Designing an Assistant for the Disclosure and Management of Information about Needs and Support: the ADMINS project

Conference or Workshop Item

How to cite:

For guidance on citations see FAQs.

© 2020 The Authors

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/3373625.3418017

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Designing an Assistant for the Disclosure and Management of Information about Needs and Support: the ADMINS project

Francisco Iniesto
Institute of Educational Technology, The Open University, Milton Keynes, United Kingdom
francisco.iniesto@open.ac.uk

Kate Lister
Institute of Educational Technology, The Open University, Milton Keynes, United Kingdom
kate.lister@open.ac.uk

Tim Coughlan
Institute of Educational Technology, The Open University, Milton Keynes, United Kingdom
tim.coughlan@open.ac.uk

Wayne Holmes
Nesta, London, United Kingdom
wayne.holmes@nesta.org.uk

ABSTRACT

In this paper, we describe accessible design considerations for the Assistants for the Disclosure and Management of Information about Needs and Support project (ADMINS). In ADMINS, artificial intelligence (AI) services are being used to create a virtual assistant (VA), which is being designed to enable students to disclose any disabilities, and to provide guidance and suggestions about appropriate accessible support. ADMINS explores the potential of a conversational user interface (CUI) to reduce administrative burden and improve outcomes, by replacing static forms with written and spoken dialogue. Students with accessibility needs often face excessive administrative burden. A CUI could be beneficial in this context if designed to be fully accessible. At the same time, we recognise the broader potential of CUIs for these types of processes, and the project aims to understand the multiple opportunities and challenges, using participatory design, iterative development and trials evaluations.

CCS CONCEPTS

• Computing methodologies → Intelligent agents; • Information systems → Expert systems; • Social and professional top-ics → People with disabilities.

KEYWORDS

Conversational user interfaces, chatbots, virtual assistants, artificial intelligence, accessibility, participatory design

1 BACKGROUND

Filling in online forms and applications is ubiquitous in modern life. This places a particular burden on people who have accessibility needs [1]. They are commonly required to provide detailed and personal information about themselves in order to access essential support for independent living and study. Those who are required to complete forms may have limited knowledge of the information or terminology expected of them and may not know exactly how to express their needs and conditions for these purposes. They could also benefit from suggestions based on the information they provide, which could help them immediately, rather than waiting for an application for support to be approved. Finally, after the form is submitted, they may need to communicate additional or changing needs at a later point. However, the repetition of information and form filling often required to achieve this can be inefficient and stressful.

The number of students who require accessibility support to be able to access tertiary education is increasing every year [2, 3]. However, in previous research, we found that the requirement to complete administrative processes by students with accessibility needs created multiple negative impacts, including the potential for negative effects on mental health, time available to study, and exacerbation of the person’s disabilities [4]. Participants reported having to provide similar personal information in different situations repeatedly, and that the design of forms and documentation added complexity and did not offer them an effective way to express their needs.

Our research [4], also revealed that the most challenging processes were those that were intended to provide support and adjustments (i.e. applications for government or institutional disability support). These require complex individual circumstances and needs to be described accurately, but they depend on forms that use restrictive designs, generic medical categorisations, and assessment processes that can be time-consuming and stressful. In summary, for students with accessibility needs, form-filling (especially the typically static forms) is at best an unwanted burden, and at worst a barrier to accessing and succeeding in education right from the initial stages of their educational experience.

Meanwhile, other research suggests that conversational user interfaces (CUIs) present opportunities for users with accessibility needs [5–7]. CUIs can perform tasks for users based on commands
through online chat or interpreting human speech and responding
via synthesised voices; allowing flexibility, personalisation of the
experience and alternative modes of communication. CUIs could
enable more efficient and effective access to support for people with
accessibility needs. However, there is little research to date that
explores how to design CUIs to be accessible [8], or how best to
use them to support people with accessibility needs [9].

2 ADMINS

2.1 Context of the project

We are initially developing the ADMINS assistant in the context of
The Open University (OU) UK, an online and distance university
which currently supports more than 20,000 students who have
declared disabilities. These students are our primary audience. The
flexibility offered by online and distance education is attractive to
many students with accessibility needs. For example, it enables
them to take more time over their studies or to study from home
[11]. Currently, the OU uses a combination of online forms and
conversations with advisors to assess the needs of thousands of
students who declare a disability, a process that is challenging
and time-consuming both for the students and the institution. The
form is designed to support students to report their needs and any
existing strategies and technologies they use, but students have
reported that they find it challenging [4] and form responses often
lack detail. Conversations with expert human advisors are used to
to offer suggestions and build a more detailed and personal profile.
However, some students do not take part in a telephone call, which
adds to the challenges of providing all students with a timely and
beneficial conversation about their support.

2.2 Overview of the design

To design the VA and its initial conversation flow, we analysed the
current Disability Support Form (DSF) and examples of completed
forms, together with a set of recorded telephone conversations
between advisors and students. More than 46 recordings which
have been analysed searching for patterns using a thematic analysis
perspective. That has helped us to identify, for example, several key
moments in the disability disclosure process where information
from the student is required: (1) how disability might affect the
university study, (2) alternative formats to study and (3) to work
with tutors including tutorials and exam arrangements.

