 2001; Laland and O’Brien, 2012) through human cultural traits has changed the human adaptive niche and in turn selective pressures and

H. heidelbergensis

temperatures experienced by

that the winter chill is unlikely to have been a problem for them (Table S5). In contrast, within the range of

et al., 2012), and enhanced healthcare practices (Spikins et al., 2019).

and to live in the highly seasonal, cold northern environments (Ulijaszek and Strickland, 1993; Ellison et al.,

suggesting specific technological and cultural adaptations were needed to fend off the risk of hypothermia

and ancestors, the average temperature of the coldest quarter of the year was no less than 9.4°C (Figure 3), whereas no
tactic and cultural adaptations to live in the highly seasonal, cold northern environments (Ulijaszek and Strickland, 1993; Ellison et al.,

DISCUSSION

The estimated values of realized climatic niche limits at nodes in the hominin phylogeny suggest that the rate shift in the climatic limits for the MHS clade was not an exclusively biological process. At the root of the hominin tree (node 11, Table S1), the predicted range in annual temperatures spans from 20°C (coldest quarter of the year) to 29.9°C (warmest quarter) and in mean rainfall from 12 mm (driest quarter) to 512 mm (wettest quarter). This is entirely consistent with today’s African savannah environment (Hijmans et al., 1998). The massive increase in the estimated range of thermal conditions suitable for the MHS clade, demonstrating that the rate shift pertains to these species only and is not guided preferentially by any of the three (Table 1).

Table 1. Percentage of Significant Rate Shifts in Niche Width Calculated through Phylogenetic Reshuffling

The table lists the percentage of significant shifts that occurred at nodes with two or three species, as well as the occurrence of each of the three Homo species in each significant shift.

<table>
<thead>
<tr>
<th>Species</th>
<th>Shift</th>
<th>Node with Two Species</th>
<th>Node with Three Species</th>
<th>H. heidelbergensis</th>
<th>H. neanderthalensis</th>
<th>H. sapiens</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. heidelbergensis</td>
<td>86</td>
<td>23</td>
<td>63</td>
<td>/</td>
<td>75</td>
<td>74</td>
</tr>
<tr>
<td>H. neanderthalensis</td>
<td>85</td>
<td>22</td>
<td>63</td>
<td>74</td>
<td>/</td>
<td>74</td>
</tr>
<tr>
<td>H. sapiens</td>
<td>86</td>
<td>23</td>
<td>63</td>
<td>75</td>
<td>74</td>
<td>/</td>
</tr>
</tbody>
</table>

For some, the process of cultural niche construction (Laland et al., 2001; Laland and O’Brien, 2012) through human cultural traits has changed the human adaptive niche and in turn selective pressures and
ecological inheritance (Odling-Smee and Laland, 2011) traces back to the very emergence of the genus *Homo* at some 2.5 million years ago (Antón and Snodgrass, 2012; Antón et al., 2014). At that time, increasing dependence on stone artifact production and social learning (Hiscock, 2014) and on collaboration (Fuentes et al., 2010; Fuentes, 2015) may have been particularly influential in allowing hominins to not only escape their biological constraints but also actively change the environmental and ecological niches of other species (Low et al., 2019). The occasional use of fire has similarly deep roots in human history (Gowlett, 2016; Organ et al., 2011; Pruetz and Herzog, 2017). Yet, the habitual use of fire (Shimelmitz et al., 2014) and the ability to work hide, wood and ivory (d’Errico and Henshilwood, 2007; Thieme, 1997) is attested at a much later date, during the Middle Stone Age (d’Errico, 2003) and attached to MHS only. Brain asymmetry and right handiness, usually linked with advanced cognitive skills (Crow, 1993; Xiang et al., 2019; Melchionna et al., 2020a), similarly characterize MHS (Frayer et al., 2012; Lozano et al., 2009; Poza-Rey et al., 2017). In contrast to MHS, EHS either did not venture outside Africa or went across Eurasia longitudinally. *Homo erectus* spread across Africa and Eurasia up to Java at some 1.7 Ma but never settled north of the Mediterranean area or southeast China (Carotenuto et al., 2016). From the appearance of *H. heidelbergensis* onward, northern, presumably colder habitats were no longer completely uninhabitable.

