The Etruscan pithos revolution

Book Section

How to cite:

For guidance on citations see FAQs.

© 2021 McDonald Institute for Archaeological Research

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.17863/CAM.76142

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Making cities

Economies of production and urbanization in Mediterranean Europe, 1000–500 BC

Edited by Margarita Gleba, Beatriz Marín-Aguilera & Bela Dimova
Making cities
Making cities
Economies of production and urbanization in Mediterranean Europe, 1000–500 BC

Edited by Margarita Gleba, Beatríz Marín-Aguilera & Bela Dimova

with contributions from
Contents

Contributors ix
Figures xiii
Tables xvii

Chapter 1 Making cities: economies of production and urbanization in Mediterranean Europe, 1000–500 BC 1
 BELA DIMOVA, MARGARITA GLEBA & BEATRIZ MARÍN-AGUILERA
 Definitions of urbanism 2
 Urbanism and textiles 2
 Contributions to this volume 3
 Cover illustration 4

Part I Eastern Mediterranean

Chapter 2 Argilos: the booming economy of a silent city 9
 JACQUES PERREAULT & ZISIS BONIAS

Chapter 3 Regional economies and productions in the Thermaic Gulf area 21
 DESPOINA TSLAFAKI
 Thermaic Gulf economies and production 22
 Ancient Therme and its harbour 26
 Conclusion 34

Chapter 4 Production activities and consumption of textiles in Early Iron Age Eretria 39
 KARL REBER
 Eretria in the Early Iron Age 39
 Eretria’s economic situation 41
 The production and consumption of textiles 41
 Conclusion 45

Chapter 5 Productive economy and society at Zagora 47
 LESLEY A. BEAUMONT

Chapter 6 Making Cretan cities: urbanization, demography and economies of production in the Early Iron Age and the Archaic period 57
 ANTONIS KOTSONAS
 Urbanization 58
 Demography 66
 Economies of production 69
 Conclusion 71

Chapter 7 Production, urbanization, and the rise of Athens in the Archaic period 77
 ROBIN OSBORNE

Chapter 8 Making Corinth, 800–500 BC: production and consumption in Archaic Corinth 89
 IOULIA TZONOU
 Eighth century, to the end of the Geometric period and the transition into the Early Protocorinthian, 720 BC 95
 Seventh century, the Protocorinthian and Transitional period into Early Corinthian, 720–620 BC 97
 Sixth century, the Corinthian period, 620–500 BC 98
 Conclusion 100
Part II Central Mediterranean

Chapter 9 Making cities in Veneto between the tenth and the sixth century BC

GIOVANNA GAMBACURTA

Urbanization criteria 107
Landscape and population 109
Settlements 110
Necropoleis 111
Borders and shrines 112
Inscriptions 114
Myths 115
Conclusion 116

Chapter 10 Attached versus independent craft production in the formation of the early city-state of Padova (northeastern Italy, first millennium BC)

MASSIMO VIDALE & PAOLO MICHELINI

Materials and methods 124
General patterns of industrial location 126
Methodological issues 128
The craft industries through time 130
New craft locations: size and size variations through time 131
Duration of urban craft workshops 132
Ceramic, copper and iron processing sites: size versus duration of activities 133
Discussion 134
A historical reconstruction 138
Onset of proto-currency and the issue of remuneration 141
Conclusion 142

Chapter 11 Resource and ritual: manufacturing and production at Poggio Civitate

ANTHONY TUCK

Chapter 12 Perugia: the frontier city

LETIZIA CECCARELLI & SIMON STODDART

Geology and culture 161
History of research 163
The emerging city from the rural landscape 165
The topographical development of the city 166
The city and its hinterland 168
The rural settlements associated with the city 169
Conclusion 172

Chapter 13 Tarquinia: themes of urbanization on the Civita and the Monterozzi Plateaus

GIOVANNA BAGNASCO GIANNI, MATILDE MARZULLO & CLAUDIA PLAZZI

Approaching themes of urbanization at Tarquinia 177
On the positioning of the protostoric site of Calvario and its road links 178
The Calvario village on the Monterozzi Plateau and its economic activities during the eighth century BC 180
The process of urbanization based on the evidence for the fortifications 185
The limits of Tarquinia before its fortification, a theoretical approach 188

Chapter 14 Prolegomena to the material culture of Vulci during the Orientalizing period in the light of new discoveries

SIMONA CAROSI & CARLO REGOLI

New data from Poggio Mengarelli Necropolis 195
Conclusion 202
Chapter 15 Defining space, making the city: urbanism in Archaic Rome
JEFFREY A. BECKER
Making civic space – the Forum Romanum and its environs 206
Monumentality 210
Peri-urban evidence 211
Discussion 214

Chapter 16 Commodities, the instability of the gift, and the codification of cultural encounters in Archaic southern Etruria
CORINNA RIVA
Agricultural surplus and a new funerary ideology 220
Oversize vessels and fixing the gift 221
Codification in the encounter 222
Conclusion 226

Chapter 17 The Etruscan pithos revolution
PHIL PERKINS
The pithos as artefact 232
Making pithoi 236
Using pithoi 240
Socio-economic agency of pithoi 243
Pithoi, economic development, and inequality 245
Pithoi, economic growth and cities 248
Conclusion 250

Chapter 18 Birth and transformation of a Messapian settlement from the Iron Age to the Classical period: Muro Leccese
FRANCESCO MEO
The Iron Age village 259
The Archaic and Classical settlement 266
The Hellenistic period and the end of the town 276

Chapter 19 Indigenous urbanism in Iron Age western Sicily
MICHAEL J. KOLB & WILLIAM M. BALCO
Settlement layout 282
Demographic changes 286
Production, consumption and exchange 288
Ritual and cultic activity 290
Conclusion 291

Part III Western Mediterranean
Chapter 20 Colonial production and urbanization in Iron Age to early Punic Sardinia (eighth–fifth century BC)
ANDREAroppa & EMANUELEMADRIGALI
Colonial production and amphora distribution in Iron Age Sardinia 299
Case studies: Nora and S’Urachi 301
Discussion 305
Colonial economies and urbanization 309

Chapter 21 Entanglements and the elusive transfer of technological know-how, 1000–700 BC: elite prerogatives and migratory swallows in the western Mediterranean
ALBERT J. NJIBER
Movement of peoples and goods 314
Iron 316
The alphabet 319
Early monumental architecture 321
Discussion and epilogue 323
Chapter 22 Making cities, producing textiles: the Late Hallstatt Fürstensitze 329
Manuel Fernández-Götz & Karina Grömer
Monumentality, production and consumption: the settlement evidence 330
Textile use and display in funerary contexts 336
Conclusion 340

Chapter 23 From household to cities: habitats and societies in southern France during the Early Iron Age 345
Éric Gailledrat
A question of time 346
A contrasted image 347
From one Mediterranean to another 348
The evanescent settlement 349
The emergence of the fortified group settlement 351
The oppida of the sixth–fifth centuries BC 354
The house in the context of the group settlement 358
Craftspeople, crafts and workshops 361
Conclusion 363

Chapter 24 Urbanization and early state formation: elite control over manufacture in Iberia (seventh to third century BC) 367
Joan Sanmartí, David Asensio & Rafel Jornet
The historical process 367
Craft in its social context 369
Conclusion 380

Chapter 25 Productive power during the Early Iron Age (c. 650–575 BC) at the Sant Jaume Complex (Alcanar, Catalonia, Spain) 385
Laura Álvarez, Mariona Arnó, Jorge A. Botero, Laia Font, David García i Rubert, Marta Mateu, Margarita Rodés, Maria Tortras, Carme Saorín & Ana Serrano
The Sant Jaume Complex 385
Production in the Sant Jaume Complex chiefdom 388
Conclusion 392

Chapter 26 Not all that glitters is gold: urbanism and craftspeople in non-class or non-state run societies 395
Marisa Ruiz-Gálvez
Craftspeople and workshops in Iberia 395
Workshops in Iberia 398
The Iberians as a House Society 400
Conclusion 404

Chapter 27 Urbanization and social change in southeast Iberia during the Early Iron Age 409
Jaime Vives-Ferrándiz Sánchez
Iberian urbanization: connectivity and dispersed territories 409
Local economies into broader networks 411
Agricultural intensification 412
Urbanization, institutions and political authority 415
Conclusion 420

Chapter 28 ‘Building palaces in Spain’: rural economy and cities in post-Orientalizing Extremadura 425
Javier Jiménez Ávila
Cancho Roano as a phenomenon 429
The ‘post-Orientalizing’ world 432
Post-Orientalizing economies 432
Countryside and cities 438
Final remarks 440

Part IV Conclusion

Chapter 29 Craft and the urban community: industriousness and socio-economic development 447
Christopher Smith
Contributors

David Alensio
Department de Prehistòria, Història Antiga i Arqueologia, Universitat de Barcelona, C/ Montalegre 6-8, 08001 Barcelona, Spain
Email: davidasensio@ub.edu

Laura Álvarez Estapé
Independent scholar
Email: laura.alvarezestape@gmail.com

Giovanna Bagnasco Gianni
Dipartimento di Beni Culturali e Ambientali, Università degli Studi di Milano, via Festa del Perdono 7, 20122 Milano, Italy
Email: giovanna.bagnasco@unimi.it

William Balco
Department of History, Anthropology, and Philosophy, University of North Georgia, Barnes Hall 327, Dahlonega, GA 30597, USA
Email: william.balco@ung.edu

Lesley Beaumont
Department of Archaeology, Faculty of Arts & Social Sciences, The University of Sydney, A18, Sydney, NSW 2006, Australia
Email: lesley.beaumont@sydney.edu.au

Jeffrey Becker
Department of Middle Eastern and Ancient Mediterranean Studies, Binghamton University – State University of New York, 4400 Vestal Parkway East, PO Box 6000, Binghamton, NY 13902-6000, USA
Email: beckerj@binghamton.edu

Zisis Bonias
Ephorate of Antiquities of Kavala-Thanos, Erythrou Stavrou 17, Kavala 65110, Greece
Email: zbonias@yahoo.gr

Simona Carosi
Soprintendenza Archeologia Belle Arti e Paesaggio per l’area metropolitana di Roma, la provincia di Viterbo e l’Etruria meridionale, Palazzo Patrizi Clementi, via Cavalletti n.2, 00186 Roma, Italy
Email: simona.carosi@beniculturali.it

Letizia Ceccarelli
Department of Chemistry, Materials and Chemical Engineering ‘G.Natta’, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Email: letizia.ceccarelli@polimi.it

Bela Dimova
British School at Athens, Souidias 52, Athens 10676, Greece
Email: bela.dimova@bsa.ac.uk

Manuel Fernández-Götzt
School of History, Classics and Archaeology, University of Edinburgh, William Robertson Wing, Old Medical School, Teviot Place, Edinburgh, EH8 9AG, UK
Email: M.Fernandez-Gotz@ed.ac.uk

Eric Gailledrat
CNRS, Archéologie des Sociétés Méditerranéennes, UMR 5140, Université Paul Valéry-Montpellier 3, F-34199, Montpellier cedex 5, France
Email: eric.gailledrat@cnrs.fr

Giovanna Gambacurta
Dipartimento di Studi Umanistici, Università Ca’ Foscari Venezia, Palazzo Malcanton Marcòra, Dorsoduro 3484/D, 30123 Venezia, Italy
Email: giovanna.gambacurta@unive.it

David Garcia I Rubert
Departament de Prehistòria, Història Antiga i Arqueologia, Universitat de Barcelona, Carrer Montalegre 6, 08001 Barcelona, Spain
Email: dgarcia@ub.edu

Margarita Gleba
Dipartimento dei Beni Culturali, Università degli Studi di Padova, Piazza Capitanìato 7, Palazzo Liviano, 35139 Padova, Italy
Email: margarita.gleba@unipd.it

Karina Grömer
Natural History Museum Vienna, Department of Prehistory, Burgring 7, 1010 Vienna, Austria
Email: karina.groemer@nhm-wien.ac.at
Figures

