Optimal design for experiments with possibly incomplete observations

How to cite:

For guidance on citations see FAQs.

© [not recorded]

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.5705/ss.202015.0225

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
OPTIMAL DESIGN FOR EXPERIMENTS WITH POSSIBLY INCOMPLETE OBSERVATIONS

Kim May Lee, Stefanie Biedermann and Robin Mitra

University of Cambridge, University of Southampton and Lancaster University

Abstract: Missing responses occur in many industrial and medical experiments, for example in clinical trials where slow acting treatments are assessed. Finding efficient designs for such experiments is problematic since it is not known at the design stage which observations will be missing. The design literature mainly focuses on assessing robustness of designs for missing data scenarios, rather than finding designs which are optimal in this situation. Imhof, Song and Wong (2002) propose a framework for design search, based on the expected information matrix. We develop an approach that includes Imhof, Song and Wong (2002)'s method as special case and justifies its use retrospectively. Our method is illustrated through a simulation study based on data from an Alzheimer’s disease trial.

Key words and phrases: Covariance matrix, information matrix, linear regression model, missing observations, optimal design.

1. Introduction

In statistical studies, having missing values in the collected data sets is often unavoidable, in particular when the experimental units are humans and the study is long-term. Consider, for example, a clinical trial where responses are measured several months into the treatment regime for comparison with baseline measurements. In this situation, some patients may be lost to follow-up for various reasons, including side effects of the treatment or death.

Extracting the essential information on treatment characteristics from only partially observed data is a key challenge. Missing values may reduce the power of the study or increase the variability of estimation, due to smaller sample size. Moreover, when not missing completely at random (MCAR), they can cause bias in estimates and thus result in misleading conclusions when not analysed appropriately, see e.g. Little and Rubin (2002), Schafer (1997), or Carpenter, Kenward and White (2007). Several methods have been suggested in the literature to deal with this issue, for example, multiple imputation (Rubin (1987)), maximum likelihood, weighting methods or pattern mixture models. Research
in this area has received much attention, see for example Kenward, Molenberghs and Thijs (2003), White, Higgins and Wood (2008) and Spratt et al. (2010).

In this article we assume the missing data problem is handled using a complete case analysis. This approach discards any experimental units containing missing values from the analysis, which is appealing for its simplicity. In addition, inferences of regression coefficients under complete case analysis are unbiased provided the probability that responses are missing only depends on the covariates and not on the response itself; regression analysis considers the conditional distribution of the responses given the covariates, and so both response and covariates should be present to contribute to the inference. See e.g. Little and Rubin (2002) or Glynn and Laird (1986).

In the situation of completely observable data, it is well-established that a good design can decrease the necessary sample size, and thus lower the costs of experimentation. However, the design literature has only addressed a few special cases involving missing data that provide only limited guidance to practitioners. Many papers focus on assessing the robustness of standard designs, such as balanced incomplete block designs, D-optimal designs, or response surface designs, against missing observations; see e.g. Hedayat and John (1974), Ghosh (1979), Ortega-Azurduy, Tan and Berger (2008), or Ahmad and Gilmour (2010).

Herzberg and Andrews (1976) propose to optimise the expectation of the D- and G-objective functions, respectively, where random missing data indicators are incorporated into the information matrix. Such a modified G-optimal design minimises the expected maximum variance of a predicted response among all designs where these variances exist. Hackl (1995) penalises singular information matrices in a modified version of the D-optimality criterion, and considers only small finite design spaces since the approach would become intractable for continuous intervals or even large discrete sets. Imhof, Song and Wong (2002) develop a framework for finding optimal designs using the expected information matrix, where the expectation is taken with respect to the missing data mechanism. This approach is mathematically equivalent to finding designs for heteroscedastic or weighted regression models. Imhof, Song and Wong (2004) extend this work by exploring different classes of probability functions for missing responses, and study the robustness of their optimal designs against misspecification of the parameters in the probability functions. Back et al. (2006) further extend this approach to Bayesian optimality criteria in the context of percentile estimation of a dose-response curve with potentially missing observations.

In the situation where all outcomes will be observed, it is common in the
optimal design literature to use the inverse of the information matrix as an approximation to the covariance matrix, \(\text{var}(\hat{\beta}) \), of the parameter estimators of interest, held in the vector \(\hat{\beta} \). For linear models, these two matrices are the same. For maximum likelihood estimators in non-linear or generalised linear models, equality holds asymptotically. However, when some of the responses may be missing, \(\text{var}(\hat{\beta}) \) will not exist, and it is not clear if the inverse information matrix will be a good approximation to the observed covariance matrix, i.e. the covariance matrix (provided it exists) after the experiment has been carried out. Hence it is not known if a design that is optimal with respect to some function of the expected information matrix will actually make the (observed) covariance matrix (or a function thereof) small. Imhof, Song and Wong (2002) implicitly assumed that this would be the case without providing a justification. Our research is filling this gap. We propose an approximation to the covariance matrix that contains Imhof, Song and Wong (2002)’s method as a special case, and thus justifies their approach retrospectively. The framework proposed in this paper is applicable to finding optimal designs for linear regression models in the presence of missing at random (MAR) mechanisms (or MCAR, a special case of MAR).

The structure of the paper is as follows. In Section 2, we provide some background on optimal design for complete data, and describe the optimal design framework for incomplete data proposed by Imhof, Song and Wong (2002). In Section 3, we introduce and justify an optimal design framework for a broad class of MAR missing data mechanisms that includes the method of Imhof, Song and Wong (2002) as a special case. Using a simple linear regression model, the optimal design framework is illustrated for \(A\), \(c\), and \(D\)-optimal designs in Section 4. In Section 5, we apply our framework to redesigning a clinical trial for two Alzheimer’s drugs, and we provide a discussion of our results in Section 6.

2. Background

We briefly introduce the general linear regression model and some basic theory on optimal design of experiments for the situation where all outcomes are observed. Consider the general linear regression model for \((p + 1)\) linearly independent functions \(f_0(x), \ldots, f_p(x) \),

\[
Y_i = \beta_0 f_0(x_i) + \ldots + \beta_p f_p(x_i) + \epsilon_i, \quad x_i \in \mathcal{X}, \quad i = 1, \ldots, n,
\]

where \(Y_i \) is the \(i \)th value of the response variable, \(x_i \) is the value of the explanatory variable (or the vector of explanatory variables) for experimental unit \(i \), \(\mathcal{X} \) is the
(convex) design region, and \(\epsilon_i \overset{\text{iid}}{\sim} N(0, \sigma^2) \), \(i = 1, \ldots, n \). In matrix form, this can be written as \(Y = X\beta + \epsilon \) where the \(i \)th row of \(X \) is \(f^T(x_i) = (f_0(x_i), \ldots, f_p(x_i)) \).