Figure 2. Climatic Niche Evolution in Hominins

(A) Three-dimensional plot of the climatic niche space occupied by the hominin clades through time.

(B) The hominin tree used in this study. The branch colors are proportional to the multivariate rate of climatic niche evolution for each branch in the tree. At the MHS common ancestor (14), an acceleration in the rate of evolution in climatic tolerance limits occurs (shaded area). The common ancestor to all species within *Homo* is indicated by node 12.

(C) The distribution of the rates of niche evolution for the MHS clade (orange) compared to the rest of the branches in the tree (light blue).

(D) The individual rates of niche evolution for the tree branches forming the MHS clade. The average rate for the entire tree is indicated by the vertical blue line. MHS = modern *Homo* species, EHS = *Homo* species exclusive of MHS, Australopiths = species in the genus *Paranthropus* and *Australopithecus*.
The jump in the rates of evolution in climatic niche width (driven by a sudden increase in tolerance to the cold, Figure 3) had enormous consequence in terms of geographic range. By modeling climatic niche limits according to a random walk with constant variance process (i.e. the Brownian motion model of evolution, BM) and assuming as habitable all geographic cells with HQ >0.25, the rate shift accounts for a twofold increase in viable geographic range at the ancestor of MHS (node 14 in the tree) for a net gain of some 30×10^6 km2 (roughly the land surface of the African continent). At node 15, the ancestor of *H. sapiens* and *H. neanderthalensis*, the habitable area becomes nearly three times larger than expected under BM, corresponding to a geographic extension of some 50×10^6 km2. This massive increase in habitable area mostly represents expansion into northern latitudes, testifying to the importance of the rate shift in the colonization of Eurasia (Figure S5).

Although there is consistent evidence that *Homo* species may have exchanged genes with positive fitness consequences in cold environments by means of genetic introgression, this evidence is limited to the last 40 kya and invariably pertains to local *Homo sapiens* populations (Huerta-Sánchez et al., 2014; Sánchez-Quinto and Lalueza-Fox, 2015), meaning it occurs much later than the rate shift, and after the actual colonization of northern territories.

Although the real consequences of any individual cultural or technological adaptation introduced by MHS will almost certainly be a matter for debate for some time, our results indicate that these hominins were able to overcome the challenges imposed by life in northern habitats by a non-biological process, suggesting that behavioral modernity, interpreted as the capacity to use technology and culture to overcome the constraints imposed by natural climate variability on the geographic distribution, is not limited to *H. sapiens*.

Limitations of the Study

The very concept of niche construction in *Homo* implies cultural advancements (fitted clothing manufacture, intentional fire, the production of tools made of perishable material such as bone, hide and wood) and improved social connections and skills that leave little to no archaeological evidence (Riede, 2019). Rather than focusing on such scarce evidence, we therefore focused on one of the major consequences of these cultural advances, that is, the occupation of areas and climates outside the physiological niche limits of humans. A limitation of our findings is that the precise connection between the expansion of the climatic niche limits and advancements in material culture cannot easily be determined. Still, it relies on paleoclimate modeling that necessarily comes with uncertainty around the estimates. Nevertheless, our study confidently demonstrates the importance of cultural niche construction in the evolution of *Homo* and how the sudden evolution of such niche construction abilities shaped the geography of our own lineage in the deep past.
Resource Availability

Lead Contact
Further information and requests for resources should be directed to Pasquale Raia (pasquale.raia@unina.it).

Materials Availability
This study did not generate any new material.

Data and Code Availability
The human fossil record and phylogenetic tree of hominins are available as supplemental data files. The functions used in this study are freely available as parts of the package RRphylo. Environmental niche limits (climatic variables) for each hominin species to generate estimates at the tree nodes (ancestors) are available in Table S1.

