Characterising the Transfer of Biomarkers within the Phobos-Mars System

Conference or Workshop Item

How to cite:

For guidance on citations see FAQs.

© [not recorded]

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Poster

Link(s) to article on publisher’s website:

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page.
How can material be transported from Mars to Phobos?

- Initial impact into Mars
- Martian ejecta ascends through atmosphere undergoing aerodynamic heating
- Martian ejecta spreads upwards towards the orbit of Phobos
- Ascending martian ejecta intersects Phobos’ orbital path impacting Phobos’ sub-Mars hemisphere
- Phobos sweeps up ascending martian ejecta in Phobos’ orbital path
- Martian ejecta loses energy and disperses covering a larger area of Phobos’ orbit and begins to descend
- Descending martian ejecta intersects Phobos’ orbit again impacting Phobos’ anti-Mars hemisphere

Could there be martian biomarkers on Phobos?

- **Phobos** itself is not considered habitable [1]
- However, its proximity to Mars and short orbital period have led to the hypothesis that:
 - **Large impacts into Mars could eject material, containing biomarkers remnant from past life, that could deposit onto Phobos [2-4]**.
 - Therefore, biomarkers could potentially exist on the surface of Phobos and be sampled by future sample-return missions like MMX [5,6].

What about organic contamination in the Light-Gas Gun?

- Within the light gas gun unwanted carbon-based material can act as contamination.
- Samples from throughout the gun (**) will undergo organic characterisation with GC-MS.
- Characterisation is vital to prevent false-positive identification of biomarkers.

Defining biomarkers

- Biomarkers represent the essential building blocks for a broad range of life forms and could survive billions of years in the harsh martian surface environment [7].
- The contamination in the gun constrains the chosen biomarker.
- Possible biomarkers include:
 - Sterols
 - Amino Acids
 - Long chain Fatty acids
 - Alkanes
- The biomarker(s) will be used to dope martian bedrock analogue & bespoke projectiles.

Developing bespoke projectiles

Bespoke projectiles are required to simulate martian ejecta. They should exhibit:

- Compositional and physical constituency with martian ejecta.
- Spatially homogenous doping with biomarkers to a known concentration.

Summary and implications

The results from these procedural and analytical developments:

- Allow for bespoke impact experiments, focussed on organics, to take place with constrained instrument contamination.
- Highlight the detection limits of analytical techniques (e.g. GC-MS) when analysing shock processed biomarkers, with major implications for current and future astrobiology missions.