A typical example is the polynomial regression model of degree \(p \), i.e.

\[
Y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \ldots + \beta_p x_i^p + \epsilon_i. \tag{2.2}
\]

Using the method of either least squares or maximum likelihood, the vector of unknown parameters, \(\beta \), is estimated by

\[
\hat{\beta} = \left(X^T X \right)^{-1} X^T Y,
\]

with covariance matrix

\[
\text{var}(\hat{\beta}) = \sigma^2 \left(X^T X \right)^{-1}.
\]

Let \(x^*_i, i = 1, \ldots, m, m \leq n, \) be the distinct values of the explanatory variable in the experimental design, and let \(n_i, i = 1, \ldots, m, \) be the number of observations taken at \(x_i \) where \(\sum_{i=1}^{m} n_i = n \). Then an exact design can be written as

\[
\xi = \left\{ x_1^* \ldots x_m^* \right\} \frac{w_1 \ldots w_m}{n},
\]

where \(w_i = n_i / n \) gives the proportion of observations to be made in the support point \(x_i^* \). This concept can be generalised to approximate/continuous designs where the restriction that \(w_i n \) is a positive integer is relaxed to \(w_i > 0, i = 1, \ldots, m, \) with \(\sum_{i=1}^{m} w_i = 1 \). The proportion \(w_i \) is called the weight at the support point \(x_i^* \). The latter approach avoids the problem of discrete optimisation and is widely used in finding optimal designs for experiments. In order to run such a design in practice, a rounding procedure which turns continuous designs into exact designs can be applied; see, for example, Pukelsheim and Rieder (1992).

For a continuous design \(\xi \), the Fisher information matrix for model (2.1) is

\[
M(\xi) = n \sum_{i=1}^{m} f(x_i^*) f^T(x_i^*) w_i
\]

and its inverse, \(M^{-1}(\xi) \), is proportional to \(\text{var}(\hat{\beta}) \).

The design problem is to find the values of \(x_i^* \) and \(w_i \) that provide maximum information from the experiment. Let \(\Xi \) be the class of all approximate designs on \(X \) with \(\mathcal{M} = \{ M(\xi); \xi \in \Xi \} \). An optimality criterion is a statistically meaningful, real-valued function \(\psi(M(\xi)) \), which is selected to reflect the objective of the experiment. It is typically an increasing and convex function over \(\mathcal{M} \), such that there is a critical point in the region. The technical explanation of these properties can e.g. be found in Silvey (1980) or Pukelsheim (2006). We seek a design \(\xi^* \) such that \(\psi\{M(\xi^*)\} = \min_{\xi \in \Xi} \psi\{M(\xi)\} \). Such a design is called a \(\psi \)-optimal design.
The common optimality criteria are the following.

D-optimality: \(\psi(M(\xi)) = |M^{-1}(\xi)|. \) A \(D \)-optimal design minimises the volume of a confidence ellipsoid for \(\beta \).

A-optimality: \(\psi(M(\xi)) = \text{trace}(M^{-1}(\xi)) \). An \(A \)-optimal design minimises the sum of the variances of the individual elements of \(\hat{\beta} \).

c-optimality: \(\psi(M(\xi)) = c^T M^{-1}(\xi) c \) where \(c \) is a \((p+1) \times 1\) vector. A \(c \)-optimal design minimises the variance of \(c^T \hat{\beta} \), a linear combination of \(\hat{\beta} \).

2.1. Optimal design for missing values

To construct optimal designs that account for missing observations, we define independent random missing data indicators \(R_i = 1, \) if the observation at \(x_i \) is missing; \(R_i = 0 \) otherwise, \(i = 1, \ldots, n \). Following \(\text{Rubin (1976)} \), if responses are missing completely at random (MCAR) then

\[
Pr(R_i = 1 | x_i, y_i, i = 1, \ldots, n) = P(R_i) \quad \forall i = 1, \ldots, n.
\]

If we have a missing at random (MAR) mechanism the probability of missingness may depend on the observed values of \(x_i \) and \(y_i \): for \(i = 1, \ldots, n \),

\[
Pr(R_i = 1 | x_i, y_i, i = 1, \ldots, n) = E(R_i | \text{observed } x_i, y_i, i = 1, \ldots, n).
\]

In what follows, since only the design values of \(x_i \) play a role in the optimal design framework, we assume a special case of MAR mechanism where

\[
E(R_i | \text{observed } x_i, y_i, i = 1, \ldots, n) = P(R_i = 1 | \text{observed } x_i) = P(x_i).
\]

This is necessary as we do not know which responses will be observed at the time of designing the experiment. Henceforth the conditioning on \(x_i \) is omitted to simplify the notation of a MAR mechanism.

The Fisher information matrix containing the missing data indicators \(R = \{R_1, R_2, \ldots, R_n\} \) is given by

\[
E(M(\xi, R)) = E \left\{ \sum_{i=1}^{n} f(x_i) f^T(x_i) (1 - R_i) \right\}
\]

\[
= \sum_{i=1}^{n} f(x_i) f^T(x_i) \{1 - P(x_i)\}
\]

\[
= n \sum_{i=1}^{m} f(x^*_i) f^T(x^*_i) \{1 - P(x^*_i)\}, \tag{2.3}
\]

which is equivalent to \(M(\xi) \) if the responses are fully observed.

\(\text{Imhof, Song and Wong (2002)} \) proposed a general framework where a function of \(2.3 \) is used in constructing optimal designs. For example, a \(D \)-optimal
design maximises $|E\{M(\xi, R)\}|$ as $\text{var}(\hat{\beta})$ was implicitly assumed to be proportional to $[E\{M(\xi, R)\}]^{-1}$. The use of $E\{M(\xi, R)\}$ is appealing since $M(\xi, R)$ is linear in the missing data indicators, and therefore taking the expectation is straightforward. Moreover, from (2.3), we can see that this framework is analogous to the optimal design framework for weighted regression models, with weight function $\lambda(x) = 1 - P(x)$.

If responses may be missing, $\text{var}(\hat{\beta})$ does not exist. Hence it is not clear if the inverse of $E\{M(\xi, R)\}$ is a good approximation to the observed covariance matrix of an experiment. In the next section, we investigate this approximation further.

3. Optimal Design for MAR Mechanisms with Complete Case Analysis

For an exact design ξ on X, let C_ξ be the set of values of R such that $M(\xi, R)$ is non-singular, and assume that ξ is such that the probability $v_\xi = P(R \notin C_\xi)$ is negligibly small. We can write the observed covariance matrix as $\text{var}(\hat{\beta}|R = r)$ where r is the observed outcome of the vector of missingness indicators R. This expression exists if and only if $r \in C_\xi$. Since v_ξ is close to zero, we consider only those values with $r \in C_\xi$ to approximate the observed covariance matrix in what follows. In practice, if a value $r \notin C_\xi$ is observed, further experimentation is needed, but this scenario only occurs with probability v_ξ, close to zero.

At the planning stage of the experiment, the observed value of r is not known, and $\text{var}(\hat{\beta}|R)$ (where $R \in C_\xi$) is a random variable, to approximate the observed covariance matrix for design purposes we take its expectation with respect to the conditional distribution of R, given $R \in C_\xi$,

$$E_{R|R \in C_\xi}(\text{var}(\hat{\beta}|R)) = E_{R|R \in C_\xi}\{[M(\xi, R)^{-1}]\}. \tag{3.1}$$

For notational convenience, the subscript $R|R \in C_\xi$ of the expectation in (3.1) is dropped in what follows, so we write $E\{[M(\xi, R)^{-1}]\}$ instead of $E_{R|R \in C_\xi}\{[M(\xi, R)^{-1}]\}$.