METHODS
All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101693.

ACKNOWLEDGMENTS
We are grateful to Fabio di Vincenzo and Giorgio Manzi for critical discussion about the main findings presented here.

AUTHOR CONTRIBUTIONS

DECLARATION OF INTERESTS
The authors declare no conflict of interests.

Received: August 3, 2020
Revised: September 3, 2020
Accepted: October 13, 2020
Published: November 20, 2020

REFERENCES

Supplemental Information

A Major Change in Rate of Climate Niche Envelope Evolution during Hominid History

Alessandro Mondanaro, Marina Melchionna, Mirko Di Febbraro, Silvia Castiglione, Philip B. Holden, Neil R. Edwards, Francesco Carotenuto, Luigi Maiorano, Maria Modafferi, Carmela Serio, José A.F. Diniz-Filho, Thiago Rangel, Lorenzo Rook, Paul O'Higgins, Penny Spikins, Antonio Profico, and Pasquale Raia
Figure S1. Maps of fossil locality distribution and habitat quality at specific nodes in the hominin tree. Related to Figures 1 and 2.
Figure S2. Maps of fossil locality distribution and habitat quality at specific nodes in the hominin tree, after setting the maximum number of fossil localities per species at 100 for the ancestor to all *Homo* species (node 12, left), early *Homo* (node 16, middle) and MHS (node 14, right). Related to Figures 1 and 2.
Figure S3. Maps of fossil locality distribution and habitat quality at specific nodes in the hominin tree, after excluding the first decile of the distribution of paleoclimatic estimates. The node numbers correspond to the tree in Figure S1. Related to Figures 1 and 2.
Figure S4. Maps showing randomly placed fossil localities and habitat quality at specific nodes in the hominin tree. Related to Figures 1 and 2.
Figure S5. Maps of habitat quality estimated for the ancestors of MHS (node 14 in the tree) and the ancestor of *H. sapiens* plus *H. neanderthalensis* (node 15). Related to Figures 1 and 2.
<table>
<thead>
<tr>
<th>Species</th>
<th>minPrec (mm)</th>
<th>minTemp (°C)</th>
<th>Min NPP</th>
<th>maxPrec (mm)</th>
<th>maxTemp (°C)</th>
<th>Max NPP</th>
<th>extinction age (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australopithecus anamensis</td>
<td>8.5</td>
<td>16.7</td>
<td>73.7</td>
<td>561.7</td>
<td>30.4</td>
<td>699.3</td>
<td>3.85</td>
</tr>
<tr>
<td>Australopithecus afarensis</td>
<td>13.4</td>
<td>22.0</td>
<td>48.3</td>
<td>465.3</td>
<td>29.8</td>
<td>431.3</td>
<td>3.00</td>
</tr>
<tr>
<td>Paranthropus boisei</td>
<td>0.6</td>
<td>-15.5</td>
<td>0.0</td>
<td>2000.0</td>
<td>31.2</td>
<td>909.3</td>
<td>1.30</td>