In addition, ADMINS is following a participatory-design ap-
proach [12], which involves both understanding our students’ ac-
cessibility needs and preferences and the advisor experiences as
experts in the conversations that we intend the assistant to be able
to hold. Student consultants have been employed to provide sub-
stantial guidance to the project. We have run two workshops with
a total of 13 students and 8 advisors participating. These included
Wizard of Oz, brainstorming, visualisations, storytelling and re-
flexive activities to discuss aspects of the design of the VA such as the
conversation flow and persona.

The VA development flow includes concept modelling, prototype
design, expert-based and user evaluations [13], for that reason, we
have analysed the feedback from the workshops and student con-
sultants in three critical design principles using thematic analysis
from our notes: conceptual, conversational and personality:

- Conceptual design. The VA needs to provide clear user ex-
 pectations of the actions that are possible to achieve through
 its use [14]. University forms are oriented to help staff to fill
 in the student’s profile (i.e. the way questions are framed are
 advisor oriented) while the VA is student oriented.

- Conversational design. The importance of user engagement
 while designing the conversation in a CUI is well docu-
 mented [15]. The role of the VA needs to be clear: as a medi-
 ator in the broader process of creating a profile and providing
 appropriate support. For that purpose, what the assistant has
 interpreted are presented back to the users at appropriate
 points. This also helps mitigate the risk that unexpected out-
 comes could emerge from the system misinterpreting user
 statements. It is also important to avoid triggering anxiety
 and to deal with conversation breakdowns. For example, the
 VA cannot assume that a pause means that no response is
 going to be given. Users may require extra time and the state
 of the conversation needs to be saved.

- Personality design. To be engaging and acceptable, the VA
 needs to present a friendly, empathetic and calm virtual
 ‘personality’ [16]. At the same time, it needs to represent
 the values of the institution – it should be gender-neutral,
 accommodate the diversity of disabilities in the audience,
 avoid bias, serve all its users, and use language with which
 the user is comfortable.

As a consequence of this research and participatory approach,
the current VA design provides multiple communication modalities
and alternative media options. Offering that personalisation allows
students to adapt their experience when interacting with the VA
and therefore supports accessibility. The assistant can, for example,
provide multiple means of communicating the same information,
following a universal design for learning (UDL) approach [16],
including explanatory videos, text, or spoken words. As well as extra
information through links to university or government resources,
where students can expand their understanding of the terminology
and find additional support outside the VA body of knowledge.
Figure 1 shows several examples of the conversation at the current
stage of the project including (1) disability disclosure, (2) tutor
support and (3) tutorial adjustments. This scenario presents how
the VA provides feedback on the user input and keeps an engaging
conversation. The VA enables the users to provide information and
access support via spoken or written dialogue to build the profile
providing support suggestions.

The VA is being developed using Microsoft Azure technologies
including the Language Understanding Intelligent Service (LUIS),
used to recognise intents in user utterances, and a QnA maker to
provide a knowledge base and responses to queries from the user.
Voice I/O is available alongside text input and output to create an
adaptable interface to conversations.

3 NEXT STEPS AND CONCLUSIONS

At this point in the project we are continuing to use various data
sources including completed forms, conversation transcripts, and
the participation of students and staff to design and train the VA,
refine the conversation flow, and develop a substantial knowledge
base. The participatory approach in ADMINS supports ad-hoc testing with student consultants, which is being supplemented with formal trials with students who have diverse accessibility needs. A main trial will allow us to gather useful accessibility and UX feedback towards scaling this solution up. From the start of the project, we have engaged in explorations with other institutions about their disability support processes, in order to understand how ADMINS could be adapted and utilised in other institutions.

As there is as notably little research to date that explores how to design CUIs to be accessible [18], evaluating and improving the accessibility, usability and user experience (UX) of the VA is an important aspect of the innovation of the project. For the testing processes methods include researcher observations of users working with the VA in several scenarios; pre-and-post activity questionnaires often used in CUI research [19]; and semi-structured interviews to get in-depth qualitative information about accessibility barriers identified by users. Expert testers from beyond the project team have conducted accessibility evaluations to provide an external perspective.

Gathering profile information through online forms is commonplace in university processes through which people access support related to disabilities. VAs like ADMINS have the potential to better understand and support accessibility needs than is possible with a typical form. Beyond universities, online static forms are commonly used by governmental agencies and many other organisations who offer services to the public. Therefore, the approach taken in ADMINS could have much wider applicability. It is expected that CUIs are beneficial to people with accessibility needs. However, there has been very limited work to date to understand how to make these interfaces accessible or how they can be adapted to diverse user needs and preferences. This is therefore a gap in knowledge that the ADMINS project is also aiming to address through the design and evaluation process.

ACKNOWLEDGMENTS
Microsoft supports the ADMINS project through an AI for Accessibility grant: https://www.microsoft.com/en-us/ai/ai-for-accessibility-grants

REFERENCES