The expectation is not normally available in closed form, so must be approximated. We propose to apply a second order Taylor series expansion to approximate the elements of the inverse matrix $M(\xi, R)^{-1}$, and then to take their expectation; see Sections 3.1 and 5 for illustrations of this approach. The approach of Imhof, Song and Wong (2002) can be viewed as a Taylor expansion of order one, where they implicitly approximate $E\{[M(\xi, R)^{-1}]\}$ by $[E\{M(\xi, R)\}]^{-1}$. They do not consider potential non-existence of the covariance matrix, so here the latter expectation is with respect to the (unconditional) distribution of R. For
v_ξ close to zero, the conditional and the unconditional distribution are similar; see also the case study in Section 5 where v_ξ is negligibly small due to the large sample size.

The order of the approximation can be viewed as either the 0th or 1st order. While no Taylor expansion has been applied here, it could be viewed as the 0th order expansion. But, as we are expanding the expression about the mean of the random variables, the first order expansion simplifies to the 0th order result. As our approach is obtained using a second Taylor expansion about the mean, we refer to the Imhof, Song and Wong (2002) (unconditional) approach as the 1st order approach, for consistency.

While the first order expansion usually provides a cruder approximation to the ‘true’ objective function, and thus somewhat less efficient designs, this approach has the advantage that established theory on optimal design, such as the use of equivalence theorems, is applicable. Hence we can often simplify design search considerably through analytical results. For second order approximations, convexity of the domain and thus of the objective function is no longer guaranteed, which prohibits the use of equivalence theorems. Hence, while optimal designs are more efficient, analytical results can only be established on a case by case basis, and design search is more challenging.

Theorem 1 shows that for a large class of MAR mechanisms and polynomial models, the D-optimal design found using a first order approximation has the same number of support points as it has parameters. This result corresponds to the contribution of De la Garza (1954) and Silvey (1980) in the conventional optimal design framework for finding the number and weight of support points of a D-optimal design. The proof of Theorem 1 can be found in Appendix A.1.

Theorem 1. Let $h(x) = 1/1 - P(x)$ and assume that for the MAR mechanism $P(x)$ the equation $h^{(2p)}(x) = c$ has at most one solution for every constant $c \in \mathbb{R}$. Then a D-optimal design for the polynomial model (2.2) of degree p has exactly $p + 1$ support points, with equal weights.

Hence design search can be restricted to $(p + 1)$-point designs, with known weights $w_i = 1/(p + 1), i = 1, \ldots, p + 1$. A further simplification is given in Lemma 2.

Lemma 1. Let $P(x)$ be a MAR mechanism that satisfies the conditions in Theorem 1 and is monotone, and let $\bar{x} = [l, u]$, where $l < u$. If $P(x)$ is strictly increasing, then the lower bound, l, is a support point of the D-optimal design. If $P(x)$ is strictly decreasing, then the upper bound, u, is a support point of the
D-optimal design.

Proof. For a continuous design \(\xi \) with \(p + 1 \) support points, we have

\[
|E\{M(\xi, R)\}| = \prod_{i=1}^{p+1} w_i \{1 - P(x_i^*)\} \prod_{1 \leq i < j \leq p+1} (x_i^* - x_j^*)^2,
\]

where we order the support points by size:

\[l \leq x_1^* < x_2^* < \cdots < x_{p+1}^* \leq u.\]

If \(P(x) \) is monotonic increasing in \(x \), \((1 - P(x))\) is largest at \(x_1^* = l \) and \((x_1^*-x_j^*)^2\) is largest for \(x_1^* = l \), for all values of \(x_j^* \) where \(j = 2, \ldots, p + 1 \). Hence \(l \) must be a support point. Analogously, if \(P(x) \) is monotonic decreasing, \((1 - P(x))\) and \((x_1^*-x_{p+1}^*)^2\), \(i = 1, \ldots, p \) will be maximised at \(x_{p+1}^* = u \).

For optimal designs based on a second order approximation to \(E\{[M(\xi, R)^{-1}]\} \), there is no corresponding result in general, but we have a similar result for a special case.

3.1. Illustration

To fix ideas, consider the simple linear regression model \((2.2)\) where \(p = 1 \), for \(D-, c-, \) and \(A\)-optimality. For a design region \(\mathcal{X} = [l, u] \), where \(l < u \), consider total sample size \(n \) and two support points \(x_1^* \) and \(x_2^* \). From Theorem 1, the \(D\)-optimal designs based on the first order approximation are two-point designs for a large variety of MAR mechanisms \(P(x) \). Hence finding the best two-point design for the second order approximation facilitates comparing the two approaches. Let \(n_1 = nw_1 \) responses \(\{y_1, \ldots, y_{n_1}\} \) be taken at experimental condition \(x_1^* \), and \(n_2 = n - n_1 = nw_2 \) responses \(\{y_{n_1+1}, \ldots, y_n\} \) at \(x_2^* \). We seek an optimal design

\[
\xi^* = \begin{pmatrix} x_1^* & x_2^* \\
1 & w_1 \\
2 & w_2 \end{pmatrix}
\]

based on a function of the approximated expression for \(E\{[M(\xi, R)^{-1}]\} \). To define the quantities in \((3.2)\) and below, we need that \(n_1 = nw_1 \) and \(n_2 = nw_2 \) are integers. To facilitate the numerical computation of the optimal designs, we only use the constraint \(w_1 + w_2 = 1 \) and then round \(nw_1^* \) and \(nw_2^* \) to the nearest integers, where \(w_1^* \) and \(w_2^* \) are the resulting optimal weights. Here,

\[
M(\xi, R)^{-1} = \frac{1}{(x_1^* - x_2^*)^2} \begin{pmatrix} x_1^{*2}Z_1 + x_2^{*2}Z_2 & -x_1^*Z_1 - x_2^*Z_2 \\
-x_1^*Z_1 - x_2^*Z_2 & Z_1 + Z_2 \end{pmatrix},
\]

\((3.2)\)

where \(Z_1 = \sum_{i=1}^{n_1} (1 - R_i) \) and \(Z_2 = \sum_{i=n_1+1}^{n} (1 - R_i) \) follow binomial distributions with parameters \(\{nw_1, 1 - P(x_1^*)\} \) and \(\{nw_2, 1 - P(x_2^*)\} \), respectively. As
\(M(\xi, R) \) is singular if \(Z_1 = 0 \) or \(Z_2 = 0 \), \(C_\xi = \{ R \in (0, 1)^n; Z_1 > 0, Z_2 > 0 \} \) and \(v_\xi = P(x_1)^{nw_1} + P(x_2)^{nw_2} - P(x_1)^{nw_1}P(x_2)^{nw_2} \). Hence we consider the corresponding zero truncated binomial distributions for \(Z_1 \) and \(Z_2 \), respectively. We aim to approximate

\[
E\{[M(\xi, R)^{-1}] \} = \frac{1}{(x_1^* - x_2^*)^2}
\]

\[
\begin{pmatrix}
x_1^2E\left(\frac{Z_1}{Z_1Z_2} \right) + x_2^2E\left(\frac{Z_2}{Z_1Z_2} \right) - x_1^*E\left(\frac{Z_1}{Z_1Z_2} \right) - x_2^*E\left(\frac{Z_2}{Z_1Z_2} \right) \\
x_1^*E\left(\frac{Z_1}{Z_1Z_2} \right) - x_2^*E\left(\frac{Z_2}{Z_1Z_2} \right) - E\left(\frac{Z_1}{Z_1Z_2} \right) + E\left(\frac{Z_2}{Z_1Z_2} \right)
\end{pmatrix}
\]