</tr>
<tr>
<td>Paranthropus robustus</td>
<td>6.0</td>
<td>9.4</td>
<td>0.2</td>
<td>1094.2</td>
<td>33.2</td>
<td>981.9</td>
<td>0.96</td>
</tr>
<tr>
<td>Homo habilis</td>
<td>7.7</td>
<td>13.9</td>
<td>22.6</td>
<td>782.6</td>
<td>30.8</td>
<td>848.8</td>
<td>1.39</td>
</tr>
<tr>
<td>Homo ergaster</td>
<td>0.0</td>
<td>-12.3</td>
<td>0.0</td>
<td>963.3</td>
<td>30.2</td>
<td>1113.7</td>
<td>0.88</td>
</tr>
<tr>
<td>Homo erectus</td>
<td>0.0</td>
<td>-28.2</td>
<td>0.0</td>
<td>586.1</td>
<td>29.2</td>
<td>1093.4</td>
<td>0.11</td>
</tr>
<tr>
<td>Homo heidelbergensis</td>
<td>0.0</td>
<td>-33.6</td>
<td>0.0</td>
<td>1105.5</td>
<td>35.6</td>
<td>1458.0</td>
<td>0.20</td>
</tr>
<tr>
<td>Homo neanderthalensis</td>
<td>5.7</td>
<td>16.6</td>
<td>58.9</td>
<td>877.6</td>
<td>29.6</td>
<td>852.4</td>
<td>0.04</td>
</tr>
<tr>
<td>Homo sapiens</td>
<td>14.2</td>
<td>9.8</td>
<td>333.9</td>
<td>339.9</td>
<td>24.0</td>
<td>456.6</td>
<td>0.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>descendants</th>
<th>minPrec (mm)</th>
<th>minTemp (°C)</th>
<th>Min NPP</th>
<th>maxPrec (mm)</th>
<th>maxTemp (°C)</th>
<th>Max NPP</th>
<th>mean age (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>hominins</td>
<td>12.5</td>
<td>20.0</td>
<td>52.6</td>
<td>513.0</td>
<td>29.9</td>
<td>490.8</td>
<td>4.96</td>
</tr>
<tr>
<td>12</td>
<td>Homo spp.</td>
<td>6.0</td>
<td>3.8</td>
<td>15.3</td>
<td>946.7</td>
<td>31.5</td>
<td>894.0</td>
<td>2.92</td>
</tr>
<tr>
<td>13</td>
<td>Homo spp. without H. habilis</td>
<td>4.8</td>
<td>0.0</td>
<td>8.8</td>
<td>1032.7</td>
<td>31.8</td>
<td>959.1</td>
<td>2.32</td>
</tr>
<tr>
<td>14</td>
<td>MHS</td>
<td>0.7</td>
<td>-21.1</td>
<td>1.7</td>
<td>904.8</td>
<td>31.7</td>
<td>1182.6</td>
<td>0.99</td>
</tr>
<tr>
<td>15</td>
<td>MHS without H. heidelbergensis</td>
<td>0.2</td>
<td>-23.7</td>
<td>0.5</td>
<td>878.8</td>
<td>31.5</td>
<td>1204.0</td>
<td>0.48</td>
</tr>
<tr>
<td>16</td>
<td>H. ergaster plus H. erectus</td>
<td>4.8</td>
<td>0.7</td>
<td>6.9</td>
<td>1080.7</td>
<td>31.9</td>
<td>960.1</td>
<td>1.91</td>
</tr>
<tr>
<td>17</td>
<td>australopiths</td>
<td>12.6</td>
<td>20.5</td>
<td>55.6</td>
<td>499.8</td>
<td>29.8</td>
<td>482.2</td>
<td>4.49</td>
</tr>
<tr>
<td>18</td>
<td>Australopithecus spp.</td>
<td>12.7</td>
<td>20.8</td>
<td>54.5</td>
<td>492.9</td>
<td>29.8</td>
<td>475.6</td>
<td>4.24</td>
</tr>
<tr>
<td>19</td>
<td>Paranthropus spp.</td>
<td>12.2</td>
<td>19.7</td>
<td>67.5</td>
<td>522.5</td>
<td>29.5</td>
<td>509.8</td>
<td>3.83</td>
</tr>
</tbody>
</table>