1.1 Map indicating the volume coverage. 4
2.1 Argilos, aerial view. 10
2.2 Argilos, general plan. 10
2.3 Small furnace in building E. 11
2.4 View of building L. 12
2.5 Plan of Koutloudis area with buildings H, L, P, and Q. 13
2.6 Building L, press-bed in room 4. 13
2.7 Building Q, room 1. 14
2.8 Building L, room 11, crushed amphorae. 16
2.9 Dividing wall between L7–L8 with remains of clay over the lower courses of stone. 17
2.10 Building L, facades of L2–L3. 18
3.1 Thermaic Gulf region. 22
3.2 Iron sword, grave offering, Nea Philadelphia cemetery, late sixth century BC. 24
3.3 miniature iron wagon, grave offering, Sinos cemetery, late sixth century BC. 25
3.4 Methone. Pottery kilns in Building A at Sector B. 26
3.5 Ancient settlement at Karabournaki, aerial view. 27
3.6 Ancient settlement at Karabournaki, storeroom with pithoi. 28
3.7 ‘Eggshell’ type vases made at the pottery workshop at Karabournaki. 29
3.8 Karabournaki settlement metal workshop. 30
3.9 Weaving tools from the Karabournaki settlement. 31
3.10 Loom weight with stamp depicting a satyr, Karabournaki settlement. 32
3.11 Karabournaki: distribution of textile production tools within the excavated area. 33
4.1 Map of Geometric Eretria. 40
4.2 Plan of the Sanctuary of Apollo in the eighth century BC. 40
4.3 Spindle whorl with dedication, from the Sanctuary of Apollo. 42
4.4 Cruche à haut col C41 (tankard) from the Aire sacrificielle. 42
4.5 Cruche à haut col C37 (tankard) from the Aire sacrificielle. 43
4.6 Fragment of linen from Grave 10 in the Heroon Necropolis. 44
4.7 Close-ups of wool weft-faced textiles from the Heroon Necropolis. 45
5.1 View of Zagora promontory from the northeast. 48
5.2 Plan of Zagora. 49
5.3 Aerial view of Trench 11, partially excavated. 52
6.1 Map of Crete showing sites mentioned in the text. 58
6.2 Plan of Karphi. 59
6.3 Plan of the Knossos valley. 62
6.4 Plan of Prinias. 64
6.5 Plan of Azoria. 65
6.6 Knossos North Cemetery: maximum and minimum number of cremation urns over time. 68
6.7 Knossos North Cemetery: number of cremation urns per year. 68
6.8 Fortetsa Cemetery: number of burials over time. 68
6.9 Fortetsa Cemetery: number of burials per year. 68
6.10 Reconstruction of the pottery workshop at Mandra di Gipari, near Prinias. 70
7.1 Attica, 1050–900 BC. 80
7.2 Attica, 900–800 BC. 80
7.3 Attica, 800–700 BC. 81
7.4 Attica, 700–600 BC. 81
7.5 Attica, 600–500 BC. 85
8.1 Map of the northeast Peloponnese showing sites mentioned in the text. 90
8.2 Corinth: Geometric Period multiphase plan (900–720 BC). 91
8.3 Corinth: Protocorinthian to Transitional Period multiphase plan (720–620 BC). 91
8.4 Corinth: Corinthian Period multiphase plan (620–500 BC). 92
8.5 Corinth: Fifth century BC multiphase plan. 93
8.6 Corinth: multiphase plan up to 400 BC.
8.7 Corinth: Forum, all periods.
8.8 South Stoa, Tavern of Aphrodite Foundry.
8.9 Late Corinthian kraters from the sixth-century BC floor.
8.10 The Arachne aryballos, Late Early Corinthian or Middle Corinthian (600 BC).
8.11 Maps of Veneto.
8.12 Maps of cities with different orientations: a) Oderzo; b) Padova.
8.13 Este, clay andirons with ram’s heads.
9.2 Padova, via Tadi, boundary stone with Venetic inscription on two sides.
9.3 Padova, via C. Battistì, boundary stone with Venetic inscription on four sides.
9.5 Este, Casa di Ricovero, Grave 23/1993 or Nerka’s grave.
9.6 Isola Vicentina, stele with Venetic inscription.
10.1 Location of Padova and the study area in northeastern Italy.
10.2 Padova, general cumulative map of the craft locations, c. 825–50 BC.
10.3 Padova, location of the craft areas and workshops in the early urban core.
10.4 Padova, the extra-urban location of craft industries in Roman times.
10.5 New manufacturing areas per different craft.
10.6 Maximum total area occupied by craft production sites.
10.7 New craft areas activated in each period.
10.8 Frequency distribution of dimensional class of craft areas per period.
10.9 Padova, Questura, site 2, northeast sector.
10.10 Workshop size and duration of activity.
10.11 Padova, Questura, site 2. Ceramic tuyère.
10.12 Padova, Questura, site 2. Cluster of fine feasting pottery.
10.13 Padova, Questura, site 2. Antler combs from the metallurgical workshop.
10.14 Sherds of Attic pottery from workshop areas in Padova.
10.15 Padova, Piazza Castello, site 3: vertical kiln and modular perforated grid.
10.16 Part of an elite grave’s furnishings from Padova, end of the eighth century BC.
10.17 Vessels from the cemetery of Piovego, Padova, fifth century BC.
11.1 Map of central Italy.
11.2 Early Phase Orientalizing Complex Building 4 (c. 725–675 BC) reconstruction.
11.3 Orientalizing Complex (c. 675–600 BC) reconstruction.
11.4 Archaic Phase Structure (c. 600–530 BC) reconstruction.
11.5 Orientalizing Complex roofing elements.
11.6 Partially worked and complete bone, antler and ivory.
11.7 Unfired cover tiles with human footprints.
11.8 Distribution of variable sized spindle whorls.
11.9 Carbonized seeds from Orientalizing Complex Building 2/Workshop.
11.10 Fragment of statuette from Orientalizing Complex Building 2/Workshop.
11.11 Frieze plaque depicting banqueting scene, Archaic Phase Structure.
11.12 Elements of a banquet service from the Orientalizing Complex.
11.13 Compote with incised kha.
11.14 Map of Poggio Civitate and surrounding traces of settlements or other human activity.
12.1 Location of Perugia.
12.2 The immediate environs of Perugia with key sites.
12.3 The geological context of Perugia.
12.4 Plan of the city of Perugia.
12.5 Hierarchical relationship of Perugia to its territory.
12.6 Civitella d’Arna survey area.
12.7 Montelabate survey area.
13.1 Positioning of the structures of the Calvario.
13.2 Tarquinia and its territory around the middle of the eighth century BC.
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3</td>
<td>Plan of the Villanovan village on the Monterozzi Plateau.</td>
</tr>
<tr>
<td>13.4</td>
<td>Plans of some of the Villanovan huts.</td>
</tr>
<tr>
<td>13.5</td>
<td>Finds from the huts.</td>
</tr>
<tr>
<td>13.6</td>
<td>Walls, gateways and roads of ancient Tarquinia.</td>
</tr>
<tr>
<td>13.7</td>
<td>Tarquinia, Bocchoris Tomb, lid.</td>
</tr>
<tr>
<td>14.1</td>
<td>Location of the excavation area at Vulci.</td>
</tr>
<tr>
<td>14.4</td>
<td>Textile fragment from the ‘Tomb of the Golden Scarab’.</td>
</tr>
<tr>
<td>14.5</td>
<td>Detail of the grave goods from Tomb 35 during excavation.</td>
</tr>
<tr>
<td>14.6</td>
<td>Tomb 29 during excavation.</td>
</tr>
<tr>
<td>14.7</td>
<td>Tomb 29: detail of the traces of cloth on the lid of the sheet bronze stamnos.</td>
</tr>
<tr>
<td>14.8</td>
<td>Tomb 72: a textile with colour pattern of small red and white checks.</td>
</tr>
<tr>
<td>15.1</td>
<td>Plan of Rome’s territory in the Archaic period.</td>
</tr>
<tr>
<td>15.2</td>
<td>Area of the Volcanal and the Comitium in the seventh and sixth centuries bc.</td>
</tr>
<tr>
<td>15.3</td>
<td>Reconstructed plan of Rome within the so-called ‘Servian Wall’.</td>
</tr>
<tr>
<td>15.4</td>
<td>Sketch plan of the area of the Forum Boarium and Velabrum in the seventh century bc.</td>
</tr>
<tr>
<td>15.5</td>
<td>Phase 1 of the so-called ‘Auditorium site’ villa.</td>
</tr>
<tr>
<td>15.6</td>
<td>Phase 2 of the so-called ‘Auditorium site’ villa.</td>
</tr>
<tr>
<td>15.7</td>
<td>The Republican ‘Villa delle Grotte’ at Grottarossa.</td>
</tr>
<tr>
<td>16.1</td>
<td>White-on-red pithos with lid, Cerveteri.</td>
</tr>
<tr>
<td>16.2</td>
<td>Figurative decoration of the Gobbi krater.</td>
</tr>
<tr>
<td>16.3</td>
<td>Black-figure amphora, Vulci, side A.</td>
</tr>
<tr>
<td>16.4</td>
<td>Black-figure amphora, Vulci, side B.</td>
</tr>
<tr>
<td>17.1</td>
<td>Pithos types 1–6.</td>
</tr>
<tr>
<td>17.2</td>
<td>Distribution map of Etruscan pithoi within the study area in Etruria.</td>
</tr>
<tr>
<td>17.3</td>
<td>Comparison between the altitude of pithos find spots and the range of altitude.</td>
</tr>
<tr>
<td>17.4</td>
<td>Map of sample area.</td>
</tr>
<tr>
<td>17.5</td>
<td>Distribution of architectural terracottas, pithoi, amphorae, and tiles.</td>
</tr>
<tr>
<td>18.1</td>
<td>Muro Leccese and the other Iron Age settlements in the Salento peninsula.</td>
</tr>
<tr>
<td>18.2</td>
<td>Muro Leccese, find spots of Early Iron Age and Archaic ceramics and structures.</td>
</tr>
<tr>
<td>18.3</td>
<td>Muro Leccese, Cunella district, traces of two huts.</td>
</tr>
<tr>
<td>18.4</td>
<td>Muro Leccese, DTM with location of the Iron Age ceramics and structures.</td>
</tr>
<tr>
<td>18.5</td>
<td>Vases and decorative motifs characteristic of matt-painted ware from Muro Leccese.</td>
</tr>
<tr>
<td>18.6</td>
<td>Vases imported from Greece and Greek apoiikai.</td>
</tr>
<tr>
<td>18.7</td>
<td>The Messapian era road network in the Salento peninsula.</td>
</tr>
<tr>
<td>18.8</td>
<td>Muro Leccese, Palombara district.</td>
</tr>
<tr>
<td>18.9</td>
<td>Muro Leccese, Palombara district. Vases.</td>
</tr>
<tr>
<td>18.10</td>
<td>Muro Leccese, Cunella district. Plan of the residential building.</td>
</tr>
<tr>
<td>18.11</td>
<td>Diorama of the place of worship in the archaeological area of Cunella.</td>
</tr>
<tr>
<td>18.12</td>
<td>Muro Leccese, Masseria Cunella district. Tombs 1 and 2.</td>
</tr>
<tr>
<td>18.13</td>
<td>Muro Leccese, fourth century bc walls.</td>
</tr>
<tr>
<td>19.1</td>
<td>Map of Sicily, showing the Bronze Age sites mentioned in the text.</td>
</tr>
<tr>
<td>19.2</td>
<td>The defensive wall at Bronze Age site of Mursia, Pantelleria.</td>
</tr>
<tr>
<td>19.3</td>
<td>The Late Bronze Age excavations at Mokarta.</td>
</tr>
<tr>
<td>19.4</td>
<td>Monte Bonifato, showing its steep approaches.</td>
</tr>
<tr>
<td>19.5</td>
<td>Map of western Sicily showing the Iron Age sites mentioned in the text.</td>
</tr>
<tr>
<td>19.6</td>
<td>The urban layout of Eryx.</td>
</tr>
<tr>
<td>19.7</td>
<td>The urban layout of Segesta.</td>
</tr>
<tr>
<td>19.8</td>
<td>The orthogonal grid and Iron Age/Classical/Hellenistic finds of Salemi.</td>
</tr>
<tr>
<td>19.9</td>
<td>The archaeological sites of Salemi territory.</td>
</tr>
<tr>
<td>19.10</td>
<td>The temple of Segesta, facing west.</td>
</tr>
<tr>
<td>20.1</td>
<td>Map of Sardinia showing sites mentioned in the text.</td>
</tr>
<tr>
<td>20.2</td>
<td>Plan of Nora and the Punic quarter under the forum.</td>
</tr>
</tbody>
</table>
Main amphora types discussed.
Dating profiles of amphora types.
Plan of nuraghe S’Urachi and cross-section of the ditch in area E.
Dating profile of the amphora types from the case study at nuraghe S’Urachi.
Dating profiles of Phoenician amphora types.
Early iron and the distribution of Huelva-Achziv type fibulae on the Iberian Peninsula.
Three copper alloy bowls dated to the decades around 800 BC.
The Phoenician, Euboean, Etruscan and Latin alphabetic letters.
Early monumental architecture in Italy and Spain.
Provenance of ceramics from the ninth century BC, pre-Carthage Utica (Tunis).
Fürstensitze north of the Alps and selected sites in Mediterranean Europe.
The Heuneburg agglomeration during the mudbrick wall phase.
Indicative lifespans of selected Fürstensitze sites.
Aerial view of the gatehouse of the Heuneburg lower town during the excavation.
Large ditch at the south foot of wall 3 at Mont Lassois.
Reconstructed monumental building in the Heuneburg Open-Air Museum.
Fired clay loom weight and spindle whorls from the Heuneburg.
Comparison between grave textiles and other textiles.
Tablet-woven band, reproduced after a textile from Hochdorf.
Functions of textiles in graves.
Map of the south of France showing the main settlements of the Early Iron Age.
Mailhac (Aude).
Examples of apsidal floorplans of wattle-and-daub (a) or cob houses (b–d).
Examples of rectangular floorplans of houses with one or more rooms.
Pech Mało (Sigean, Aude).
Examples of functional combinations of apsidal and rectangular floorplans.
Early examples of urban planning combining blocks of houses with a system of streets.
Examples of rectangular floorplans; d–e) houses of La Liquière.
Montlaurès (Narbonne, Aude).
Map of northern Iberia showing the sites mentioned in the text.
Pottery workshop of Hortes de Cal Pons.
Bases of Iberian amphorae.
Les Guàrdies (El Vendrell).
Castellet de Banyoles.
Mas Castellar de Pontós.
Coll del Moro de Gandesa.
Sant Antoni de Calaceit.
Els Estinclells.
General location of the area under study.
View of Sant Jaume.
Plan of Sant Jaume.
Aerial view of La Moleta del Remei.
Aerial view of La Ferradura.
Tumulus ‘A’ at Setefilla.
Sample of matrices and tools from the so-called goldsmith’s graves at Cabezo Lucero.
Iberian tombs with grave goods connected with weighing metal.
Spatial distribution of tools in rooms of Iberian oppida.
Iberian funerary pillars crowned by heraldic beasts.
Enthroned Iberian ladies: a) Cerro de los Santos; b) Baza.
Reconstructions: a) La Bastida de les Alcusses; b) El Castellet de Banyoles.
Bronze horseman from La Bastida de Les Alcusses and reconstruction as a sceptre.
Map of the study area showing the main sites mentioned in the text.
Metallurgical workshop at La Fonteta.
Plan of Alt de Benimaquia and local amphorae.
27.4 Plan of El Oral. 414
27.5 The territory of El Puig d’Alcoi and the secondary rural settlements. 416
27.6 Different furnaces for iron metalwork from La Cervera. 416
27.7 Plans of walled settlements: a) Covalta; b) Puig d’Alcoi; c) La Bastida de les Alcusses. 417
27.8 Aerial view of the storerooms at La Bastida de les Alcusses. 418
27.9 Plan of Block 5 at La Bastida de les Alcusses. 419
27.10 Weapons ritually ‘killed’ in the West Gate, La Bastida de les Alcusses. 419
28.1 Cancho Roano: a) general plan; b–c) reconstructions of the external rooms. 427
28.2 Map of sites considered as post-Orientalizing palatial complexes. 428
28.3 La Mata. 429
28.4 Post-Orientalizing settlements: a,d) El Chaparral; b) La Carbonera; c) Los Caños. 431
28.5 Millstones and amphorae from post-Orientalizing sites in Middle Guadiana. 433
28.6 Storage building at the Orientalizing site of El Palomar, Oliva de Mérida. 434
28.7 Greek pottery from Cancho Roano, late fifth century BC. 436
28.8 Antique (sixth-century BC) goods in post-Orientalizing contexts. 437
28.9 The Orientalizing site of Medellín. 439
28.10 Ancient toponymy in southwestern Iberia. 440