(3.3)

as the distribution of \(Z_i/(Z_iZ_j), j = 1, 2, \) is intractable. Since we consider zero truncated binomial distributions for \(Z_1 \) and \(Z_2 \), we can simplify \(E[Z_i/(Z_iZ_j) = E[1/Z_j] \). Taking expectation (with respect to the zero truncated binomial random variables) of a second order Taylor series expansion about \(E\{Z_j\} \) yields

\[
E\left(\frac{1}{Z_j} \right) \approx \frac{1}{E(Z_j)} + \frac{Var(Z_j)}{\{E(Z_j)\}^3} = \frac{1 - P(x_j)^{nw_j}}{(nw_j)^2(1 - P(x_j))^2}
\]

(3.4)

for \(j = 1, 2 \). A derivation of this result is given in Appendix A.2. If the missing data mechanism is MCAR, this expression simplifies to

\[
E\left(\frac{1}{Z_j} \right) \approx \frac{(1 - P)^2\{P + nw_j(1 - P)\}}{(nw_j)^2(1 - P)^2}
\]

(3.5)

independent of the values of the support points, where \(P = P(R_i = 1) \) is the probability that a response is missing completely at random.

After selecting a specific missing data mechanism \(P(x) \), the optimal design \(\xi^* \) can be found by minimising the criterion with respect to the support points and weights with constraints \(w_1 + w_2 = 1 \) and \(x_2^* > x_1^* \in \mathcal{X} \). For example, a \(D \)-optimal design minimises the determinant of (3.3),

\[
\frac{1}{(x_1^* - x_2^*)^2}E\left(\frac{1}{Z_2} \right) E\left(\frac{1}{Z_1} \right),
\]

(3.6)

over \(\mathcal{X} \); a \(c \)-optimal design, where \(c = (0 1)^T \), minimises

\[
\frac{1}{(x_1^* - x_2^*)^2}\left\{ E\left(\frac{1}{Z_2} \right) + E\left(\frac{1}{Z_1} \right) \right\}
\]

(3.7)

over \(\mathcal{X} \); an \(A \)-optimal design minimises

\[
\frac{1}{(x_1^* - x_2^*)^2}\left\{ (x_1^* + 1)E\left(\frac{1}{Z_2} \right) + (x_2^* + 1)E\left(\frac{1}{Z_1} \right) \right\}
\]

(3.8)
over \(X \), where the expectations are approximated by (3.4) or (3.5), depending on
the form of the missing data mechanism.

The proof of the next result is in Appendix A.3.

Theorem 2. For the linear regression model (2.2) with \(p = 1 \), take \(E\{[M(\xi, R)^{-1}] \) to be approximated by a second order Taylor expansion (conditional on \(Z_1, Z_2 > 0 \)), and the design interval \(X = [l, u] \).

(a) If \(nw_j \) is an integer \(\geq 1 \), \(j = 1, 2 \), and the missing data mechanism is MAR and monotone increasing (decreasing), then \(l \) (\(u \)) is a support point of the \(D \)- and the \(c \)-optimal designs among two-point designs. If \(l \geq 0 \) (\(u \leq 0 \)), this also holds for \(A \)-optimality.

(b) If the missing data mechanism is MCAR, then the \(D \)- and the \(c \)-optimal designs among the two-point designs are supported on \(l \) and \(u \). If \(l \geq 0 \) or \(u \leq 0 \), this also holds for the two-point \(A \)-optimal design.

Under the assumptions of Theorem 2(b), and for \(w_1, w_2 \) such that \(nw_j \geq 2 \), \(j = 1, 2 \), we believe the \(D \)- and the \(c \)-optimal two-point designs are equally weighted if \(P \) is sufficiently small relative to \(n \). The relationship is given approximately by \(P < 1 - 2/n \) for \(c \)-optimality, and by \(P < 1 - 2/n^{0.8} \) for \(D \)-optimality.

From Theorem 2(b), we would then see that, for realistic scenarios, the optimal designs under MCAR are the same as for the simple linear regression model without missing data. The lower/upper limit of the design interval is a support point, and thus the optimal design has the same support structure as the first order design from Lemma 2, but the weights and the other support point may differ. In particular, second order \(D \)-optimal designs are not necessarily equally weighted under MAR.

To have \(nw_j \geq 2 \), \(j = 1, 2 \), is sensible from a practical point of view. We need at least one observed value \(y_j \) from each support point in order to estimate the model parameters, so the risk of non-existence of the estimates would be high if we only took one run in any point.

In the next section, we find some optimal designs for the two approximation strategies and illustrate their performance through simulations.

4. Simulation Study

We set the design region \(X = [0, 2] \) and sample size \(n = 30 \). For a given design and value of \(\sigma^2 > 0 \) we simulated response variables by \(Y_i = 1 + x_i + \epsilon_i \), \(\epsilon_i \overset{iid}{\sim} N(0, \sigma^2) \), \(i = 1, \ldots, n \). We introduced missing values by specifying a MAR mechanism through
Table 1. Simulation output of 200,000 replications for two designs with $w_1 = 0.5$, $P(x_1^*) = 0.01$ and $n = 30$. The penultimate row shows the frequency of the cases where $M(\xi, R)$ was singular.

<table>
<thead>
<tr>
<th>ξ</th>
<th>${0, 1}$</th>
<th>${0, 1.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1, 1] element of (3.3)</td>
<td>0.06740</td>
<td>0.06740</td>
</tr>
<tr>
<td>First order Taylor series approximation</td>
<td>0.06736</td>
<td>0.06736</td>
</tr>
<tr>
<td>Second order Taylor series approximation</td>
<td>0.06740</td>
<td>0.06740</td>
</tr>
<tr>
<td>[2, 2] element of (3.3)</td>
<td>0.15242</td>
<td>0.10375</td>
</tr>
<tr>
<td>First order Taylor series approximation</td>
<td>0.15078</td>
<td>0.09628</td>
</tr>
<tr>
<td>Second order Taylor series approximation</td>
<td>0.15222</td>
<td>0.10177</td>
</tr>
<tr>
<td>[1, 2] element of (3.3)</td>
<td>−0.06740</td>
<td>−0.04494</td>
</tr>
<tr>
<td>First order Taylor series approximation</td>
<td>−0.06736</td>
<td>−0.04490</td>
</tr>
<tr>
<td>Second order Taylor series approximation</td>
<td>−0.06740</td>
<td>−0.04493</td>
</tr>
<tr>
<td>Determinant of (3.3)</td>
<td>0.00573</td>
<td>0.00497</td>
</tr>
<tr>
<td>First order Taylor series approximation</td>
<td>0.00562</td>
<td>0.00447</td>
</tr>
<tr>
<td>Second order Taylor series approximation</td>
<td>0.00572</td>
<td>0.00484</td>
</tr>
<tr>
<td>No. of cases failed</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>$P(x_2^*)$</td>
<td>0.20085</td>
<td>0.55342</td>
</tr>
</tbody>
</table>

$P(x_i) = \frac{\exp(\gamma_0 + \gamma_1 x_i)}{1 + \exp(\gamma_0 + \gamma_1 x_i)}$

with $\gamma_0 = -4.572$ and $\gamma_1 = 3.191$. The positive value of γ_1 has the mechanism monotone increasing with x_i. The logistic model is commonly used for modelling the missing data mechanism (Ibrahim and Lipsitz (1999), Bang and Robins (2005), Mitra and Reiter (2011, 2016)) as in practical situations, it allows the estimation of parameters in the missing data model using a logistic regression. However, there are many other models for the missing data mechanism (Little (1995)) and our approach is compatible with any choice of missing data model. We took a simple linear regression model fitted to the complete case data, obtaining estimates of the coefficients, $(\hat{\beta}_0, \hat{\beta}_1)$, and their variances.