Table S1. A. Paleoclimatic estimates for the hominin species in the tree. B. Reconstructed climatic values at the tree nodes. Related to Figures 1 - 3.
Table S2. A. Paleoclimatic estimates for the hominin species in the tree. B. Reconstructed climatic values at the tree nodes after subsampling the most abundant species. Related to Figures 1 - 3.
Table S3. A. Paleoclimatic estimates for the hominin species in the tree. B. Reconstructed climatic values at the tree nodes after removing the first decile of the climatic variable values. Nodes refer to the node number in the tree. Nodes refer to the node number in the tree. Related to Figures 1 - 3.
Table S4

A. Paleoclimatic estimates for the hominin species in the tree.

<table>
<thead>
<tr>
<th>Species</th>
<th>minPrec (mm)</th>
<th>minTemp (°C)</th>
<th>Min NPP</th>
<th>maxPrec (mm)</th>
<th>maxTemp (°C)</th>
<th>Max NPP</th>
<th>extinction age (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australopithecus anamensis</td>
<td>0.6</td>
<td>18.9</td>
<td>18.2</td>
<td>718.5</td>
<td>32.5</td>
<td>1010.7</td>
<td>3.85</td>
</tr>
<tr>
<td>Australopithecus afarensis</td>
<td>0</td>
<td>16.6</td>
<td>0</td>
<td>904.5</td>
<td>34.4</td>
<td>1310.5</td>
<td>3</td>
</tr>
<tr>
<td>Paranthropus boisei</td>
<td>0.1</td>
<td>15.3</td>
<td>93.7</td>
<td>809.4</td>
<td>29.8</td>
<td>968.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Paranthropus robustus</td>
<td>1.7</td>
<td>9.2</td>
<td>113</td>
<td>370</td>
<td>26.2</td>
<td>610.6</td>
<td>0.96</td>
</tr>
<tr>
<td>Homo habilis</td>
<td>0</td>
<td>11.3</td>
<td>24.4</td>
<td>797.7</td>
<td>30.9</td>
<td>1001.2</td>
<td>1.39</td>
</tr>
<tr>
<td>Homo ergaster</td>
<td>0</td>
<td>-4.3</td>
<td>0</td>
<td>732.5</td>
<td>35.9</td>
<td>899</td>
<td>0.88</td>
</tr>
<tr>
<td>Homo erectus</td>
<td>0</td>
<td>-22.3</td>
<td>0</td>
<td>1290</td>
<td>33.6</td>
<td>833.4</td>
<td>0.11</td>
</tr>
<tr>
<td>Homo neanderthalensis</td>
<td>0</td>
<td>-23.3</td>
<td>0</td>
<td>1069</td>
<td>34.7</td>
<td>873</td>
<td>0.2</td>
</tr>
<tr>
<td>Homo sapiens</td>
<td>0</td>
<td>-35.2</td>
<td>0</td>
<td>1050.4</td>
<td>33.4</td>
<td>797.6</td>
<td>0.04</td>
</tr>
</tbody>
</table>

B. Reconstructed climatic values at the tree nodes after randomly shuffling the fossil occurrence data within the biogeographical domain of individual species. Nodes refer to the node number in the tree.

<table>
<thead>
<tr>
<th>Node</th>
<th>descendants</th>
<th>minPrec (mm)</th>
<th>minTemp (°C)</th>
<th>Min NPP</th>
<th>maxPrec (mm)</th>
<th>maxTemp (°C)</th>
<th>Max NPP</th>
<th>mean age (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>hominins</td>
<td>0.5</td>
<td>17</td>
<td>19.2</td>
<td>736</td>
<td>32.6</td>
<td>1016.6</td>
<td>4.96</td>
</tr>
<tr>
<td>12</td>
<td>Homo spp.</td>
<td>0.1</td>
<td>-5.7</td>
<td>9.5</td>
<td>854</td>
<td>33.3</td>
<td>912.4</td>
<td>2.87</td>
</tr>
<tr>
<td>13</td>
<td>Homo spp. without H. habilis</td>
<td>0.1</td>
<td>-7.5</td>
<td>6.8</td>
<td>872.6</td>
<td>33.6</td>
<td>891.5</td>
<td>2.34</td>
</tr>
<tr>
<td>14</td>
<td>MHS</td>
<td>0</td>
<td>-26.6</td>
<td>1.1</td>
<td>967.1</td>
<td>33.2</td>
<td>786.5</td>
<td>1.03</td>
</tr>
<tr>
<td>15</td>
<td>MHS without H. heidelbergensis</td>
<td>0</td>
<td>-29.3</td>
<td>0.3</td>
<td>988.9</td>
<td>33.2</td>
<td>778.6</td>
<td>0.49</td>
</tr>
<tr>
<td>16</td>
<td>H. ergaster plus H. erectus</td>
<td>0</td>
<td>-7.7</td>
<td>5.4</td>
<td>870.9</td>
<td>33.9</td>
<td>890.1</td>
<td>1.91</td>
</tr>
<tr>
<td>17</td>
<td>australopiths</td>
<td>0.5</td>
<td>17.7</td>
<td>20</td>
<td>733.8</td>
<td>32.5</td>
<td>1024</td>
<td>4.47</td>
</tr>
<tr>
<td>18</td>
<td>Australopithecus spp.</td>
<td>0.5</td>
<td>17.9</td>
<td>19.1</td>
<td>734.5</td>
<td>32.6</td>
<td>1028.1</td>
<td>4.25</td>
</tr>
<tr>
<td>19</td>
<td>Paranthropus spp.</td>
<td>0.6</td>
<td>17.2</td>
<td>31.1</td>
<td>722</td>
<td>32</td>
<td>999.7</td>
<td>3.77</td>
</tr>
</tbody>
</table>

