Explaining Errors in Predictions of At-Risk Students in Distance Learning Education

Hlosta, Martin; Papathoma, Tina and Herodotou, Christothea (2020). Explaining Errors in Predictions of At-Risk Students in Distance Learning Education. In: Artificial Intelligence in Education, Lecture Notes in Computer Science (LNCS), Springer, pp. 119–123.

DOI: https://doi.org/10.1007/978-3-030-52240-7_22

Abstract

Despite recognising the importance of transparency and understanding of predictive models, little effort has been made to investigate the errors made by these models. In this paper, we address this gap by interviewing 12 students whose results and predictions of submitting their assignment differed. Following our previous quantitative analysis of 25,000+ students, we conducted online interviews with two groups of students: those predicted to submit their assignment, yet they did not (False Negative) and those predicted not to submit, yet they did (False Positive). Interviews revealed that, in False Negatives, the non-submission of assignments was explained by personal, financial and practical reasons. Overall, the factors explaining the different outcomes were not related to any of the student data currently captured by the predictive model.

Viewing alternatives

Metrics

Public Attention

Altmetrics from Altmetric

Number of Citations

Citations from Dimensions

Item Actions

Export

About

Recommendations