Tables

7.1 Sites in Attica, late eleventh to seventh century BC. 78
8.1 Dates: abbreviations and chronology. 90
9.1 List of criteria for defining cities. 108
9.2 Inventory of houses and buildings with their shape, dimensions and chronology. 111
10.1 Variations through time of principal type of craft occupation. 128
10.2 Variations through time of the maximum area of all craft occupations. 129
10.3 Padova, average duration in years of the main craft occupations for each period. 129
10.4 Padova, the development of craft industries as monitored in 29 craft workshops. 130
10.5 Positive correlation between size and duration of activity of craft workshops. 134
10.6 The composition of funerary vessels in the earliest graves from Padova. 140
17.1 Type 1. 234
17.2 Type 2. 234
17.3 Type 3. 235
17.4 Type 3A. 235
17.5 Type 3B. 235
17.6 Type 3C. 236
17.7 Type 4. 236
17.8 Type 5. 237
17.9 Type 6. 237
17.10 Chaîne opératoire of Etruscan pithos manufacture. 238
21.1 Number of iron artefacts per phase at Torre Galli (c. 950–850 BC). 318
Chapter 17

The Etruscan pithos revolution

Phil Perkins

In the Etruscan world, a distinctive class of artefact is the pithos, a large ceramic container. They are frequently found, but not often studied, on Etruscan sites in central Italy from at least the seventh to the second centuries BC. This study, based on 3393 published examples from 921 sites, will investigate their occurrence and interpret their significance in the context of the urban, social and economic development of Etruria. Despite their frequency, to the best of my knowledge, this is the first study that systematically investigates this class of artefact throughout Etruria. Consequently, I will explore the total trajectory of the social life of pithoi from production to exchange, distribution, consumption (Appadurai 1986, 13) and subsequent reuse and disposal, constructing a kind of biography for pithoi (Kopytoff 1986). In addition to outlining their fundamental role in economic production, I will argue that pithoi were also important in the development and functioning of settlement systems and rural infrastructure, playing a vital part in some of the earliest urban development in Europe, and contributing to a phase of economic growth in pre-Roman Italy.

The development of pithos technology changed Etruria and other parts of the Mediterranean world by enhancing the production and storage of agricultural produce. I will argue that the widespread adoption of pithos-based agricultural systems was a significant enabling technology for urban living through the agricultural intensification that it made possible. The pithos operated in two significant ways, as a fixed storage facility, and as a vessel for processing agricultural produce into secondary products. Further uses are also documented but have a lesser economic significance. Current explanations of urbanism in Etruria tend to focus on social dynamics, mineral resource exploitation and the built environment; I will explore some of the economic aspects of the urban turn in Etruria. A key focus will be investigation how this new ceramic technology enabled agricultural intensification and was socially embedded in a pre-monetary economy.

This study will start by discussing the pithos as an artefact in its own right, considering formal and technological characteristics. Then I will consider the agency of these large ceramics investigating how they were made and used, and what they enabled in the Etruscan world. In dialogue with Robb’s (2018) abstract discussion of containers in the archaeological record, the Etruscan pithos may in practice be considered a multifunctional container that is defined by what it groups and preserves. Containing grain, wine, metal artefacts for recycling or human remains and grave goods created a different function for the pithos. Pithoi as containers did not exist in isolation, they were interdependent with what they contained. They were not conceived and produced as an end in themselves: pithoi were made for specific purposes but could also be multifunctional. When filled, their contents transform the agency of their container – during its life, a pithos might be a fermentation vessel, a grain container or a burial chamber. Pithoi actively organized their contents spatially and quantitatively, enabling storage, management and accounting of economic produce. The facilitation of stockpiling and the creation of silos gave pithoi the agency to generate political intensification by enabling the manipulation of the value of their contents in changing economic circumstances. They also provided a mechanism for transmitting wealth from one Etruscan social group or generation to the next, either by the direct storage of commodities or by the transfer of control of their productive function from one to another as part of the economic infrastructure. Pithoi also functioned as transformative machines enabling new processes to take place, transforming primary agricultural produce into secondary produce. Pithoi also had the agency to transform time, enabling produce to be stored for future use from one season to
the next, either by simply acting as a storage container, as with grain for example, or by acting as a machine that enabled the modification of produce for future use or redistribution, for example through fermentation of grape juice. Pithoi effectively enabled speeding up or slowing down various processes of preservation or modification, that created a beneficial economic yield (Robb 2018, 34). I will argue that this transformative power was a factor in agricultural and urban development enabling various economic and social processes that made the Etruscan economy dynamic.

The pithos as artefact

Pithoi and large storage jars were not unique to Etruria, or even central Italy. They originated in the Neolithic period and they are found over a wide area of south-west Asia, the eastern and central Mediterranean in the Bronze Age (Cullen 1990; Guglielmino 1999; Christakis 1999; 2005; 2008; Giannopoulou 2010, 35–40; Bevan 2018). Their origin is not the focus here, and it is inherently unlikely that the large ceramic storage vessel had a unique point of origin. Evidence from the shipwreck at Ulu Burun and elsewhere (Pulak 1988, 11–3; Shai et al. 2019) illustrates their early mobility across the Mediterranean and demonstrates that Bronze Age technology could transport pithoi across the sea as containers. The technology and skills required for their manufacture were also mobile and were transferred to southern Italy from the Aegean in the Late Bronze Age (Schiappelli 2015). Cultural contact and personal mobility certainly played a role in the transfer of technology in the second and first millennia BC but, where there is good evidence, the process is more complex than a straightforward immigration of artisans, the copying of imported models or an abstracted lux ex oriente form of Hellenization (Ridgway 2009, 16–19).

In Etruscan archaeology, the pithos (from the Greek) is also known as a dolium from the Latin or dolio (and occasionally ziro or orcio) from the Italian. An Etruscan name has been proposed from a graffito on a pithos with relief decoration and a ribbed body from Cerveteri, ‘mi namarce larnas’ sachus’ (‘I am, the larnas of Marcus Sacus’) (ET Cr 2.40), larnas presumably deriving from the Greek larnax (box, chest), although this identification is by no means certain (Colonna 1978; Biondi 1992, 69–71; Benelli & Bellelli 2009, 144–5; Serra Ridgway 2010, 125–6).

Typically, in Etruscan archaeology pithoi are defined as vessels with a diameter of greater than 30 cm and wall thickness of at least 2 cm. This definition creates some overlap with large storage jars with similar shapes that also reach these dimensions. Here, a definition of a vessel with a rim diameter of more than 40 cm is used as an approximation, although large diameter rim sherds can be difficult to measure. This excludes smaller pithos-like jars such as the Vul- centean olla a rete (Medori 2012) or the plain or ribbed red impasto large olle made in and around Cerveteri (ten Kortenaar 2011, 100–5, fig. 22), even though they have a similar shape to the larger pithoi. At Cerveteri, it has been suggested that there were three sizes – large c. 1.3 m high, the most common medium c. 0.80 m high, and small c. 0.60–0.80 m, although there was not a clear-cut difference between these and the largest storage jars (Nardi 1993).

Easily fragmented unremarkable pithos sherds are frequently difficult to distinguish from fragments of curved roof tile. Often, they have not been well studied: many excavations or field surveys have not recognized them as a separate class of artefact. Some publications simply note their presence although more recent works have produced typologies for individual sites for example at Caere (Nardi 1993), Tarquinia (Mordeglia 2001), Roselle (Ristori 1994), Castellina del Marangone (Montanel Tramulla 2011), the Albegna Valley / Ager Cosanus (Perkins 1999), the University of Siena Carta archeologica della provincia di Siena, Poggio Civitella (Cappuccini et al. 2014, 57–8) and in the Po Valley (Mattioli 2013). The following analysis draws on this work and other isolated examples, to build a typology based on the shapes of the rims of the pithoi. There are too few complete examples to base a typology on the body shapes that vary between globular, ovoid, piriform or cylindrical. Six basic types with three sub-types are identified, each is described and approximately dated (Fig. 17.1, Tables 17.1–17.9). The types here are cross-referenced to any local types assigned in their original publication and find spots are listed in Etruria and the Etruscan Po Valley from south to north with references to descriptions and illustrations.

Bodies are typically ovoid but often globular or sometimes nearly cylindrical. Sometimes they are decorated with plain cordons or cordons impressed with a finger or tool, at times forming a rope-like pattern. These may act as reinforcements at the junctions of slabs or coils used to build the vessel walls (Giachi 1987, fig. 122, no. 301; Mordeglia 2001, fig. 70). Rarely, cordons may be more elaborate and more like architectural mouldings (Perkins & Walker 1990, fig. 37, no. 10; Giannopoulou 2010, 66–72; Montanel Tramulla 2011, fig. 228, no. 13). There are occasional bosses on the shoulders of some pithoi (Bocchi Paccini 1978, fig. 7 no. 3).

Handles are unusual on pithoi. Some have bosses, circular or ring appliqués that may have served as a handle. An example from Sarteano has two loop
Figure 17.1. Pithos types 1–6: Type 1 (1:4) (redrawn from Persiani 2009, fig. 6, R25). Type 2 (redrawn from Perkins & Attolini 1992, fig. 16, no. 2). Type 3 (redrawn from Perkins & Attolini 1992, fig. 16, no. 1). Type 3A (redrawn from Perkins & Walker 1990, fig. 34, no. 1) approximate diameter. Type 3C (redrawn from Perkins & Walker 1990, fig. 35, no. 3) approximate diameter. Type 4 (redrawn from Mordeglia 2001, fig. 67). Type 5 (Poggio Colla, unpublished 02-109 drawn by J. Boscarino). Type 6 (Poggio Colla, unpublished 02-188 drawn by A. Hooton).
Table 17.1. Type 1 – Plain everted rim with either rounded or squared edge to the lip. This simple form can be traced back to at least the Bronze Age with a biconical, ovoid or globular body. It is sometimes decorated with lugs or impressed cordons. Date: Late Bronze Age – seventh century BC.

<table>
<thead>
<tr>
<th>Site</th>
<th>Local type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Mattonara A, Civitavecchia</td>
<td>-</td>
<td>Pascucci 1998, 89, fig. 17.5, 95, fig. 21.5</td>
</tr>
<tr>
<td>Tarquinia</td>
<td>5</td>
<td>Mordeglia 2001, 152–3, fig. 69A</td>
</tr>
<tr>
<td>Pitigliano</td>
<td>-</td>
<td>Aranguren et al. 1985, fig. 17.3</td>
</tr>
<tr>
<td>Lake Bolsena</td>
<td>-</td>
<td>Persiani 2009, 46–7 fig. 6, R15, R25, fig.3</td>
</tr>
<tr>
<td>Scarpino site 17</td>
<td>-</td>
<td>Cucini 1985, 107f, fig. 6.10</td>
</tr>
<tr>
<td>Monteriggioni</td>
<td>-</td>
<td>Accorcia 2004, fig.12 no. 4; Pinzuti 2004, fig. 21, nos. 41, 44</td>
</tr>
<tr>
<td>Monteriggioni: Casone</td>
<td>-</td>
<td>Bianchi Bandinelli 1931, 19, fig. 14</td>
</tr>
</tbody>
</table>

Table 17.2. Type 2 – Everted, with a rounded or thinned rim profile that often has a distinct edge at the lower margin of the rim and sometimes slightly overhangs. Date: Late Iron Age – Archaic.

<table>
<thead>
<tr>
<th>Site</th>
<th>Local type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casale Pian Roseto</td>
<td>J8–9</td>
<td>Murray Threipland & Torelli 1970, 82, fig. 29.8–9</td>
</tr>
<tr>
<td>Caere</td>
<td>1 and 2</td>
<td>Nardi 1993, 352–5, fig. 538–9</td>
</tr>
<tr>
<td>Castellina del Marangone</td>
<td>-</td>
<td>Montanel Tramulla 2011, 673 no. 23, fig. 229.22</td>
</tr>
<tr>
<td>La Mattonara A, Civitavecchia</td>
<td>-</td>
<td>Pascucci 1998, 95, fig. 17.6</td>
</tr>
<tr>
<td>Tarquinia</td>
<td>group 1</td>
<td>Mordeglia 2001, 150, fig. 64</td>
</tr>
<tr>
<td>Doganella</td>
<td>coarseware 1, type 1</td>
<td>Perkins & Attolini 1992, 101–3, fig. 16, nos. 2–3</td>
</tr>
<tr>
<td>Roselle</td>
<td>3</td>
<td>Bocci Paccini 1978, fig. 7 no. 3; Ristori 1994, 111, type 3</td>
</tr>
<tr>
<td>Lago dell’Accesa</td>
<td>1</td>
<td>Camporeale 1997, 99–100, fig. 12.5</td>
</tr>
<tr>
<td>Poggio Civitata di Murlo</td>
<td>form N2</td>
<td>Bouloumié-Marique 1978, fig. 23, nos. 338–9</td>
</tr>
<tr>
<td>Gubbio</td>
<td>-</td>
<td>Germini 2011, fig. 10, no. 4</td>
</tr>
<tr>
<td>Monteriggioni</td>
<td>-</td>
<td>Accorcia 2004, fig. 12, no. 3</td>
</tr>
<tr>
<td>Pisa</td>
<td>-</td>
<td>Bonamici 1989, 1139–41, fig. 3, nos. 1–2</td>
</tr>
<tr>
<td>Sesto Fiorentino</td>
<td>-</td>
<td>Settesoldi 2000, fig. 67, no. 5</td>
</tr>
<tr>
<td>Modena</td>
<td>1</td>
<td>Ferri & Losi 1988, 29, fig. 10.4</td>
</tr>
</tbody>
</table>

Handles and two lug handles with a central depression (Caffarello 1984, 74–5, fig. 34). A large lug has been associated with *pithoi* at Fidene, Tarquinia and Doganella (Perkins & Walker 1990, fig. 37, no. 12; Mordeglia 2001, fig. 70, no. 3/545; di Gennaro et al. 2009, fig. 9, nos. 3–4).