Related to Figures 1 - 3.
Table S5. A. Paleoclimatic estimates for the hominin species in the tree. B. Reconstructed average climatic values at the tree nodes. Related to Figures 1 - 3.
Transparent Methods

Fossil occurrence and phylogenetic data

The human fossil record dataset we used includes 2,597 hominin occurrences associated with 727 archaeological sites. The time range of our record spans from the first occurrence of australopiths in East Africa dated to some 4.2 Ma, to the definitive advent of *H. sapiens* in Eurasia almost coincident with the demise of *H. neanderthalensis* dated some to 0.040 Ma (see Dataset S1, Raia et al., 2020). We excluded hominin with stratigraphically or geographically restricted fossil record which prevents drawing realistic inference about their climatic niche limits. The species in the database are 2 *Australopithecus* (*A. afarensis* and *A. africanus*), 2 *Paranthropus* (*P. robustus* and *P. boisei*) and 6 *Homo* species (*H. sapiens, H. neanderthalensis, H. heidelbergensis, H. erectus, H. ergaster* and *H. habilis*).

For each fossil occurrence included in the dataset, we recorded paleo-latitude and paleo-longitude, the archaeological layer yielding the remains, and the absolute age of the dated sample. Where available, we also included information about which sample was used for dating the relative lab code. Radiocarbon dates were calibrated using Intcal13 calibration curve for the Northern hemisphere, shcal13 curve for the Southern hemisphere, and marine13 curve for marine samples. Age estimates come with uncertainty. Time averaging of the archaeological layers adds to this uncertainty. To account for this, for each archaeological site (or layer) age estimate we retrieved from the collected estimates the minimum age and the maximum age (calculated according to individual estimates and their respective confidence intervals).

Environmental predictors

Environmental predictors were generated using a paleoclimate emulator (Holden et al., 2019). The method applies Gaussian process emulation of the singular value decomposition of ensembles of runs from the intermediate complexity atmosphere-ocean GCM PLASIM-GENIE with varied boundary-condition forcing (CO₂, orbit and ice-volume). Spatial fields of i) minimum
temperature of the coldest quarter of the year (hereafter, “MinTemp”), ii) maximum temperature of the warmest quarter (hereafter, “MaxTemp”), iii) minimum precipitation of the driest quarter (hereafter, “MinPrec”), iv) maximum precipitation of the wettest quarter (hereafter, “MaxPrec”), and v) yearly net primary productivity (hereafter, “NPP”) are then emulated at 1,000 year intervals, driven by time-series of scalar boundary-condition forcing, and assuming the climate is in quasi-equilibrium. The emulator uses CO$_2$ from Antarctic ice cores for the last 800,000 years (Lüthi et al., 2008). Prior to 800 ka, and for the entire sea-level record, it uses the CO$_2$ and sea-level reconstructions in Stap et al. (2017). Contemporary values of the four bioclimatic variables were derived from WorldClim (Hijmans et al., 2005), while NPP observations were derived from MOD17A3H (MODIS; https://lpdaac.usgs.gov/products/mod17a3hv006/). Current bioclimatic variables and the NPP were interpolated onto the same 0.5° grid and combined with emulated anomalies. Temperature anomalies were additively combined with current temperatures, while precipitation and NPP anomalies were combined with current precipitations using a hybrid additive/multiplicative approach (Holden et al., 2019).

