Copy the page URI to the clipboard
White, L.F.; Cernok, A.; Darling, J.R.; Whitehouse, M.J.; Joy, K.H.; Cayron, C.; Dunlop, J.; Tait, K.T. and Anand, M.
(2020).
DOI: https://doi.org/10.1038/s41550-020-1092-5
Abstract
Accurately constraining the formation and evolution of the lunar magnesian suite is key to understanding the earliest periods of magmatic crustal building that followed accretion and primordial differentiation of the Moon. However, the origin and evolution of these unique rocks is highly debated. Here, we report on the microstructural characterization of a large (~250-μm) baddeleyite (monoclinic-ZrO2) grain in Apollo troctolite 76535 that preserves quantifiable crystallographic relationships indicative of reversion from a precursor cubic-ZrO2 phase. This observation places important constraints on the formation temperature of the grain (>2,300 °C), which endogenic processes alone fail to reconcile. We conclude that the troctolite crystallized directly from a large, differentiated impact melt sheet 4,328 ± 8 Myr ago. These results suggest that impact bombardment would have played a critical role in the evolution of the earliest planetary crusts.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 70826
- Item Type
- Journal Item
- ISSN
- 2397-3366
- Project Funding Details
-
Funded Project Name Project ID Funding Body Consolidated Grant - Solar Studies and Planetary Studies (SS & PL 2016) ST/P000657/1 STFC (Science & Technology Facilities Council) - Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Research Group
- ?? space ??
- Copyright Holders
- © 2020 Springer Nature B.V.
- Related URLs
- Depositing User
- Mahesh Anand