Bases are flat and without any elaboration (Perkins & Walker 1990, fig. 35, no. 8; Campana 2001, type A1, fig. 18, no. 6; Montanel Tramulla 2011, figs. 228, nos. 14–5, 29, no. 20). Occasionally, bases were pierced to aid draining and cleaning the *pithos*.

Few lids have been recorded. Examples have plain flat edges or a raised lip. The only known lid handles are three cylindrical bosses near to the edge of the lids, and an example from Chiaccicoforte has a finger-inscribed circle in the centre (Perkins & Walker 1990, 40, fig. 37, no. 3; Sassatelli & Briquel 1994, 59, fig. 9, no. 69; Firmati & Rendini 2002, 84; Sabbanini 2014, 116, fig. 1 no. 51). Fabric or timber lids or slabs of stone are likely to have been used to seal storage jars as they were in some burials at Chiusi (Salvini et al. 2015, 109, 13).

Marks are exceedingly rare on Etruscan *pithoi*: a graffito ‘A’ has been published on the wall of a *pithos* from Marzabotto (Gaucci & Sassatelli 2010, 352, no. 458, figs. 289, 306), and some further examples are discussed below.

Pithoi do not usually provide very good dating evidence. Their rim shapes are long-lived and not sensitive to chronological change. Half a century ago, Kahane et al. (1968, 8) outlined a general pattern of development in the Ager Veientanus from everted rims, here types 1 and 2, through rounded rim-forms, type 3, to angular, flat-topped rims, types 4–6, that further develop in the Roman period. In Etruria, *pithoi* are first found in the Bronze Age and some early Orientalizing tombs that provide early dates at Cerveteri are Casaletti di Ceri tomb 2 (Colonna 1968, 268 no.18), the Regolatti-Galassi tomb (Pareti 1947) or tomb 2 of tumulus 1 at Banditaccia (Vighi & Ricci 1955) at Caere.
The Etruscan *pithos* revolution

Table 17.3. Type 3 – Everted and thickened with a rounded or thinned rim profile that may have a distinct edge at the lower margin of the rim and sometimes slightly overhangs. Date: Late Iron Age – Archaic.

<table>
<thead>
<tr>
<th>Site</th>
<th>Local type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satricum</td>
<td>class II type 8</td>
<td>Attema et al. 2001–2002, fig. 4, no. 1813</td>
</tr>
<tr>
<td>Casale Pian Roseto</td>
<td>J7</td>
<td>Murray Treipland & Torelli 1970, 82, fig. 29.7</td>
</tr>
<tr>
<td>Caere</td>
<td>3</td>
<td>Nardi 1993, 355–9, figs. 539–40</td>
</tr>
<tr>
<td>Castellina del Marangone</td>
<td></td>
<td>Montanel Tramulla 2011, fig. 228, no. 12, 29, no.12</td>
</tr>
<tr>
<td>La Mattonara A, Civitavecchia</td>
<td></td>
<td>Pascucci 1998, 83, fig. 11.3</td>
</tr>
<tr>
<td>Tarquinia</td>
<td>group 2</td>
<td>Mordeglia 2001, 151–2, figs. 65–6</td>
</tr>
<tr>
<td>Albegna Valley</td>
<td></td>
<td>Perkins 1999, fig. 6.2.4, no. 1</td>
</tr>
<tr>
<td>Doganella</td>
<td>coarseware 1, type 3</td>
<td>Perkins & Walker 1990, fig. 33, nos. 5–7</td>
</tr>
<tr>
<td>Fonteblanda</td>
<td></td>
<td>Ciampoltrini 2016, fig. 34, nos. 1–3</td>
</tr>
<tr>
<td>Podere Tartuchino</td>
<td></td>
<td>Perkins & Attolini 1992, 101–3, figs. 15, nos. 22–4, 16, nos. 1, 5</td>
</tr>
<tr>
<td>Roselle</td>
<td>4</td>
<td>Ristori 1994, 111–12</td>
</tr>
<tr>
<td>Sarteano</td>
<td>Minetti 1 and 2</td>
<td>Caffarello 1984, 75, fig. 40; Minetti 2004, 459–60; Salvini et al. 2015</td>
</tr>
<tr>
<td>Foggio Civitella</td>
<td>3 and 4</td>
<td>Cappuccini et al. 2014, fig. 43, PC4356, fig. 44, PC2917</td>
</tr>
<tr>
<td>Fienza</td>
<td></td>
<td>Felici 2004, fig. 7 no. 2</td>
</tr>
<tr>
<td>San Giovanni d’Asso</td>
<td></td>
<td>Felici 2012, 192, fig. 3.1–2</td>
</tr>
<tr>
<td>Poggio Civitate di Murlo</td>
<td>N3 and Campana A1–4</td>
<td>Bouloumié-Marique 1978, fig. 23; Campana 2001, figs. 9.1–6, 8–9, 10.1–2, 7</td>
</tr>
<tr>
<td>Monteriggioni</td>
<td></td>
<td>Pinzuti 2004, fig. 21, no. 2; Zannoni 2000, fig. 70, no. 3</td>
</tr>
<tr>
<td>Artimino</td>
<td>1</td>
<td>Giachi 1987, 172–4, fig. 22, no. 301</td>
</tr>
<tr>
<td>Carmignano</td>
<td></td>
<td>Perazzi & Poggesi 2011, 380, fig. 9</td>
</tr>
<tr>
<td>Conventi</td>
<td></td>
<td>Perazzi & Poggesi 2011, 315, fig. 7</td>
</tr>
<tr>
<td>Marzabotto</td>
<td>I,4,a and DOL 1</td>
<td>Massa-Pairault et al. 1997, 185, fig. 22.12; Mattioli 2010, 149–50</td>
</tr>
</tbody>
</table>

Table 17.4. Type 3A – Thickened and rolled rim with a cylindrical neck. Date: Archaic.

<table>
<thead>
<tr>
<th>Site</th>
<th>Local type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caere</td>
<td>6</td>
<td>Nardi 1993, 359, fig. 540</td>
</tr>
<tr>
<td>San Giovenale</td>
<td></td>
<td>Backe-Forsberg 2005, fig. 84, no. 26</td>
</tr>
<tr>
<td>Tarquinia</td>
<td>group 4</td>
<td>Mordeglia 2001, 152, fig. 68B</td>
</tr>
<tr>
<td>Doganella</td>
<td>coarseware 1 and 5, type 4</td>
<td>Perkins & Walker 1990, fig. 33, nos. 8, 34, nos. 1–5, 39, nos. 5</td>
</tr>
<tr>
<td>Podere Tartuchino</td>
<td></td>
<td>Perkins & Attolini 1992, 101–3, figs. 15, nos. 22–4, 16, nos. 1, 5</td>
</tr>
<tr>
<td>Lago dell’Accesa</td>
<td>type 2a</td>
<td>Camporeale 1997, 101, fig. 13.3</td>
</tr>
<tr>
<td>San Giovanni d’Asso</td>
<td></td>
<td>Felici 2012, 192, fig. 3.3–4</td>
</tr>
<tr>
<td>Poggio Civitate di Murlo</td>
<td>N4 and Campana A2.6</td>
<td>Bouloumié-Marique 1978, type, fig. 23; Campana 2001, fig. 10.3</td>
</tr>
<tr>
<td>Monteriggioni</td>
<td></td>
<td>Catucci 2004, fig. 8, no. 1</td>
</tr>
<tr>
<td>Volterra</td>
<td></td>
<td>Pistolesi 2003, 244, fig. 12.6</td>
</tr>
<tr>
<td>Artimino</td>
<td>1</td>
<td>Giachi 1987, 172–4, fig. 21, no. 300</td>
</tr>
<tr>
<td>Marzabotto</td>
<td>I,6,g and DOL2</td>
<td>Massa-Pairault et al. 1997; Mattioli 2010, 149–50</td>
</tr>
</tbody>
</table>

Table 17.5. Type 3B – Thickened and rolled rim with an incurving shoulder and no distinct neck. Date: Archaic.

<table>
<thead>
<tr>
<th>Site</th>
<th>Local type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murlo</td>
<td>A.1–5, B.2</td>
<td>Campana 2001, figs. 9, no. 7, 18, nos. 1–5</td>
</tr>
<tr>
<td>Volterra</td>
<td></td>
<td>Pistolesi 2003, 244, fig. 12.7</td>
</tr>
<tr>
<td>Artimino</td>
<td>3</td>
<td>Giachi 1987, 165, fig. 16, no. 275</td>
</tr>
<tr>
<td>Nonantolana site 68</td>
<td></td>
<td>Cardarelli & Malnati 2003, 118, fig. 61, no.11</td>
</tr>
</tbody>
</table>
Their numbers increase in the later Orientalizing period, probably peaking in the Archaic period and they remain common in the post-Archaic and Hellenistic periods. Individual *pithoi* have long use-lives, creating a time-lag between their manufacture and their inclusion in an archaeological context and their limited typological variation makes them imprecise dating tools. *Pithoi* also had a variety of secondary uses (see below) and their robust walls help them survive in residual contexts, contributing to the lack of precision in their dating. Consequently, the date ranges suggested for each type are very wide and, without an independently dated context, it is difficult to be more precise than Orientalizing, Archaic or Hellenistic period. A similar situation continues into the Roman period, when the use-life of Roman *dolia* has been conservatively estimated at 25 years of primary use, followed by potential reuse making dating *dolia* difficult to date (Peña 2007, 194–6, 209–28, 324–5).

Making pithoi

Using the limited ancient evidence available, and ethnographic studies of *pithos* production in contemporary Greece, the full chaine opératoire of *pithos* manufacture has been analysed and described (Giannopoulou 2010, 49–77, 95–141). Table 17.10 summarizes and adapts this analysis to the Etruscan context.

There is possible evidence for *pithos* production beneath the Cinema Apollo in Florence, in the form of overfired sherds, but the associated kiln structures seem too small for large vessels (Da Vela 2019, 37–9).
Table 17.8. Type 5 – Everted horizontal ledge-like rim with a flat top and usually a flat lower surface and with or without a short neck. Date: Orientalizing – Roman.

<table>
<thead>
<tr>
<th>Site</th>
<th>Local type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caere</td>
<td>5</td>
<td>Nardi 1993, 359, figs. 540</td>
</tr>
<tr>
<td>San Giovenale</td>
<td>-</td>
<td>Backe-Forsberg 2005, fig. 90, no. 30</td>
</tr>
<tr>
<td>Tarquinia</td>
<td>-</td>
<td>Mordegglia 2001, 153, figs. 69, no. 38/68</td>
</tr>
<tr>
<td>Albegna Valley</td>
<td>17, 18, 21</td>
<td>Perkins 1999, fig. 6.2.4, nos. 3, 4, 6</td>
</tr>
<tr>
<td>Doganella</td>
<td>coarseware 2, type 8 and coarse creamware 1, type 3</td>
<td>Perkins & Walker 1990, fig. 37, no. 11, 29, no. 5</td>
</tr>
<tr>
<td>Podere Tartuchino</td>
<td>-</td>
<td>Perkins & Attolini 1992, 101–3, fig. 16, no. 6</td>
</tr>
<tr>
<td>Roselle</td>
<td>6</td>
<td>Ristori 1994, 112–3</td>
</tr>
<tr>
<td>Radicofani</td>
<td>-</td>
<td>Botarelli 2004, 120, 27, fig. 4, no. 2</td>
</tr>
<tr>
<td>Lago dell’Accesa</td>
<td>2a</td>
<td>Camporeale 1997, 100–1, fig. 13.1, 2, 4</td>
</tr>
<tr>
<td>Poggio Civitella</td>
<td>1 and 2</td>
<td>Cappuccini et al. 2014, fig. 42–3</td>
</tr>
<tr>
<td>Poggio Civitate di Murlo</td>
<td>A, A3, B</td>
<td>Phillips 1967, 137, fig. 24, no. 1; Campana 2001, figs. 9. nos. 2–3, 10, nos. 4–6, 11, nos. 1–4</td>
</tr>
<tr>
<td>Radicondoli</td>
<td>-</td>
<td>Cucini 1990, fig. 71, no. 2</td>
</tr>
<tr>
<td>Poggio ai Monti</td>
<td>-</td>
<td>Taddei 2009, fig. 10</td>
</tr>
<tr>
<td>Gubbio</td>
<td>-</td>
<td>Germini 2011, fig. 10, no. 5</td>
</tr>
<tr>
<td>Monteriggioni</td>
<td>-</td>
<td>Pinzuti 2004, fig. 21, no. 3</td>
</tr>
<tr>
<td>Pisa</td>
<td>-</td>
<td>Bonamici 1989, fig. 3, no. 3</td>
</tr>
<tr>
<td>Volterra</td>
<td>-</td>
<td>Pistolesi 2003, 245, fig. 12.8</td>
</tr>
<tr>
<td>Sesto Fiorentino</td>
<td>-</td>
<td>Settesoldi 2000, fig. 66, no. 4</td>
</tr>
<tr>
<td>Covignano (Rimini)</td>
<td>-</td>
<td>Scarpetti 1982, 296, fig. 158.21–3</td>
</tr>
<tr>
<td>Vagli di Sotto</td>
<td>-</td>
<td>Ciampoltrini & Notini 1987, 72, fig. 4, no. 9</td>
</tr>
<tr>
<td>Casola Valsenio</td>
<td>1</td>
<td>Massi Pasi 1982, 162, fig. 89, no. 86.47</td>
</tr>
<tr>
<td>Marzabotto</td>
<td>DOL3</td>
<td>Massa-Pairault et al. 1997, 185, fig. 22.4</td>
</tr>
</tbody>
</table>

Table 17.9. Type 6 – Everted horizontal ledge-like rim with a flat top and distinctly hooked with an interior face that is oblique. Date: attested in the Orientalizing period at Tarquinia, but typically Hellenistic.