The lower bound of X, 0, was chosen as one of the support points of the two-point optimal design, denoted x_1^*. We considered several designs of the form $\xi = (0, x_2^*; 0.5, 0.5)$ and, under each design, compared the two approaches for approximating elements of the matrix specified in (3.3), as well as various relevant functions of this matrix. For each design, we repeatedly simulated incomplete data as noted and obtained the estimates for (3.3) by averaging the elements in $M(\xi, R)^{-1}$, given in (3.2), across those replications where $M(\xi, R)^{-1}$ existed. Treating these empirical means as the true elements of the matrix of interest, $E_{R|R \in C_\xi} \{M(\xi, R)^{-1}\}$, we compared the two approximations.
Table 2. Optimal designs found by using 1st and 2nd order Taylor series approximations to (3.3) respectively, for the optimality criterion denoted by the subscript, for $n = 30$ and logistic MAR mechanism with $\gamma_0 = -4.572$ and $\gamma_1 = 3.191$. The other support point is $x^*_1 = 0$ with $w_1 = 1 - w_2$ and $P(x^*_1) = 0.01$. ξ is the A, c, and D-optimal design that assumes fully observed responses.

<table>
<thead>
<tr>
<th>ξ_1</th>
<th>ξ_{1st}</th>
<th>ξ_2</th>
<th>ξ_{2nd}</th>
<th>ξ_{2nd}</th>
<th>ξ_{1st}</th>
<th>ξ_D</th>
<th>ξ_D</th>
<th>ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^*_2</td>
<td>1.4630</td>
<td>1.51466</td>
<td>1.5497</td>
<td>1.60059</td>
<td>1.3360</td>
<td>1.37660</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>w_2</td>
<td>0.4664</td>
<td>0.4539</td>
<td>0.6257</td>
<td>0.6208</td>
<td>0.5110</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>$P(x^*_2)$</td>
<td>0.5241</td>
<td>0.5650</td>
<td>0.5922</td>
<td>0.6308</td>
<td>0.4234</td>
<td>0.4553</td>
<td>0.8594</td>
<td></td>
</tr>
<tr>
<td>v_ξ</td>
<td>1.186 e-04</td>
<td>3.378 e-04</td>
<td>5.359 e-05</td>
<td>0.0001577</td>
<td>1.897 e-06</td>
<td>7.4897 e-06</td>
<td>0.10302</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 presents the simulation results over 200,000 replications from designs where $x^*_2 = 1$ and $x^*_2 = 1.5$. For when $x^*_2 = 1.5$, we see that for the c-optimality criterion for minimising the variance of $\hat{\beta}_1$, the first order approximation has a bias of 7.2%, while for the second order approximation it is 1.9%. For this same design, the trace of matrix (3.3) (A-optimality) has a bias of 4.4% and the determinant of the matrix (D-optimality) has a bias of 10.1% when using the first order approximation, while the biases reduce to 1.1% and 2.6%, respectively, when using the second order approximation. In general, we can see that the second order approximation yields considerably better approximations of the elements of (3.3) and relevant functions of this matrix.

We found optimal values for x^*_2 and w_2 over $X = [0, 2]$, with $w_1 = 1 - w_2$ and the missing mechanism defined as above, using the Minimize function in Mathematica. Table 2 presents the optimal values when constructing A, c- and D-optimal designs. We see that using 2nd order approximations results in an upper design point smaller than the upper design point when using the first order approximation. The final row shows the probability, v_ξ, that the covariance matrix was singular. For more complicated scenarios, this probability can be calculated as follows (see Imhof, Song and Wong (2002)):

$$v_\xi = \sum_{j=0}^{m-1} \sum_{S \subset \{1, \ldots, k\}} P(n_i > 0 \text{ if } i \in S; n_i = 0 \text{ if } i \notin S)$$

$$= \sum_{j=0}^{m-1} \sum_{S \subset \{1, \ldots, k\}} \prod_{i \in S} [1 - P(x_i)^{Nw_i}] \prod_{i \notin S} P(x_i)^{Nw_i}.$$

Here v_ξ is consistently smaller when adopting the second order approach. We additionally considered a design that assumes the data are fully observed.
Table 3. Probabilities v_ξ for D-optimal designs found using different approximations. The MAR mechanism follows the logistic model with $\gamma_1 = 3.191; N = 30; x_1 = 0$ and $w_1 = 1 - w_2$.

<table>
<thead>
<tr>
<th>γ_0</th>
<th>2nd order D-optimal design</th>
<th>1st order D-optimal design</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.572</td>
<td>1.3360 0.5110 1.897 e-06</td>
<td>1.3766 0.5 7.490 e-06</td>
</tr>
<tr>
<td>-2.572</td>
<td>0.9260 0.5182 3.088 e-04</td>
<td>0.9830 0.5 0.001169</td>
</tr>
<tr>
<td>-1.572</td>
<td>0.7791 0.5162 5.4058 e-03</td>
<td>0.8362 0.5 0.01325</td>
</tr>
</tbody>
</table>

and places half the observations at the end points of the design space, here taken to be $[0, 2]$. Clearly v_ξ is considerably higher here than for other designs, and this is motivation for considering the potential for missing data at the design stage of an experiment.

To investigate the issue of possible singularity of the covariance matrix further, we considered the effect of varying the parameter values for the missing data mechanism, resulting in different probabilities of missingness at the design points. Table 3 shows some examples of v_ξ computed using the D-optimal designs for the simple linear model found for the different approximation methods with logistic MAR mechanisms. As the probability of a missing response increases, the optimal designs found by the first order approach have a consistently higher failure rate in estimating the model parameters.

To further illustrate performance, for each design given in Table 2 we repeatedly simulated the incomplete data 200,000 times as noted, setting $\sigma^2 = 1$. In each incomplete data set, we obtained the covariance matrix for $\hat{\beta}$ across the replications. Table 4 summarises the performance of the designs derived under the different optimality criteria and approximations. The designs obtained under A-optimality have the smallest trace of the covariance matrix for $\hat{\beta}$, as expected, and are smaller for the second order approximation than for the first order approximation. This pattern is repeated for the other optimality criteria. The design obtained under c-optimality from the 2nd order approximation results in the smallest variance for $\hat{\beta}_1$, and the design obtained under D-optimality from the 2nd order approximation results in the smallest determinant of the covariance matrix for $\hat{\beta}$. The design that assumes fully observed outcomes performs the worst across all optimality criteria, and has the greatest proportion of cases where one could not estimate the regression coefficients, as expected. This highlights the importance of considering the potential for missing data at the design stage. Further, the second order approximation consistently resulted in fewer
Table 4. Simulation outputs of 200,000 replications for different designs. The numbers in the last row indicate the frequency of the cases where $M(\xi, R)$ becomes singular.