The native-resolution (5°) emulations have been extensively validated (Holden et al., 2019) against model inter-comparisons of the mid-Holocene, the Last Glacial Maximum, the Last Interglacial and the mid-Pliocene warm period. Glacial-interglacial variability was validated (Holden et al., 2019) against observationally based global temperature reconstructions (Köhler et al., 2010). These analyses demonstrated that PALEO-PGEM lies within the uncertainty envelope of high resolution IPCC models, which have themselves been validated against proxy data in the Mid-Holocene and Last Glacial Maximum (Braconnot et al., 2007) and the Pliocene (Haywood et al., 2013).

Paleoclimate anomalies at climate model resolution (5°) were downscaled onto the observed modern climatology at 0.5° spatial resolution using bilinear interpolation. We used the entire bioclimatic predictors in order to consider the last 5 million years of human evolution.
Definition of the Climatic Niche limits for *Homo* species

For each hominin species, we built its climatic envelope (the hypervolume defined by the climatic variables), by pooling together all bioclimatic values associated to their fossil occurrences. Then, we selected the recorded minimum values for MinTemp, MinPrec, and NPP, and the maximum values for MaxTemp, MaxPrec, and NPP. We repeated this procedure over 100 replicates. At each replication, the age of each individual archaeological locality was sampled at random from the uniform distribution spanning from the estimated minimum to the estimated maximum locality age. Thus, replication accounts for both ageing uncertainty of individual archaeological layers and, correspondingly, for climatic uncertainty around the paleoclimatic estimates concerning the fossil localities. Finally, for each bioclimatic variable, we took the mean value from each resulting distribution of temperature, precipitation and NPP minima and maxima. Taken together, these mean values of bioclimatic extremes represent a conservative estimate of the climatic range realized for each hominin species during its history, avoiding putting too much faith on extreme values attached to individual replicates and locality.

Definition of the Climatic Niche limits for common ancestors in the hominin tree

The 10 species phylogenetic tree was obtained by combining the Primate (and human) phylogenetic information published in recent papers (Diniz-Filho et al., 2019; Melchionna et al., 2020; Parins-Fukuchi et al., 2019). We started by using the six climatic variables, representing the limits (minima and maxima) in temperature, precipitation and NPP. Since these variables are highly correlated to each other, we reduced covariation among variables by performing a Principal Component Analysis (PCA) on climatic variables associated with each hominin species occurrence in the fossil record. Then, we extracted the PC scores and used them as a multivariate dataset for the phylogenetic ridge regression. To estimate the rates of climatic niche limits evolution we applied the function *RRphylo* (Castiglione et al., 2018) in the R package RRphylo. The function estimates
rates and ancestral states estimates by means of phylogenetic ridge regression. PC scores were used as the response variable in RRphylo.

We used the PC scores estimated by RRphylo at each node (ancestral states) and back transformed the scores in climatic variables (MinTemp, MinPrec, min NPP, MaxTemp, MaxPrec, max NPP) to map geographically the areas associated with the corresponding climatic estimates (i.e. the area within the limits of the climatic envelope for each ancestor in the tree). The resulting map thus represents the geographic areas estimated to be climatically suitable for occupation by the hominin ancestors. To account for uncertainty around the ages of individual nodes in the hominin phylogeny, we repeated the entire procedure at each node over 100 replicates by using the 100 alternative phylogenies generated from swapONE function embedded in the RRphylo package. This function randomly changes the tree topology and branch lengths although it is possible to keep specific clades monophyletic. However, we accounted for a few, well-supported, monophyletic clades which are present in the hominin tree. In particular, in swapping the tree tips and moving (in time) the nodes in the tree, we kept H. ergaster and H. erectus as sister species. We similarly kept monophyletic the clade subtending to the four australopithecines in the tree, the clade representing the genus Homo, and the clade including H. heidelbergensis, H. neanderthalensis and H. sapiens. Since the inclusion of particular taxa in the data may alter significantly the result of PCA ordination (Adams et al., 2011) we repeated the swap procedure leaving one species at random out of the tree for each replicate.