<table>
<thead>
<tr>
<th>Site</th>
<th>Local type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casale Pian Roseto</td>
<td>J1–3</td>
<td>Murray Threipland & Torelli 1970, 82, fig. 29.1–3</td>
</tr>
<tr>
<td>Castellina del Marangone</td>
<td>-</td>
<td>Montanel Tramula 2011, fig. 228, nos. 16–8, 29, no. 19</td>
</tr>
<tr>
<td>San Giovenale</td>
<td>-</td>
<td>Backe-Forsberg 2005, fig. 84, no. 27</td>
</tr>
<tr>
<td>Tarquinia</td>
<td>-</td>
<td>Mordegglia 2001, 153, fig. 69B, no. 250/1</td>
</tr>
<tr>
<td>Rofalco</td>
<td>-</td>
<td>Sabbatini 2014, fig. 1, no. 167, no. 72</td>
</tr>
<tr>
<td>Albegna Valley</td>
<td>13</td>
<td>Perkins 1999, fig. 6.2.4, no. 2</td>
</tr>
<tr>
<td>Doganella</td>
<td>coarseware 1, type 13</td>
<td>Perkins & Walker 1990, fig. 35, no. 4</td>
</tr>
<tr>
<td>Ghiaicciolforte</td>
<td>complete example</td>
<td>Firmati & Rendini 2002, 84</td>
</tr>
<tr>
<td>Poggio Civitella</td>
<td>2</td>
<td>Cappuccini et al. 2014, fig. 43, PC4810</td>
</tr>
<tr>
<td>Murlo</td>
<td>A</td>
<td>Campana 2001, fig. 19.1</td>
</tr>
<tr>
<td>Volterra</td>
<td>-</td>
<td>Pistolesi 2003, 244, fig. 12.5</td>
</tr>
<tr>
<td>Fortezza Spazzavento</td>
<td>-</td>
<td>Bonamici et al. 2013, fig. 14, no. 21</td>
</tr>
<tr>
<td>Artimino</td>
<td>2</td>
<td>Giachi 1987, 165, 74, fig. 16, no. 274, 122, no. 303; Lenzi 2006, 127, no. 16</td>
</tr>
<tr>
<td>Marzabotto</td>
<td>DOL3</td>
<td>Massa-Pairault et al. 1997, 185, fig. 33.13</td>
</tr>
</tbody>
</table>
Chapter 17

Table 17.10. Chaîne opératoire of Etruscan pithos manufacture.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Sub-stage</th>
<th>Time taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gathering raw materials</td>
<td>Selection and extraction of clay</td>
<td>Days or weeks</td>
</tr>
<tr>
<td></td>
<td>Transport of clay to work site</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transport of water to work site</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selection and extraction of temper</td>
<td></td>
</tr>
<tr>
<td>Preparation of clay</td>
<td>Cleaning of clay</td>
<td>Days</td>
</tr>
<tr>
<td></td>
<td>Addition of water</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kneading of clay</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Addition of temper</td>
<td></td>
</tr>
<tr>
<td>Modelling of pithos by hand or on wheel or turntable</td>
<td>Forming a disc base</td>
<td>3 weeks</td>
</tr>
<tr>
<td></td>
<td>Raising the walls with coils or slabs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forming the neck</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forming the rim</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Addition of decoration or handles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preparation and application of surface treatment (slip or burnishing)</td>
<td></td>
</tr>
<tr>
<td>Drying of pithos</td>
<td>Indoors then outdoors</td>
<td>Weeks or months</td>
</tr>
<tr>
<td>Firing in bonfire, pit or temporary kiln</td>
<td>Gathering of fuel</td>
<td>1–3 days</td>
</tr>
<tr>
<td></td>
<td>Kiln or fire construction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loading kiln</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Firing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooling</td>
<td>1 day – 1 week</td>
</tr>
<tr>
<td>Interior surface treatment</td>
<td>Gathering and preparation of beeswax or pitch</td>
<td>Days</td>
</tr>
<tr>
<td></td>
<td>Application of sealant to interior of pithos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drying of sealant</td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>Road or sea transport to use destination</td>
<td>Days or weeks</td>
</tr>
<tr>
<td>Installation</td>
<td>Sinking in pit or placing in room</td>
<td>Hours</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>At least 8 weeks</td>
</tr>
</tbody>
</table>

A definite pithos production site in Etruria has yet to be found and there is only indirect evidence for some of the stages of this production process. The clays and minerals used were mostly of relatively local origin and similar to those in coarsewares, cooking wares and tiles. An exception is in the Albegna Valley, where some pithoi from sites in areas of sedimentary geology contained minerals of volcanic origin, indicating the movement of either raw materials or finished pithoi from the volcanic areas (Perkins 1999, 184–6). There is some evidence for how pithoi were modelled. Regular breaks between the neck and shoulder of vessels at Caere suggests their construction in separate pieces that were subsequently joined when partially dried (Mordeglia 2001). At Poggio della Castellina del Marangone, a late seventh-sixth century BC pithos body sherd had a roughened surface to help attach the rim (Montanel Tramulla 2011, 674, pl. 229.23, no. 24), and at Podere Tartuchino several pithos rims were thickened or hooked by the addition of a coil of clay to the exterior of a plain rim (Perkins & Attolini 1992, fig. 15, nos. 22 and 24, fig.16, nos. 1, 5 and 6). The limited range of techniques used to shape the rim is what determines the typology outlined above. Types 1 and 2 are simply everted rims; 3 and 4 are everted and thickened by the addition of a coil of clay; types 5 and 6 are everted and flattened on the top, with type 6 given an overhanging hooked profile by the potter gripping the edge of the rim with a clenched hand. The rims may have been shaped while rotating the pithos on a turntable or by the potter circulating around the pithos. There is no evidence for forming pithoi on a fast potting wheel in Etruria.

Before firing, the surfaces of pithoi were usually burnished and sometimes slipped on the interior or exterior, often in dark red. No kilns for pithoi have been found and so it is probable that they were fired in bonfires or pits that leave little archaeological trace. Any constructed kiln would need to have been very large to accommodate more than one pithos at a time. A large
kiln found at Béziers in Languedoc with a diameter of 2.65 m that held up to 7 pithoi is the best evidence for Archaic pithos firing technology yet found, but this is far from Etruria and influenced by Greek traditions introduced from Massalia in the sixth century BC (Jandot et al. 2009, 48–54). Analysis of pithos sherds excavated at Velletri suggest a firing temperature up to 1000 °C (Saviano et al. 2005), and two pithos body sherds from Poggio della Castellina del Marangone, dating to late seventh–sixth century BC had a vitrified exterior, presumably from overfiring, but this does not provide evidence for the actual firing methodology and equipment used (Giannopoulou 2010, 75–6; Montanel Tramulla 2011, 674, pl. 229.24–5, nos. 25–6).

Pitch has been detected on Etruscan pithoi at Podere Tartuchino and at Marsiliana where beeswax was also found (Perkins & Attolini 1992, 121–2; Camilli et al. 2008b, 203–4). According to Columella, beeswax was a treatment used by ‘the ancients’ for oil pithoi (De re rustica 12.52.15–6). Roman dolia were regularly pitched on the interior to seal the surface and reduce the porosity of the clay body: Columella describes the process in detail (De re rustica 12.18.5–7; cf. Peña 2007, 211–13). There is not yet evidence for Etruscan pitch production and it is rare from other periods, but the chaîne opératoire of pithos production would have been linked with that of pitch. In the Pyrenees, the chaîne opératoire of Roman pitch has been detailed and linked with iron working through its by-product charcoal (Orengo et al. 2013), and a similar interrelation is also plausible in Etruria.

Theoretical models for the organization of ceramic production and the time, skill level and technology required to produce pithoi suggest they were made in specialized workshops both in the ancient Aegean world and the recent past in Greece (Giannopoulou 2010, 50–4, 145–6). There is no reason to expect a different organization of production in Etruria. There are, however, indications of mutual influences between workshops producing large ceramic vessels and those producing architectural terracottas. At Acquarossa, some of the earliest roof components found there are made of dark red ceramic overpainted in white in a style similar to ‘white-on-red’ ceramics that include pithoi, although these are of smaller dimensions than the large pithoi under discussion here (Wikander 1988, 69–71; 1993; Micózzi 1994; Winter 2009, 522, 40). Where such workshops were located is an open question. Some pithoi were probably produced in specialized workshops in Etruscan cities. Evidence for ceramic, brick and tile production, and secondary metalworking from various locations in Marzabotto indicates that production sites were closely integrated in the urban fabric rather than separated into marginalized artisan quarters. This is also the case at Doganella, where amphorae and ceramics were made, and this is a striking characteristic of Archaic urbanism in Etruria that has also been detected in the Greek world at Athens (Perkins & Walker 1990; Tsakirgis 2005). At Caere and Veii, there is evidence for some larger craft zones within the urban area, and also some association between crafts and sanctuaries at Marzabotto and elsewhere (Belelli Marchesini 2015, 2017; Belletti 2017; Morpurgo et al. 2017, 113–8). Later, in Roman period Etruria, there is clear evidence for urban production of pithoi, for example at Cosa and notably at Rome itself (Steinby 1981; Ciampoltrini 1992). In other crafts, patterns of workshop dispersal or nucleation, variations in size from small family operations to large nucleated concentrations and associations with sanctuaries are typical of central Italy (Nijboer 2004) and should be expected with pithoi.

Rural production is also a possibility: size made pithoi difficult to transport to the location where they were required and difficult to install in already completed buildings. A mobile workshop could avoid these problems. Evidence from Early Bronze Age Greece suggests pithoi were made and installed on location at Helike as part of house building by itinerant craftspeople (Katsonopoulou et al. 2016), and mobility is also suggested by the transfer of pithos-making skills from the Aegean to Roa Vecchia in Puglia in the Final Bronze Age (Guglielmino 1999). In central coastal Etruria, volcanic minerals in a pithos fabric may indicate that peripatetic pithos makers carried their materials with them or perhaps that finished pithoi or raw materials were transported over land to the locations where they were needed (Perkins 1999, 184–6).

Examination of the ceramic fabrics used to make pithoi provides further clues about the organization of pithos production. Specialized workshops might be necessary to deploy technical skills required but that does not mean they produced exclusively pithoi (Giannopoulou 2010, 50–4, 146). At Doganella, some pithoi were also made using the same fabrics as used for other ceramics. At Poggio della Castellina del Marangone, Civitavecchia, pithoi were found in two different fabrics: one local and the other which has a regional distribution centred on Caere and Pyrgi (Montanel Tramulla 2011, 677). This distinctive cream fabric with volcanic inclusions (chiara sabbiosa) was also used to make coarse wares, hearths, basins, amphorae and architectural ceramics, suggesting a diverse output from either the city of Caere or the sanctuary at Pyrgi – or perhaps both. Most pithoi along with terracottas and other architectural ceramics at Poggio della Castellina del Marangone were made with the Caere-Pyrgi fabric suggesting they were imported possibly by sea
Figure 17.2 summarizes the distribution of 3393 published examples from 921 sites in Etruria and the province of Modena in the Etruscan Po Valley. Such a large sample should reflect the reality of the ancient distribution, but ultimately, the distribution and density of pithos finds is strongly conditioned by the frequency and intensity of archaeological fieldwork, the original settlement density and the intensity of artefact studies. On the map, the highest density of finds is in intensively field surveyed areas and excavations where all the artefacts have been thoroughly studied. For example, in field surveys, 485 pithos sherds were recovered by the Albegna Valley (Perkins 1999, 146–51), and at Poggio ai Monti, a hilltop field surveyed near Pomarance southwest of Volterra, pithoi were by far

(Montanel Tramulla 2011, 677). Finds of ribbed pithoi at Tarquinia that were made in Caere, in the late seventh to early sixth century, suggest they, too, were traded (Mordeglia 2001; Catalli et al. 2009), and there is also a limited distribution of Caeretan stamped pithoi in the territory of the city (Serra Ridgway 2010, 263–4). In Liguria, there is some evidence for trade in the vessels or their contents (Delfino & Piccardi 2014), and at Genova evidence suggests the importation of large storage vessels made in the area of Pisa and Livorno, but most seem to be local or regional productions. Whichever way pithos manufacture and distribution was organized, a complex network of production processes and systems of exchange and communication led from the producer to the consumer of pithoi. The distribution map of pithos finds (Fig. 17.2) illustrates the extent and density of this network.

Using pithoi

Figure 17.2 summarizes the distribution of 3393 published examples from 921 sites in Etruria and the province of Modena in the Etruscan Po Valley. Such a large sample should reflect the reality of the ancient distribution, but ultimately, the distribution and density of pithos finds is strongly conditioned by the frequency and intensity of archaeological fieldwork, the original settlement density and the intensity of artefact studies. On the map, the highest density of finds is in intensively field surveyed areas and excavations where all the artefacts have been thoroughly studied. For example, in field surveys, 485 pithos sherds were recovered by the Albegna Valley (Perkins 1999, 146–51), and at Poggio ai Monti, a hilltop field surveyed near Pomarance southwest of Volterra, pithoi were by far
The most common find, 18 per cent compared to 3 per cent for table wares by weight, or 22 per cent to 13 per cent by number of sherds (Taddei 2009, 4–6). In a rural excavation, 214 sherds were excavated at the small farm at Podere Tartuchino (Perkins & Attolini 1992), and urban excavations yielded 540 sherds from a house at Marzabotto (Mattioli 2010), 130 sherds from La Civita, Tarquinia (Mordeglia 2001, 149–54), and 91 from Vigna Parrocchiale, Caere (Nardi 1993). Earlier field surveys tended to focus on site locations and did not publish individual artefacts, and so the absence of pithoi in surveyed areas northwest of Caere, around Vetulonia, and Pisa is likely to be more apparent than real (Neppi Modona 1953; Gianfrotta 1972; Quilici Gigli 1976; Andreussi 1977; Curri 1978).