<table>
<thead>
<tr>
<th>sample var($\hat{\beta}_1$)</th>
<th>tr(sample var($\hat{\beta}$))</th>
<th>sample var($\hat{\beta}$)</th>
<th>No. of cases failed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ^*_A 2nd</td>
<td>1.0690e-01</td>
<td>1.6992e-01</td>
<td>4.8805e-03</td>
</tr>
<tr>
<td>ξ^*_A 1st</td>
<td>1.0823e-01</td>
<td>1.7123e-01</td>
<td>5.0880e-03</td>
</tr>
<tr>
<td>ξ^*_c 2nd</td>
<td>9.7359e-02</td>
<td>1.8894e-01</td>
<td>5.4195e-03</td>
</tr>
<tr>
<td>ξ^*_c 1st</td>
<td>9.8102e-02</td>
<td>1.8968e-01</td>
<td>5.7112e-03</td>
</tr>
<tr>
<td>ξ^*_D 2nd</td>
<td>1.0400e-01</td>
<td>1.7590e-01</td>
<td>4.5807e-03</td>
</tr>
<tr>
<td>ξ^*_D 1st</td>
<td>1.0486e-01</td>
<td>1.7197e-01</td>
<td>4.6526e-03</td>
</tr>
<tr>
<td>ξ</td>
<td>1.4029e-01</td>
<td>2.0063e-01</td>
<td>7.5657e-03</td>
</tr>
</tbody>
</table>

cases where it was not possible to estimate the parameters due to the missing data. Thus, more motivation for adopting the 2nd order approximation over the 1st order here.

5. Application: Redesigning a Study on Alzheimer’s Disease

To illustrate our approach, we used data from an Alzheimer’s disease study that investigated the benefits of administering the treatments donepezil, memantine, and the combination of the two, to patients over a period of 52 weeks, on various quality of life measures. See [Howard et al. (2012)] for full details of the study. The number of patients included in the primary intention-to-treat sample was 291, with 72 in the placebo group (Group 1), 74 in the memantine treatment group (Group 2), 73 in the donepezil treatment group (Group 3), and 72 in the donepezil-memantine group (Group 4).

In the per-protocol analysis, 43 patients were excluded in Group 1, 32 in Group 2, 23 in Group 3 and 21 in Group 4. Considering these patients as data missing at random, a logistic regression model was fitted to the data,

$$P(R_i = 1|x_i, v_i) = \frac{\exp(\gamma_0 + \gamma_1 x_i + \gamma_2 v_i)}{1 + \exp(\gamma_0 + \gamma_1 x_i + \gamma_2 v_i)},$$

where $x_i, v_i \in \{0, 1\}$ represent the level of donepezil and memantine respectively (with 1 indicating the treatment is applied) for patient i. The estimated regression coefficients were $\hat{\gamma}_0 = 0.26365$, $\hat{\gamma}_1 = -0.89888$, and $\hat{\gamma}_2 = -0.41085$. We took a linear regression model fit to the data,

$$Y_i = \beta_0 + \beta_1 x_i + \beta_2 v_i + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2), \quad i = 1, \ldots, n,$$

with Y_i corresponding to the outcome value for patient i. We took σ^2 as known, and fixed to 1 without loss of generality. The specific values of $\beta_0, \beta_1, \beta_2$ do not affect the performance of the different designs. We take the four groups
Table 5. A- and D-optimal designs for the Alzheimer’s example. The numbers in parentheses indicate the expected number of missing values in the respective group.

<table>
<thead>
<tr>
<th>n1</th>
<th>n2</th>
<th>n3</th>
<th>n4</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w1</td>
<td>w2</td>
<td>w3</td>
<td>w4</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>ξ_A</td>
<td>108(61.1)</td>
<td>64(29.6)</td>
<td>64(22.2)</td>
<td>55(14.3)</td>
</tr>
<tr>
<td>0.371</td>
<td>0.220</td>
<td>0.219</td>
<td>0.190</td>
<td></td>
</tr>
<tr>
<td>ξ_D</td>
<td>60(33.9)</td>
<td>72(33.4)</td>
<td>78(27.0)</td>
<td>81(21.1)</td>
</tr>
<tr>
<td>0.206</td>
<td>0.248</td>
<td>0.268</td>
<td>0.278</td>
<td></td>
</tr>
</tbody>
</table>

G_1–G_4, as G_1: x_i^* = 0, v_i^* = 0 with n_1 experimental units; G_2: x_i^* = 0, v_i^* = 1 with n_2 experimental units; G_3: x_i^* = 1, v_i^* = 0 with n_3 experimental units; G_4: x_i^* = 1, v_i^* = 1 with n_4 experimental units.

In so doing, we have fixed the design points through the values of (x, v) as (0, 0), (0, 1), (1, 0), and (1, 1). The design problem is to find the optimal number of patients to allocate to the four groups under the assumption the analyst fits the linear regression model (5.1) using the complete cases. The A-optimal design for this model minimises an appropriate approximation to

\[
E\left[\{M(\xi, R)^{-1}_{(1,1)}\}\right] + E\left[\{M(\xi, R)^{-1}_{(2,2)}\}\right] + E\left[\{M(\xi, R)^{-1}_{(3,3)}\}\right]
\]

\[
= E\left(\frac{Z_1Z_2 + Z_1Z_3 + 2Z_1Z_4 + 3Z_2Z_3 + 2Z_2Z_4 + 2Z_3Z_4}{Z_1Z_2Z_3 + Z_1Z_2Z_4 + Z_1Z_3Z_4 + Z_2Z_3Z_4}\right),
\]

where Z_k = \sum_{r \in G_k}(1 - R_r) is the sum of the response indicators for Group G_k, k = 1, \ldots, 4, subject to the constraints \(\sum_{k=1}^{4} w_k = 1\) and \(w_k \geq 0, k = 1, \ldots, 4\). For a design \(\xi\), the existence set is \(C_\xi = \{R \in \{0,1\}^n; \text{at least 3 of } Z_1, Z_2, Z_3, Z_4 \text{ are positive}\}\). See Appendix A.4 for the derivation of the objective function for A-optimality. The corresponding expression for D-optimality is not given here, but it can be easily obtained through the use of analytical software such as Maple 17 or Mathematica.

Setting n = 291 and using the estimated MAR mechanism, the optimal design is found by using the Minimize function in Mathematica, subject to the weight constraint. Table 5 shows the allocation scheme of a A- and a D-optimal design, denoted \(\xi_A^*\) and \(\xi_D^*\). In this example with its large sample size, we did not find any significant differences between the designs obtained through the first and second order approximations and so have not distinguished between them here. The probability the regression coefficients cannot be estimated here is small for both approximation approaches (less than 10^{-20}), so there is no significant drawback in using the 1st order approximation.