Eventually, for each given species and ancestor in the tree we recorded the number of times a given geographical cell counts as climatically suitable out of the 100 replicates, thus defining an overall ‘habitat quality’ metric, representing the number of iterations (out of 100) a geographic cell was found habitable (i.e. fell within climatic tolerance limits) for any given species or ancestor in the tree. For each cell, habitat quality thus ranges between 0 (never suitable) to 1 (always suitable).
Measuring the association between the archaeological record and habitat quality

Climatic variables limit at the tree node represent the estimated tolerance limits for hominin ancestors. Since these values are estimated, rather than observed, to assess the association between the position of fossil localities and habitat quality for each ancestral species estimates we selected the fossil occurrences of its descendants, provided they are not included in a descending node which was itself tested. For instance, the EHS ancestor was tested by selecting the fossil occurrence of *H. habilis*, *H. erectus* and *H. ergaster*, but not *H. sapiens*, *H. neanderthalensis* and *H. heidelbergensis* which were considered only descendant to the MHS ancestor. To measure the association between climatic suitability and the presence of human species, we calculated the Area Under receiver-operator Curve (AUC) averaging over the 100 replicates. AUC theoretically ranges from 0 to 1. However, since random sampling points, (pseudoabsences) are not real absences, AUC cannot reach 1 (Jimenez-Valverde, 2012), as the maximum AUC value depends on the actual (unknown) area of distribution of the species. To obtain a null distribution of AUC values and assess significance for the real AUC, for each node in the tree we sampled 100 times as many point occurrences as with the real data (i.e. the fossil occurrences of the species descending from that node) within the biogeographic domain of the species groups (i.e. the descendants to a given node in the tree), and calculated the random AUC. To account for sampling differences between the hominin species, we further repeated the AUC computation after sampling randomly no more than 100 occurrences per species at each replicate.

Measuring rates of climatic niche limits evolution

We used the evolutionary rates provided by *RRphylo* to apply the function `search.shift` (Castiglione et al., 2018) which tests whether individual clades evolved at significantly different rates as compared to the rest of the tree. The function compares the rates attached to each branch descending from a particular node to the rates for the branches of the rest of the tree. The significance for the rate difference is assessed by means of randomization. In the case of
multivariate data, as with this particular study, the multivariate rate is computed as the 2-Norm (Euclidean) vector of the rates of individual variables.

To look for possible evolutionary trends in climatic tolerances over time we used the function `search.trend` (Castiglione et al., 2019) in the `RRphylo` R package. In `search.trend`, evolutionary rates and phenotypes (including the phenotypic estimates at the nodes) are regressed against their age and the resulting slopes compared to slopes randomly generated under the Brownian motion model of evolution, which is a model assuming no temporal trend is present in the data.

Estimating habitat quality under the Brownian motion model of evolution

To estimate and map habitat quality under the assumption that climatic niche limits evolved under a random walk model with constant variance (namely the Brownian motion model of evolution, BM) we estimated climatic niche limits for human ancestors by using the Rphylopars package in R. In Rphylopars, trait values for tree tips with missing data are assessed according to a single rate of evolution calculated for the rest of the tree and data (Bruggeman et al., 2009). Since we found a significant rate shift in niche width referring to the MHS ancestor (node 14) we derived the estimates for both this ancestor (node 14), and the ancestor of *Homo sapiens* and *Homo neanderthalensis* (node 15), pruning the tree of its descendants, and then treating the node as a species with missing data.
Supplemental references