A further consideration in interpreting the distribution is that sherds of pithoi can be difficult to identify in surface scatters. Typically, much of an Etruscan surface scatter consists of tile and, in field conditions, it is difficult to distinguish tile fragments from pithos sherds. In areas where tiles are not found, pithos sherds are difficult to differentiate from large coarse ware sherds and are therefore less likely to be closely studied and identified. They are usually made of very similar fabrics, and so canal tiles and pithos sherds or coarseware may only subtly vary from one another. These practical problems make the under-reporting of pithos sherds highly likely since most survey methodologies do not systematically retrieve and analyse tile fragments or coarse ware body sherds. For these reasons the large sample of pithoi presented here is likely to be only the tip of an even larger iceberg of pithoi in Etruria.

Comparison between the altitude of the find spots and the range of altitude in Etruria indicates that the distribution of pithoi in Etruria is not directly correlated with altitude, and therefore neither average temperature nor rainfall (Fig. 17.3). Pithoi are more commonly found in lower areas of Etruria: 49.5 per cent from below 100 m asl and 81.8 per cent below 250 m asl, compared to only 43.2 per cent of the land surface below 250 m asl. These warmer and dryer lowlands are also where most Etruscan settlements are found. The highest recorded pithos is at 882 m asl, but just 10 are recorded above 700 m and only 14 above 600 m asl. Etruscan settlements are rarely documented at such altitudes and the scarcity of pithoi emphasizes their link with arable agriculture and arbiculture rather than mountain pastoralism. This could be a factor in the near absence of pithoi from Umbria in this study, although systematic survey and excavations of Etruscan settlements are few in this region.

Some areas stand out as having a very high density of pithoi (Fig. 17.4) – these are the field surveyed areas near Caere and the Albegna Valley around Doganella (Enei 2001; Perkins 1999, 146–51). These clusters are likely to be the result of the intensity and methodology of research in these areas rather than a reflection of an absolute concentration in these two areas. It is highly likely that pithoi should have a similar density around at least Vulci and Tarquinia, in the hinterlands of these major cities, where there are not yet publications of extensive survey work and artefact analysis. The same is likely to be true for coastal northern Etruria between Vetulonia and Pisa, where no pithoi are recorded. The area around Veii is perhaps an intermediate case, where artefacts from the survey work in the 1950s and 60s have been published in summary (Kahane et al. 1968). Despite these methodological issues, there do appear to be generalized differences in density.
similar examples have been found at Borgo Le Ferriere where Archaic *pithoi* were embedded in the ground in Stoa A (Maaskant-Kleibrink 1987, 101, fig.37.33), Castel di Decima and Colleferro (Attema et al. 2001–2002, 356). At Fidene, just over the Tiber from Etruria, *pithoi* of type 4 are found from the Iron Age I, typically with rims 45–60 cm in diameter, often with circular lug handles (di Gennaro et al. 2009, 155, fig. 9.2–5, 85–6, fig. 18.9–10), similar to those found in Chiusi in central Etruria (Minetti 2004, 460, type 2) and the Po Valley (Mattioli 2013, 296, family 19B).

Northwest of Etruria in Liguria, in the Middle-Recent Bronze Age, *pithoi* tend to be cylindrical, whereas in the second Iron Age (sixth–fourth centuries BC) they are biconical or globular (Delfino & Piccardi 2014). North of the Apennines in Etruria Padana, where *pithoi* are common, Mattioli has defined between the coastal, lowland, urban hinterland areas (Caere, Doganella), where there is a high density of *pithoi*, and the inland hilly areas where fewer sites and fewer *pithoi* are found, for example in the Province of Siena and Florence, where urban centres are absent or smaller. Nevertheless, this does provide evidence for the importance of *pithoi* to agriculture even in areas away from the influence of urban economies.

In neighbouring areas *pithoi* are similar to those in Etruria. In Latium for example, at Rome, in the Iron Age, large jars with everted rims, or incurving shoulder and up turned rims of *pithos* type 1 have been found on the Palatine Hill (Giontella & Françoise 2009, 60, fig.1 3–4, fig. 2 8–9, fig. 3 11–2). Further south at Satricum, Class II Storage jar/dolio types 7 and 8 equate to *pithos* types 2 and 3 and date from Latial phases IIA–IV (750–490 BC) (Attema et al. 2001–2002, 329–23). Other similar examples have been found at Borgo Le Ferriere where Archaic *pithoi* were embedded in the ground in Stoa A (Maaskant-Kleibrink 1987, 101, fig.37.33), Castel di Decima and Colleferro (Attema et al. 2001–2002, 356). At Fidene, just over the Tiber from Etruria, *pithoi* of type 4 are found from the Iron Age I, typically with rims 45–60 cm in diameter, often with circular lug handles (di Gennaro et al. 2009, 155, fig. 9.2–5, 85–6, fig. 18.9–10), similar to those found in Chiusi in central Etruria (Minetti 2004, 460, type 2) and the Po Valley (Mattioli 2013, 296, family 19B).

Northwest of Etruria in Liguria, in the Middle-Recent Bronze Age, *pithoi* tend to be cylindrical, whereas in the second Iron Age (sixth–fourth centuries BC) they are biconical or globular (Delfino & Piccardi 2014). North of the Apennines in Etruria Padana, where *pithoi* are common, Mattioli has defined

![Figure 17.4. Map of sample area with land above 250 m shown in white, the lowest land in grey, dots represent pithos find spots and dotted lines areas of systematic field survey (after Palmisano et al. 2018, fig. 1).](image-url)
two forms of dolio distinguished by the presence of pommel handles below the shoulder of the vessel. They are tentatively subdivided into four types by the shape of the body, four subtypes by the overall shape of the rim and four variants by the detailed shape of the rim, although the fragmentary state of the finds makes classification difficult (Mattioli 2013, 291–6).

A few sherds of pithos have also been recovered from Etruscan period shipwrecks found along the coasts of Tuscany and Provence. They are associated with Etruscan, Massiliote and Punic amphorae, but are not proven to be Etruscan in origin (Sourisseau 1997, 397–99; Long et al. 2002, 50, 67; Nardò 2017, 31–42). These finds indicate that pithoi were used on ships but not as exclusive cargos – they perhaps contained ship’s provisions or drinking water. An image incised on a mid-seventh century kantharos from Veii showing a circular object with a neck and lid forming part of a ship’s cargo has been tentatively interpreted as a large two-handled vase (Arizza et al. 2013, 87, 99–100, fig. 17–18), perhaps a pithos.

Amphorae found in southern France provide evidence for seaborne trade in agricultural produce with Etruria from the end of the seventh century bc (Sourisseau 1997; Bats 2012; Nardò 2017, 290–1), however, pithoi do not appear there before the end of the sixth century and then they were mostly made locally in local styles (Py 2018). The few exceptions were those made at Béziers in sixth to fourth centuries bc, thought to have been first introduced via Greek Massalia and a group from Narbonne-Béziers with Iberian stamps (Jandot et al. 2009). At Lattes, where Etruscans may have settled (Py 1995, 131–33; 2008; Garmy et al. 2015), Etruscan pithoi seem to be absent and there is only limited evidence for vines in the form of grape pips in the early fifth century bc, suggesting that Etruscans did not introduce the technology for large scale wine production into Gaul (Py & Buxo i Capdevila 2001, 39–42).

In summary, bearing in mind the limitations in the evidence, from the Orientalizing period onwards, and particularly in the Archaic period, pithoi became a very common feature of archaeological assemblages in Etruria and neighbouring lowland areas. They are found at all types of site, rural, urban and even burial, and are particularly concentrated in areas closer to the coast and below 200 m asl. The impact of these widespread and common pithoi on the Etruscan economy will now be investigated.

Socio-economic agency of pithoi

Pithoi ensure better long-term storage than containers such as sacks, skins, crates or baskets, because they are more vermin-proof, damp-proof, robust and durable. Given their size, pithoi provide an immobile form of bulk storage for liquid or semi-liquid agricultural produce, such as wine, oil or grains, enabling the secure accumulation and storage of valuable resources. Storage technology enabling the conservation of bulky resources for gradual consumption, the consumption of out-of-season produce, and the preservation of seed corn from one growing season to the next, was essential for farming communities. Bulk storage also enabled more control over the timing of any exchange of surplus produce. Secure storage moreover created the ability to manage resources and stockpile produce that might be required to fulfil social obligations such as feasting, taxation, repaying debt or provide commodities for commercial trading.

A further use for pithoi was processing of agricultural produce into secondary products, for example wine, olive oil, fish condiments, dairy products or wool and other fibres. Pithoi therefore were an essential part of many chaînes opératoires of agricultural production. Direct evidence for their use is scarce. In the Greek and Roman worlds, pithoi acted as vessels for gathering and storing pressed grape juice and olive oil (Brun 2003, 79–83, 163–4; Foxhall 2007, 138–65). Pithoi were also key to large scale wine production in Etruria, forming part of the technology of wine pressing for catching grape juice from the treading trough, for fermentation and for storage of wine (Perkins & Attolini 1992, 120–4; Perkins 2012). A graffito ‘vinum’ on a pithos from Gravisca (ET Ta 0.6; CIE, III, 1, 1982, no. 10390) provides further evidence for use with wine (Cristofani et al. 1985, 143, no. 6.9.1). At Poggio della Castellina del Marangone, Civitavecchia, chemical analysis of residues suggested that a pithos contained wine or must, and holes in the side and lower wall were thought to drain wine from sediment and then the sediment from the pithos (Montanel Tramulla 2011, 678). At Poggio Colla, in northeastern Etruria, pithoi containing carbonized grains, including barley, were found in the phase III (c. 200 bc) buildings in small rooms that have been interpreted as a granary (Warden et al. 1999, 243, fig. 19; Warden & Thomas 2002, 100; Warden et al. 2005, 255).

Pithoi are particularly associated with both rural and urban buildings, sometimes set into floors and sometimes free-standing. Generally, the location of pithoi in buildings seems to reflect their multiple uses as they are found in various areas. At Podere Tartuchino, room A in the farm building contained four pithoi and the largest room C contained at least six pithoi with one near the door and another sunk into the floor in the centre of the room as part of a wine press (Perkins & Attolini 1992, 118–23). At San Giovenale, a pithos in Phase 2 House 2 stood by the
wall (Backe-Forsberg 2005, 56). At Poggio Alto near Marsiliana in the House of the Amphoras, *pithoi* were found lined up along the exterior of the walls of room A at the south corner of the courtyard building, both in the courtyard and outside the building. They were found with bowls, jars and basins, suggesting use in food processing. Outside the northwestern corner of the room, a half-sunken *pithos* may have functioned to catch rainwater from the roof. This possible interpretation is supported by chemical analysis that found no residues other than pitch and beeswax that would have waterproofed the vessel (Camilli et al. 2008a, 370–4; Camilli et al. 2008b, 203–4; Zifferero 2010, 12–7). Two sherds from Cerveteri had calcareous incrustations on the interior also suggesting water storage, and two others had traces of a yellowish substance on the interior (Nardi 1993, 360). Lipid analysis of sherds of *pithos* from the House of the Dolia at Marsiliana suggest that *pithoi* may have been multifunctional or contained mixtures of produce. Two of the three samples analysed provided possible evidence for fish and olive oil, another traces of wine and the third a vegetable oil. All provided evidence for pitch, and two for beeswax, these most likely for sealing the inner surface of the *pithoi* (Camilli et al. 2008b, 203–4). Pitch was also detected on the sunken *pithos* associated with a hearth from Podere Tartuchino suggesting it was not used for olive oil that reacts badly with pitch (Perkins & Attolini 1992, 121–2).

Pithoi also had domestic uses for storing bulk material such as water or oil for cooking purposes. Large *pithos*-like jars feature next to an oven in a rare representation of an Etruscan kitchen in the Tomba Golini I at Orvieto and a cook is shown about to spoon a liquid from the vessel (Maggiani 1987). At Tarquinia, excavation at Cività in sector F to the north of building beta found a *pithos* set into the ground in a room that also contained an oven in the mid-sixth century bc. There was no evidence for any specific use of the *pithos* or the oven, so this may have been a kitchen. However, the same room was later used for secondary working of copper alloy after a furnace was installed (Chiaramonte Trerè 1997a, 193; 1997b, 74–5; Mordeglia 2001, 152 no. 272/7, pl.67). Half of a *pithos*, cut vertically, was repurposed at Ghiccioforte as an oven in a kitchen with a ceramic basin and a stone tank (Firmati 2001, 59–60).

In late eighth–early seventh century Bologna, a *pithos* embedded in the centre of a hut floor in Piazza San Francesco was filled with 14,838 copper alloy objects and three of iron thought to be awaiting recycling (Tovoli 1982, 265). Another *pithos* found at Riolo near Castelfranco Emilia contained a hoard of copper alloy ingots and *ramo secco aes signatum* (Neri et al. 1998, 64; Cardarelli & Malnati 2009). Here, *pithoi* may be functioning as a part of an industrial process and also enabling the accumulation and storage of wealth in metallic form. A further industrial use suggested for large storage jars is in salt production at the Iron Age salt pans near Tarquinia (Mandolesi 2014, 199, fig. 4).

In the Comunità area of Veii, in the artisan quarter that produced ceramics, two *pithoi* lined with clay were found propped up on *tufo* blocks in a shallow depression and have been interpreted as playing a role in the processing of clay or the storage of water for potting (Belelli Marchesini 2015, 112). The use of *pithoi* as beehives is recorded in Bronze Age and modern Greece (Giannopoulou 2010, 39, 148), but the only direct Etruscan evidence for beekeeping, from Forcello near Mantua, suggests that wooden containers were used for honeycomb, although there were *pithoi* present in the room next to the hives (Casini 2007, 230).