Using the procedure of Section 4, we assessed the performance of the op-
Table 6. Simulated values for the A- and the D-objective function, respectively, for different designs.

<table>
<thead>
<tr>
<th></th>
<th>A-optimality</th>
<th>D-optimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ_A^*</td>
<td>0.066327</td>
<td>3.722e-06</td>
</tr>
<tr>
<td>ξ_D^*</td>
<td>0.072111</td>
<td>3.3028e-06</td>
</tr>
<tr>
<td>ξ_{ori}</td>
<td>0.069416</td>
<td>3.3439e-06</td>
</tr>
</tbody>
</table>

Optimal designs by simulating incomplete data from the different designs using (5.1), choosing values of $\beta_0, \beta_1, \beta_2$ to be 1, 1, 1. The missing values were introduced into the response using the MAR mechanism specified above. From each incomplete data set, regression coefficients $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2$ were estimated from the complete cases. We repeated this process 350,000 times, so as to empirically obtain the covariance matrix for $\hat{\beta}$ for each design. The original design, $\xi_{ori} = (n_1, n_2, n_3, n_4) = (72, 74, 73, 72)$, with expected missing observations $(40.7, 34.3, 25.3, 18.7)$ was considered here for comparison.

Table 6 presents the simulated values for the A- and the D-objective function for the different designs. As expected, ξ_A^* has the smallest value for the trace of the simulated covariance matrix, and ξ_D^* has the smallest determinant of the simulated covariance matrix. Both designs result in an improved criterion value over the original design used and so could potentially have improved performance if they had been applied. For example, the A-optimal design would be expected to achieve a similar trace of the sample covariance matrix as the original design, while requiring only 95.55% of the overall sample size, or 13 fewer patients.

6. Discussion and Remarks

We have proposed a theoretical framework for designing experiments that takes into account the possibility of missing values, broadening the approach of [Imhof, Song and Wong (2002)]. For large sample sizes, the two approaches tend to lead to similar designs. In these situations the earlier approach might be preferred for practical reasons. The sample size of 30 we considered in Section 4 is typical for Phase II clinical trials, where sample sizes are normally no more than 50. Our investigation in Section 4 showed that our refinement offered benefits.

We have described our methodology for the general linear regression model, and illustrated its benefits in one- and two-variable settings, for simplicity. The necessary Taylor expansions could then be derived by hand. For more complicated linear models, in particular if the size of the covariance matrix is large, it is recommended to use symbolic computation software, such as Mathematica,
for deriving the second-order approximation. Numerical computation of optimal designs is challenging since convexity of the objective function is not guaranteed, but is feasible e.g. using metaheuristic search algorithms such as PSO; see, e.g., Chen et al. (2015).

Our methodology is also applicable to nonlinear and generalised linear regression models. For nonlinear regression models with normally distributed errors, this can readily be seen by considering linearisation of the regression function; see e.g. Atkinson, Donev and Tobias (2007), Chapter 17.2. More generally, the equality from (3.1) will only hold approximately. So while the framework is still applicable, this adds another level of approximation.

We have assumed that complete case analysis is applied. While for many types of models such as regression models under a MAR mechanism, parameter estimates are unbiased, there are other ways to handle the missing value problem, e.g. multiple imputation. Analysing the incomplete data in this way does not necessarily lead to the same designs as ours; this is an interesting area for future research. Another area for future research arises when the assumption of MAR can no longer be expected to hold.

Supplementary Materials

More details of the discussion following Theorem 2 can be found in the online supplement.

Acknowledgment

The first author’s research was funded by the Institute for Life Sciences at the University of Southampton. We would like to acknowledge Clive Holmes, Robert Howard, and Patrick Philips for supplying us with the data from the Domino study RCTN49545035 (funded by the MRC and Alzheimer’s Society UK), and Dr. Zhi Ouyang who provided the proof of Theorem 2(a). We would also like to thank two reviewers and an associate editor whose insightful comments led to considerable improvements of this paper.

Appendix

A.1. Proof of Theorem 1

We can prove that the D-optimal design has $p + 1$ support points using the general equivalence theorem. Assume ξ^* has $p + 2$ support points. Consider
\[g(x) := \frac{f^T(x) M^{-1}(\xi^*) f(x)}{p+1} \leq \frac{1}{1 - P(x)} := h(x), \]

where \(g(x) \) is a polynomial of degree 2p, which has to be less than \(h(x) \) over the region \([l, u]\). We order the \(p + 2 \) values for \(x \) by size,

\[l \leq x_1^* < x_2^* < \cdots < x_{p+2}^* \leq u \quad (A.1) \]

such that the above equality is achieved. This implies \(g(x_i^*) \) touches \(h(x_i^*) \) and \(g'(x_i^*) = h'(x_i^*) \) for \(i = 2, 3, \ldots, p+1 \). From \((A.1) \), there are values \(x_1', \ldots, x_{p+1}' \) with \(g'(x_i') = h'(x_i') \) such that \(x_1^* < x_1' < x_2^* < x_2' < x_3^* < \cdots < x_{p+1}^* < x_{p+1}' < x_{p+2}^* \) by the Mean Value Theorem.

Hence we have a total of \(2p + 1 \) values where \(g \) and \(h \) have equal derivatives, and \(g'(x) \) is a polynomial of degree \(2p - 1 \). Applying the Mean Value Theorem again to \(g' \) and \(h' \), there must be \(2p \) values where \(g'' \) and \(h'' \) are equal. By repeating this process, we find that there must be \(2 \) values where the \(2p^{th} \) derivatives \(g^{(2p)} \) and \(h^{(2p)} \) are equal, and \(g^{(2p)}(x) \) is a constant since \(g \) is a polynomial of degree \(2p \). This is a contradiction since we assumed that \(h^{(2p)}(x) = c \) as has at most one solution in \(\mathbb{R} \) for any constant \(c \). The same contradiction occurs if we assume \(\xi^* \) has more than \(p + 2 \) support points.

A.2. Second order Taylor series approximation

Let \(X \) be a discrete random variable with expectation \(\mathbb{X} \). We expand \(H(X) = 1/X \) about the point \(\mathbb{X} \) into a second order Taylor series:

\[H(X) \approx \frac{1}{\mathbb{X}} - \frac{X - \mathbb{X}}{\mathbb{X}^2} + \frac{(X - \mathbb{X})^2}{\mathbb{X}^3}. \]

Since \(E\{(X - \mathbb{X})\} = 0 \) and \(E\{(X - \mathbb{X})^2\} = Var(X) \), \(E\{H(X)\} \approx 1/E[X] + Var(X)/E[X]^3 \). For the zero truncated binomial random variable \(Z_j \) with moments

\[E[Z_j] = \frac{nw_j(1 - P(x_j^*))}{1 - P(x_j^*)^{nw_j}}, \]

\[Var(Z_j) = \frac{nw_j(1 - P(x_j^*))[P(x_j^*) - \{P(x_j^*) + nw_j(1 - P(x_j^*))\}P(x_j^*)^{nw_j}]}{(1 - P(x_j^*)^{nw_j})^2}, \]

we obtain

\[E\left(\frac{1}{Z_j}\right) \approx \frac{1}{E\{Z_j\}^3} + \frac{Var(Z_j)}{(E\{Z_j\})^3} = \frac{(1 - P(x_j^*)^{nw_j})^2\{P(x_j^*) + nw_j(1 - P(x_j^*))\}}{(nw_j)^2(1 - P(x_j^*))^2}. \]

A.3. Proof of part (a) of Theorem 2

Without loss of generality let \(x_1^* < x_2^* \), denote \(nw_j \) by \(n_j \), \(j = 1, 2 \) where \(n_j \)
is a positive integer, and assume \(P(x) \) is monotone increasing in \(x \).