Fragmentary *pithoi* also had secondary uses. At Trebbio near Sansepolcro, portions of *pithos* rims were reused to form the mouth of the firing chamber in Archaic kilns A and B, and a complete rim was set on the floor of kiln C (Ciacci et al. 2009, 65–8). Similar reuse of *pithos* rims is also reported in the Etruscan Po Valley at Marzabotto, Bologna, San Vitale, Verucchio and Savignano sul Rubicone (Ciacci et al. 2009, 68). In Florence, sherds of overfired *pithoi* seem to have been used as part of a kiln floor (Da Vela 2019, 37–8). Likewise at Caere a number of sherds had vitrified interiors, perhaps as a result of re-use in kiln structures, and two had traces of copper alloy slag on the interior, perhaps again as a result of re-use rather than a primary use as a crucible (Nardi 1993, 353 no. M1.10, 60–1). At Roselle, a *pithos* was re-used as a well head (Donati 1994). A number of large rim sherds were found recycled as building blocks in the first half of the seventh century at Tarquinia (Mordeglia 2001, 153, no. 250/1). Similarly, the phase II walls at Podere Tartuchino contained occasional large sherds of *pithos* as building material (Perkins & Attolini 1992, 77). They were also a valuable resource worth repairing – a sherd from Tarquinia was drilled with three holes below the rim for repair purposes (Mordeglia 2001, 150, no. 243/4). Vintage *pithoi* were a valuable resource with the potential for many forms of reuse or recycling, as also documented in the Roman period (Perkins 1999, 186; Peña 2007, 194–6).

Burial practices in Etruria, and particularly northeastern Etruria, further extended the functionality of *pithoi* by using them for containing and storing cremated human remains. Inhumation in a *pithos* is common in the Eastern Mediterranean, especially Greece (Brann 1960; Vavouranakis 2014), and northeastern Sicily in the Bronze Age (Veca 2014), but unknown in Etruria.
Here *pithoi* were used to contain an entire burial assemblage, with the cremated remains usually enclosed in smaller urns placed within the *pithos* and surrounded by grave goods. The *pithos* was sealed and then buried in a pit. The large jars also had an ideological purpose, contributing to representing the status and identity of the deceased by alluding to the importance of agricultural production and the associated accumulation of wealth. Producing *pithoi* specifically for burials, or removing a valuable *pithos* from its role in agricultural production and repurposing it as a burial container, were both costly elements of burial ritual. These burial containers are rarely published in any detail, making comparisons difficult, however, many appear to be smaller than those used in agricultural production, some with diameters less than 30 cm, and they are perhaps a separate class of vessel modelled on agricultural *pithoi* or large storage jars but destined for funerary use.

Cremation burial in a *pithos* was widespread from at least the mid-eighth century BC and could be considered as an extension and scaling up of broader urn-field traditions of burial in smaller vessels, such as the classic Protovillanovan or Villanovan biconical urns. Similar burials are found in the Po Valley (where the container is called a *dolio* or *ziro*) at Spina (Aurigemma 1936, 28–31, pl. 14–15; Berti 1994), Bagnolet S. Vito (De Marinis 1982, 41) and Cortemaggiore (Saronio 1999, 17–18), for example. In northern and central Etruria, this form of burial is characteristic at Pisa (Maggiani 1990, 39), Florence (Salvini 1996, tomb 6), Prato Rosello (Poggesi 1999), Volterra (Rosselli 2009, 289–91) and in the frequent *tomba a ziro* around Chiusi (Dohan 1935; Minetti 2004, 513–21). Cremations in *pithoi* are rare at Tarquinia, Veii and Bisonzio from the first half of the eighth century BC onwards (Piergrossi 2002, 42–3). Large vessels, usually described as *dolia*, were also used in parts of Latium, for example at Osteria del’Osa, Rome, Satricum, Marino and Castel Gandolfo (Attema *et al.* 2001–2002, 356; Nizzo 2008, 114–15, 28, 70; Alessandri 2009, fig.1.25.1–2, 47.3). Typically, these are more open, ovoid shapes rather than the globular, thick-walled *pithoi* used for storage.

Various types of *pithoi* are also found in burials as tomb goods in their own right, for example Caeretan stamped *pithoi* (Serra Ridgway 2010), Caeretan ribbed *pithoi*, some dating to the Early Orientalizing period (Nardi 1993, 351), *impasto pithoi* (ten Kortenaar 2011, 100–5; Ciampoltrini & Rendini 2012, 395–7, figs. 6–7) or ‘white-on-red’ painted *pithoi* (Micozzi 1994). Small *pithoi* or large storage jars are particularly common in tombs around Vulci, and often painted with geometric patterns or geometric lines in relief (Medori 2012, Regoli 2014, 77, no. 20). In the absence of scientific testing of residues there is not yet evidence to suggest that *pithoi* deposited in tombs were actually filled with grave goods such as wine, oil or grain, but it is likely that the vessels at least symbolized such contents. The use of *pithoi* in burials draws attention to the production and consumption of food and drink and therefore to feasting as a part of funerary ceremonies and commensality, as has been suggested in Minoan Crete (Vavouranakis 2014, 216). *Pithoi* as grave goods symbolized a well-stocked tomb, with supplies for banqueting and therefore acted again as an indicator of the wealth and status of the deceased.

Pithoi also had other ideological connotations in the ancient Mediterranean through their roles in various myths. As wine containers they relate to hospitality and urban community in the encounter of Hercules and the centaur Pholos (Noël 1998; see Riva in this volume). In the same myth, negative heroic values are enacted as a terrified Eurystheus hides in a *pithos* when Hercules brings him the Erymanthian boar, as on a bronze tripod from Vulci in St Petersburg (Riis 1998, fig. 48d). In Hesiod (*Works and Days* 96–9), a *pithos* in the possession of Pandora leads to plenty of trouble (Bevan 2018), but contained some hope and metaphorically represented her body (Steiner 2013). Ultimately, returning to a funereal context, perpetually filling a pierced *pithos* in Hades is perfect torture (Painesi 2014, 158–63).

Having explored the functions of *pithoi*, the next step is to consider how *pithoi* fitted into the broader picture of agricultural development, economic growth and social change in Etruria.

Pithoi, economic development and inequality

Five elements of agricultural innovation have been identified as important in increasing production of food and related secondary products: crops, animals, growing conditions, management practices and implements (Van der Veen 2010). Van der Veen argues that agricultural change is usually incremental, and when several innovations (rather than first inventions) together become embedded and start to have long term effects on society, then some sort of agricultural revolution is taking place. I would like to suggest that the widespread adoption of *pithoi* was just such an innovation.

At approximately the same time that *pithoi* became widespread in the second quarter of the first millennium BC, the pollen record indicates an increase in the number of cultivated trees – olives, walnuts, sweet chestnuts and vines (Langgut *et al.* 2019; Stoddart *et al.* 2019, 768–9). Cattle, sheep and goats were increasing in body size (Trentacoste 2020). Climatic data suggests a
gradual shift from wetter conditions of the Late Bronze Age to dryer conditions over the first half of the millennium (Finné et al. 2019, supp. fig. 1; Stoddart et al. 2019, 763). These new crops and conditions indicate the advent of new land management techniques with productive woodlands and fixed vineyards and olive groves newly structuring the landscape. New implements related to the production and consumption of wine appear from the late ninth century bc in the form of distinctive wine mixing bowls (‘craters’ and ‘amphora-craters’) and also pruning hooks (Delpino 2012) before *pithoi* appear. From the late seventh century bc, there is a qualitative leap in the evidence, with the appearance of Etruscan *amphorae* for bulk storage and transportation of wine (Cristofani 1987; Perkins 2012; Riva 2017, 240–3).

The combination of *pithoi* and *amphorae* at Etruscan rural and urban sites and the pollen evidence in Etruria provides proxy evidence for the large-scale production and exchange of arboreal agricultural produce. In contrast to *pithoi* that provide an immobile form of agricultural storage or processing, Etruscan *amphorae* are essentially a mobile form of storage for liquids or semi-liquids that enable the transport and exchange of primary or secondary agricultural produce. The organization of this productive activity both required and created the need for *pithoi* (and indeed *amphorae*) (Perkins 2012; Riva 2017, 240–3). The previously noted concentrations of *pithoi* in coastal areas, on current evidence, coincide with the area where Etruscan *amphorae* were mostly made, in the Cerveteri-Pyrgi area and around the Albegna Valley near Vulci (Finné 2019, fig. 17.5) (Sourisseau 1997), probably reflecting the connection between *pithoi* and *amphorae* at successive stages of the wine production *chaîne opératoire* (Perkins 2012). In this case, the co-occurrence of *pithoi* and *amphorae* may be an indicator of areas of agricultural change where surplus wine became more intensively produced, exported and also consumed. This broadly synchronous combination suggests that *pithoi* emerged as a new form of enabling technology as part of a broader agricultural revolution, by Van der Veen’s definition, although it remains to demonstrate that *pithoi* caused long-term effects on Etruscan society.

Attempts to link agricultural change with social change have not always been successful. In Greece, evidence for a connection between the adoption of olive cultivation and social, political or economic change is poor (Foxhall 2007, 13–19). Nevertheless, the association between agricultural production and social difference was made explicit in early sixth century Athens, when Solon’s reforms allocated the highest status political offices to individuals owning enough land to produce 500 *medimnoi* of crops (Rosivach 2005). Although there is no written evidence surviving from Etruria, the material evidence for the correlation of agricultural and social change seems much stronger.

The appearance of material culture related to wine consumption in the form of ceramic vessels for storing, mixing, presenting, serving and drinking wine has been associated with the emergence of an aristocratic class in the Orientalizing period, along with the appearance of public social rituals related to foundations, rites of passage and private funeral rituals that represent status of individuals (Bartoloni et al. 2012). Naturally enough, I would add *pithoi* and *amphorae* to these material and social manifestations of the *chaîne opératoire* of wine use. This material association has been developed by Riva (2017) into a theoretical analysis of regimes of value and their relationship to modes of production and social relations. This has been further extended to include aspects of ideology, ritual and iconography in social and cultural change (see Riva in this volume). This work has firmly established the entanglement between wine use and status as an element of cultural capital in Etruria. Taking some steps back down the *chaîne opératoire* of wine use and focusing on production reveals that the consumption of wine was partly facilitated by the adoption of *pithoi* to create the wine in the first place. Within the broader context of agricultural change, the adoption of *pithoi* may therefore be seen as a contributory factor in social change in a socially embedded, pre-monetary economy.

There are some threads of evidence that suggest *pithoi* could have functioned as gifts as well as providing storage and creating secondary agricultural products. A late seventh century inscription from Roselle identifies a *pithos* as a gift from Venel Laivena son of Rapale (Laviosa 1963, 43–4, fig. 1; Cristofani et al. 1985, 143, no. 6). The circumstances in which a *pithos* would be an appropriate, perhaps ritual gift are unknown, but the graffito on the rim testifies to a certain value attached to the vessel. It also suggests that the *pithos* had a specific transferable ownership that could perhaps be different to the ownership of its context, the house where it was found (the *Edificio con recinto*). Uniquely, *pithos* sherds from a sanctuary near San Giuliano have painted decoration of a rosette and a nude male running figure and separately a scene of copulation, dated to 530–500 bc, by similarity to Tarquinian wall paintings (Curoso 1986, 139, fig. 41, 1–21; Colonna 2014, 93). It also has an incised dedication [min]e turuce Lar8 Man8Bureie (REE 57.77), indicating it was a gift of a man with a gentilitial name (Morandi Tarabella 2007, 298). It is exceptional and elaborately decorated and could possibly be from a well-head rather than a *pithos* but, nevertheless, it is an example of large, valued, ceramic vessel being gifted by a member
of the elite. Another sherd from Satricum in Latium has a *ante cocturam* inscription that names two male individuals perhaps with a salutation or recording a gift, and dating to the mid-sixth century bc (Gnade & Colonna 2003). Furthermore, the writing of the inscription during the manufacturing process indicates that it was designed for this purpose.

Classically, in gift exchange, giving, receiving and reciprocating are the important elements and the intrinsic value of the gift is less important than the biography status of the gift (Mauss 1954, 19–22, 37–45). Nevertheless, in the Etruscan Orientalizing period many objects that did have a high intrinsic value, due to their material or their fine workmanship were inscribed and gifted (Sciacca 2006–2007, 282), suggesting a purely gift economy did not exist but rather a more developed economy operating with commodities, markets and weighed money (*aes rude* in Etruria) (Mauss 1954, 45). *Pithoi* were not made with precious materials, but their expensive specialist manufacture and multiple functions did give them considerable value and suggests they were an investment and an asset. The robustness of *pithoi* and their integration with buildings gave them long use-lives, making them a valued part of the agricultural infrastructure rather than individual artefacts. The common occurrence of Etruscan *pithoi* on Roman period sites in the Albegna Valley suggests *pithoi* retained their value over the long term as both part of the rural infrastructure in their primary roles and as recycled material. A similar scenario has been observed in Hellenistic Crete, where Archaic *pithoi* were conserved into the Hellenistic period at Praisos, and Minoan period *pithoi* were conserved in later periods at Trypetos and Azoria. This, along with occasional graffiti of family names, led to the interpretation of Cretan *pithoi* as functional and valuable heirlooms (Whitley 2011, 29–32).

Encouraged by artefacts bearing inscriptions that identify them as gifts, gift exchange in Etruscan Orientalizing gentilitial society is the generally preferred explanation for the limited scale exchange of status-bearing artefacts between individuals within a narrow band of the social elite (Cristofani 1975; Sciacca 2006–2007). This is generally thought to develop through time into the Archaic period to become a more commoditized system of exchange where symbolic value is replaced by commercial value (Perkins 2012, 421–4). Alongside their value as a gift and their intrinsic value, the evidence for production and distribution discussed above suggests that *pithoi* also had a value as a commodity. Their production in specialist workshops, their transport and their use producing added value for agricultural produce, suggests that they may well have functioned as commodities in a more developed economy with markets. Their value as gifts or commodities was therefore variable and inconstant (see Riva in this volume) at different times and in differing economic circumstances.

‘Prestige goods theory’ argues that a recurrent feature of complex societies is that elites manipulate specialized craft production for political and economic ends, specifically to create dependency as a means to create or maintain social and political power by appropriating the production of the majority (Schortman & Urban 2004, 188–92). In Etruria, a close association has been noted between elites and the manufacture of fine bucchero ceramics, silverwork and ivory carving (Gran Aymerich 1995), all materials used for vessels connected with wine consumption. Elite appropriation of new roofing technology has also been noted as a means of acquiring status (Riva 2010, 69–71) and this technology is similar to that used with *pithoi*. The widespread rural distribution of *pithoi* indicates that, somehow, specialized craft products were transferred into the possession of non-elite and non-urban populations.

An Etruscan agrarian society functioning in a pre-monetary economy would find it difficult to adopt the widespread use of *pithos* due to the high capital investment required to acquire *pithoi*. This suggests that from the point of view of the Etruscan non-elite, a *pithos* would be obtainable as a commodity only by the wealthiest farmers. For others, living closer to subsistence, a *pithos* would not have been within easy economic reach, given its value – both in terms of its production costs and its potential for generating economic output. If, however, *pithoi* are considered as ‘prestige goods’ that were produced by specialist craftspeople working for the elite and then gifted by the elite to the rural population, their obligatory reception would have created indebtedness and dependence by requiring reciprocity from the non-elite. This is not to suggest that the *pithoi* were solely gifts in a purely gift economy where gifting should operate between individuals of near equal status. Here, the social practice of gifting was extended to become more like a forced loan to the non-elite who were unable to fully reciprocate: consequently, dependence was created. This provided one way of creating social inequality that would have been generated and maintained by debt and propagated by social reproduction (Graeber 2011). As is usual, we have no Etruscan textual support, but in Rome debt and associated slavery was certainly a problem in the fifth century Conflict of the Orders and subject to regulation in the Twelve Tables and perhaps by *nexum*, as it had been in Athens in the early sixth century with Solon’s reforms (Raaflaub 1986, 211–17; Bernard 2016, 321–4; Blok & Krul 2017).
The elite would also be instituting a means of translating their material wealth, more visible in Orientalizing tombs, into social control by redistributing it to both the specialized pithos makers and from there to the rural population. This particular prestige good also had the agency to manufacture secondary agricultural produce and provide a means of storing surplus and, therefore, had a transformative action on its recipients who could use it to increase the range and volume of their own agricultural produce. This, potentially, might enable the rural indebted to materially reciprocate to their benefactors by paying off debt or perhaps even participate in market exchange. Thus, at the same time, through control of access to capital, technology and markets, the elite both bound to themselves the non-elite population, whether rural or urban, through the creation of debt and also increased the volume of production with the potential to generate economic growth.

This chain of economic connections would also have facilitated the expansion of rural settlement into new areas that is well documented in southern Etruria in the Orientalizing and Archaic periods (Potter 1979; Rendeli & Cristofani 1993; Tartara 1999; Perkins 1999, 52–92; Hemphill 2000; Enei 2001; Cifani 2002; 2009; 2016, 159; Cascino et al. 2012). During the establishment of new settlements, access to storage and processing equipment such as pithoi was necessary to create a profitable harvest. Any rural settler occupying new ground would require capital or some form of credit to acquire the infrastructure that would enable successful agricultural production. Credit, supplied in the form of gifted pithoi, would enable the elite to indebted the rural population and gain possession of a portion of the production that could be marketed in urban centres. Moreover, the ‘gifting’ of the rights to farm the land could operate in the same way as the ‘gifting’ of infrastructure, thereby creating further indebtedness. Add to this the need to acquire seed corn through credit with a delayed payback of at least one season, and allowing even more time to establish productive vines or olives – both closely associated with pithoi – and the result is perhaps a five-year period before any significant payback of credit would become possible. Such timescales might easily be extended by inevitable crop failures. Altogether these factors in land settlement and agricultural development constitute a large quantity of credit and debt, and therefore dependency in Etruscan society and economy.

This analysis provides a mechanism to help explain how Etruscan urban settlements expanded their control over rural areas. In the case of Vulci, this appropriation of territory has been documented by the appearance of elite tombs, increasingly far from the city (Rendeli 1993, 167–74), and the spread of rural settlement (Perkins 1999). The simultaneous intensification in the density of rural settlement, increased urban development and population growth, widespread in Archaic coastal central Italy, will have also led to changes in land ownership or occupation. In the case of Rome at the end of the sixth century BC, a comparison with later Republican period suggests that redistribution or rental of Ager Publicus may be a factor in this phenomenon (Cifani 2016, 159). For Etruria, there is no clear evidence for the existence of an equivalent to Ager Publicus or ownership of land by other institutions such as sanctuaries, but it is likely to have been an element of Etruscan state organization. State or sanctuary involvement in the economic development of land may have gradually come to replace or co-exist with gentilitial enterprises, perhaps reflecting a growing strength of Archaic urban institutions, as opposed to earlier gentilitial social structures. Archaic period changes in the structuring of urban territories such as the creation of cuniculi (Judson & Kahane 1963; Rasmussen 2005) and a road network, including cuttings that made it suitable for wheeled transport, documented around Veii (Ward-Perkins 1962; Tuppi 2014), indicate an increased state presence in rural areas and an increase in the integration between the city and its rural territory. At Tarquinia, the production and distribution of salt from lagoons on the coast from the Orientalizing period onwards and then later more intensive agricultural production has been associated with the integration of coast, city and territory through the evidence of ceramics in excavations at Tarquinia and Gravisca and from there further into Mediterranean exchange networks (Bonghi Jovini 2006). These are probable indicators of what could be called state investment and potentially proxy measures of economic growth. Just like pithoi, these interventions contributed to creating the infrastructure required for the generation and mobilization of an economic surplus.

Pithoi, economic growth and cities

The frequency of pithos finds is very high in urban centres and they will have performed many of the same functions as they did in rural settlements. Etruscan cities, just like any other, depended on a rural hinterland for sustenance in the form of basic food stuffs and also produce that could be transported to the city and further processed in an urban context to increase its value or exclusivity. Grapes or olives could be brought to the
city for processing from nearby vineyards and groves, but the concentration of population also increased the need for effective storage of foodstuffs in the city. Population density may also have increased the demand for other, non-agricultural functions of pithoi in cities, along with the need for facilities for city-based craft activity. This pithos-based storage and production capacity also contributed to economic aspects of state formation and the exercise of state power in that it enabled the storage of surplus that could then be mobilized to achieve state aims, such as warfare or the development of state infrastructure.

The increased frequency and distribution of pithoi during the mid-first millennium bc strongly suggests an increase in primary and secondary agricultural production. There may also have been an associated increase in the volume of individual pithoi, which in turn also indicates a growth in the volume of production as Etruria urbanizes. At Poggio della Castellina del Marangone, in a small sample of vessels there was a general increase in estimated size of pithoi from 40 l in the Bronze Age to 150–600 l in the early and mid-Orientalizing period. In the late Orientalizing and Archaic period, size reduced back to 40 l. Subsequently, in the Hellenistic period it increased again to 92–527 l. This has been linked to more sophisticated ceramic technology in the earlier period, and in the Hellenistic – to a greater economic need for on-site storage. A similar variation in size through time is suggested by the study of a sample of 48 storage jars and pithoi from central Italy and elsewhere (Calvo Garcia 2011; Montanel Tramulla 2011, 677–8).

This widespread adoption of pithos-based technology was a technological innovation that increased the
carrying capacity of the Etruscan economy providing the population with increased nutrition and therefore enabling it to grow in size. The growth in productive and storage capacity runs alongside an increase in the density of rural settlement and the intensification of urban settlements, both indicators of and facilitators of population growth. Without statistics, it is difficult to be precise, but if the increase in production outstripped the increase in population, Etruria would have been experiencing economic growth, to use the modern term (Temin 2013, 231–3). Pithos-based technology can therefore be seen as a driver of ancient economic growth. This proposition is supported by other aspects of the Etruscan economy. The development of trade in amphorae contents (particularly pithos-produced wine) provides evidence for an increase in production and a surplus of agricultural commodities exported to other parts of the Mediterranean (Sourisseau 1997). Increased density in pithos use also suggests greater facilities for storage and the increased possibility of realizing delayed returns from produce or adding value to production through secondary processing. Pithoi are, however, expensive pieces of infrastructure that need to generate a significant level of profit from agricultural produce to pay back the initial investment of capital before they start to contribute to real economic growth.

Further indicators provide proxy evidence for economic growth in the same period – the late seventh to sixth century bc. Increase in the body sizes of cattle, sheep and goats indicate an enhanced productivity from animal husbandry (Trentacoste 2020). Ice core samples from Col du Dome on Mont Blanc indicate a peak in lead and antimony pollution at this time that was linked to the extraction and processing of metals in the northwest Mediterranean area. Later, in the Roman period, similar pollution evidence, along with other Arctic cores, has been used as an indicator to suggest generalized economic growth (Preunkert et al. 2019, fig. 2).

Increased pithos use is paralleled by an increase in the use of heavy ceramic infrastructure technology throughout Etruria, particularly roof tiles and decorated terracotta revetments for high status buildings and temples (Winter 2009; Naso 2010). This is evidence for the generally greater sophistication of ceramic technology in this period, but not necessarily the production of these different ceramics in the same workshops. The increased use of pithoi is contemporary with the production of amphorae and the closely technologically related production of architectural terracottas and roof tiles (Fig. 16.5). Agricultural production and distribution using heavy ceramics therefore develops hand in hand with Etruscan monumental urbanism at the end of the Orientalizing period.

Conclusion

This analysis has outlined the social and economic implications of the increased frequency of pithos use that is documented in the archaeological record of Etruria during the middle years of the first millennium bc. The agricultural innovation that this represents takes place within and contributes to the development of a complex society undergoing increased urbanization with the transition to the Archaic period.

I hope to have illustrated how pithos use transformed a wide range of economic activity from the practicalities of production, the functioning of rural infrastructure and the role of pithoi as capital in the rural and social economy, and also acted on social structures up to the large scale of the state. I am proposing that pithoi were an important element in the increasing integration between different aspects of production, trade, urbanism and social development that occurred with the Etruscan transition from the Orientalizing to the Archaic period. The model I have outlined suggests pithoi provided a means for the wealth of the Orientalizing elite to be channelled into agricultural production and simultaneously reinforce the unequal social hierarchy. Along with this, goes a fresh vision of the mechanisms behind Etruscan methods of settling new land. Broadly, the patterns in the evidence for pithoi in Etruria Padana are similar to those in coastal Etruria, suggesting a similar process of economic development may have occurred there – although this is currently interpreted as a process of Etruscan colonization north of the Apennines. Making this comparison suggests that what happened in the Po Valley might be closer to agricultural innovation than colonial occupation of the soil and provides some support for Sassatelli’s (2008) questioning of the colonizing hypothesis. A search for pithoi in Etruscan-influenced areas of Campania might provide further insights, although published pithoi are scarce in that region.

I have also suggested that the adoption of pithoi might be an indicator of, and a stimulus for economic growth. Standing back from the individual artefacts and viewing the adoption of pithoi as the introduction of a suite of new related technologies that interlink various chaînes opératoires of ceramic and agricultural production, processing and consumption suggests something of a revolution happened in the Etruscan economy. The adoption of a new chaîne opératoire of amphora technology, following Phoenician models (Perkins 2012), represents an intertwined agricultural innovation. My assertion is that pithoi are not just evidence for the introduction of new technologies but evidence for the development of new economic systems in Etruria.
I have pushed the *pithos* evidence to suggest they provide proxy evidence for Etruscan economic growth, something that has proved elusive in the study of the later Roman economy. The development of urban settlements in the Etruscan world was bound up with this economic growth, and just as so many other Roman things depended on their Etruscan neighbours, early Roman economic growth may have followed a similar pattern to the economic development evident in Etruria. Many of the other studies in this volume discuss scenarios of making cities in other parts of the Mediterranean; *pithoi* may also have played an important role in these and other parts of the Classical world.

Abbreviations

ET – Etruskische Texte (Meiser 2014).

REE – Rivista di epigrafia etrusca, annually in Studi Etruschi.

References

The Etruscan pithos revolution

Making cities

Large and complex settlements appeared across the north Mediterranean during the period 1000–500 BC, from the Aegean basin to Iberia, as well as north of the Alps. The region also became considerably more interconnected. Urban life and networks fostered new consumption practices, requiring different economic and social structures to sustain them. This book considers the emergence of cities in Mediterranean Europe, with a focus on the economy. What was distinctive about urban lifeways across the Mediterranean? How did different economic activities interact, and how did they transform power hierarchies? How was urbanism sustained by economic structures, social relations and mobility? The authors bring to the debate recently excavated sites and regions that may be unfamiliar to wider (especially Anglophone) scholarship, alongside fresh reappraisals of well-known cities. The variety of urban life, economy and local dynamics prompts us to reconsider ancient urbanism through a comparative perspective.

Editors:

Margarita Gleba is a Professor at the University of Padua and Honorary Senior Lecturer at University College London.
Beatriz Marín-Aguilera is a Renfrew Fellow at the McDonald Institute for Archaeological Research, University of Cambridge.
Bela Dimova is a A. G. Leventis Fellow in Hellenic Studies at the British School at Athens.

Published by the McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK.

The McDonald Institute for Archaeological Research exists to further research by Cambridge archaeologists and their collaborators into all aspects of the human past, across time and space. It supports archaeological fieldwork, archaeological science, material culture studies, and archaeological theory in an interdisciplinary framework. The Institute is committed to supporting new perspectives and ground-breaking research in archaeology and publishes peer-reviewed books of the highest quality across a range of subjects in the form of fieldwork monographs and thematic edited volumes.

Cover artwork by Kelvin Wilson.
Cover design by Dora Kemp and Ben Plumridge.

ISBN: 978-1-913344-06-1