Step 1: We show that the second order approximation to \(E[1/Z_1] \) is increasing in \(x_1^* \) for \(n_1 \geq 2 \) and constant for \(n_1 = 1 \).

Denote the right hand side of (3.4) for \(E[1/Z_1] \) (times \(n_1^2 \)) by \(f_{n_1}(P) \), and note that for increasing \(P(x) \), it suffices to show that for all \(n_1 \geq 2 \), \(f_{n_1}(P) \) is increasing in \(P \in (0, 1) \). Moreover, \((1 - P^{n_{11}})/(1 - P) = \sum_{k=0}^{n_{11} - 1} P^k \), so

\[
f_{n_1}(P) = \left(\sum_{k=0}^{n_{11} - 1} P^k \right)^2 [P + n_1(1 - P)]
\]

with derivative

\[
f'_{n_1}(P) = \left(\sum_{k=0}^{n_{11} - 1} P^k \right) \left[2 \left(\sum_{k=0}^{n_{11} - 2} (k + 1)P^k \right) \{P + n_1(1 - P)\} + (1 - n_1) \sum_{k=0}^{n_{11} - 1} P^k \right].
\]

The first factor is positive. Rearranging the term in square brackets yields

\[
2n_1 \left(\sum_{k=0}^{n_{11} - 2} (k + 1)P^k \right) + 2(1 - n_1) \left(\sum_{k=1}^{n_{11} - 1} kP^k \right) + (1 - n_1) \sum_{k=0}^{n_{11} - 1} P^k
\]

\[
= n_1 + 1 + \left(\sum_{k=1}^{n_{11} - 2} P^k \{n_1 + 1 + 2k\} \right) + P^{n_{11} - 1}(1 - n)(2n - 1)
\]

\[
\geq P^{n_{11} - 1} \left[n_1 + 1 + \left(\sum_{k=1}^{n_{11} - 2} \{n_1 + 1 + 2k\} \right) + (1 - n)(2n - 1) \right] = 0
\]

since \(P^{n_{11} - 1} \leq 1 \) and \(P^{n_{11} - 1} \leq P^k \) for \(k \leq n_1 - 2 \). The term in square brackets can now easily be shown to be zero. Hence \(f_{n_1}(P(x)) \) is minimised when \(x_1^* = l \).

If \(n_1 = 1 \), \(f_{n_1}(P) = 1 \), since the zero truncated Binomial random variable \(Z_1 \) can only take the value 1.

Step 2: The second order approximation for \(E[1/Z_2] \) does not depend on \(x_1^* \). Since \(x_1^* = l \) minimises \(1/(x_1^* - x_2^*)^2 \), and all expressions are non-negative, the objective functions in (3.6) and (3.7) are both minimised when \(x_1^* = l \). If \(l \geq 0 \), \((x_1^{*2} + 1)\) is also increasing in \(x_1^* \), and the result for \(A \)-optimality follows.

An analogous argument shows that \(x_2^* = u \) minimises (3.6), (3.7) and, for \(u \leq 0 \), also (3.8) if \(P(x) \) is monotone decreasing.

Proof of Theorem 2(b) The right hand side of (3.5) does not depend on the support points. Hence the objective functions in (3.6) and (3.7) are minimised with respect to \(x_1^* \) and \(x_2^* \) when the factor \(1/(x_1^* - x_2^*)^2 \) is minimised. This is achieved by setting \(x_1^* = l \) and \(x_2^* = u \).

Taking partial derivatives in (3.8) with respect to \(x_1^* \) and \(x_2^* \), shows that
regardless of the values of the expression in (3.5) the derivative with respect to
$x_1^* (x^*_2)$ is non-negative (non-positive) if $l \geq 0$ or $u \leq 0$. Hence the A-objective
function is minimised when $x_1^* = l$ and $x_2^* = u$.

A.4. The covariance matrix from the Alzheimer’s example

$$[M(\xi, R)]^{-1} = \frac{1}{|M(\xi, R)|}$$

$$
\begin{pmatrix}
Z_2 Z_3 + Z_2 Z_4 + Z_4 Z_3 & -(Z_2 + Z_4) Z_3 & -(Z_3 + Z_4) Z_2 \\
-(Z_2 + Z_4) Z_3 & (Z_2 + Z_4) (Z_1 + Z_3) & -Z_4 Z_1 - Z_2 Z_3 \\
-(Z_3 + Z_4) Z_2 & -Z_4 Z_1 - Z_2 Z_3 & (Z_3 + Z_4) (Z_1 + Z_2)
\end{pmatrix},
$$

where $|M(\xi, R)| = Z_1 Z_2 Z_3 + Z_1 Z_2 Z_4 + Z_1 Z_3 Z_4 + Z_2 Z_3 Z_4$, with trace

$$
\frac{Z_1 Z_2 + Z_1 Z_3 + 2 Z_1 Z_4 + 3 Z_2 Z_3 + 2 Z_2 Z_4 + 2 Z_3 Z_4}{Z_1 Z_2 Z_3 + Z_1 Z_2 Z_4 + Z_1 Z_3 Z_4 + Z_2 Z_3 Z_4},
$$

where $Z_k = \sum_{i \in G_k} (1 - R_i)$ is the sum of the response indicators in Group G_k, $k = 1, \ldots, 4$. A bivariate second order Taylor expansion of F/G about $E[F]$ and
$E[G]$, where $F = Z_1 Z_2 + Z_1 Z_3 + 2 Z_1 Z_4 + 3 Z_2 Z_3 + 2 Z_2 Z_4 + 2 Z_3 Z_4$ and $G = Z_1 Z_2 Z_3 + Z_1 Z_2 Z_4 + Z_1 Z_3 Z_4 + Z_2 Z_3 Z_4$, yields

$$
E \left(\frac{F}{G} \right) \approx \frac{E[G^2]}{(E[G])^3} - \frac{E[FG]}{(E[G])^2} + \frac{E[F]}{E[G]}.
$$

The A-objective function can now be found by evaluating the right hand side of this approximation. For simplicity, we used zero-truncated binomial distributions for all Z_1, Z_2, Z_3, and Z_4, when for existence only three of them would have needed to be truncated. This is justified due to the large sample size.

References

MRC Biostatistics Unit, University of Cambridge School of Clinical Medicine, Cambridge Institute of Public Health, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge, CB2 0SR, UK.

E-mail: kim.lee@mrc-bsu.cam.ac.uk

School of Mathematics, Building 54, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK.

E-mail: S.Biedermann@soton.ac.uk

Department of Mathematics and Statistics, Fylde College, Lancaster University, Lancaster, LA1 4YF, UK.

E-mail: r.mitra@lancaster.ac.uk

(Received June 2015; accepted April 2017)