ExoFiT: ExoMars-Like Field Trials – a Mission Simulation.

Conference or Workshop Item

How to cite:

For guidance on citations see FAQs.

© [not recorded]

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Accepted Manuscript

Link(s) to article on publisher’s website:

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

1AIRBUS; 2ESA; 3The Open University; 4Aberystwyth University; 5University of Valladolid; 6Space-X; 7latmos; 8TU Dresden; 9INTA; 10Birkbeck; 11University of St. Andrews; 12Imperial College London; 13Natural History Museum, London; 14University of Stirling; 15DLR; 16University of Leicester; 17University of Manchester; 18University of Westminster; 19UCL; 20University of Basel; 21CNRS Orleans.

Introduction: The success of rover operations critically depends on the versatility of the operation team to efficiently conduct the mission while managing the respective constraints arising from the engineering and science activities. As such, it must work in an efficient manner to operate the hardware, negotiate and agree on plans to achieve the mission objectives, while managing the status of the rover (health, data volume, power constraints), maximising science opportunities, and managing the challenges of the site under investigation. To train for those conditions – and at the same time to test critical instrument and hardware components, space agencies regularly hold field trials. Here, we focus on the ExoMars-Like Field Trial (ExoFiT), a series of realistic mission simulations based on the ESA ExoMars rover mission slated to be launched in 2020. The mission will carry a suite of instruments to carry out its mission objectives focused on geological and exobiological research [1].

The ExoMars rover – recently named Rosalind Franklin [2] – is planned for landing at Oxia Planum, Mars [3], a site at which orbital investigations have revealed a wide range of clay minerals [4], and which recently has been interpreted as a fluvial catchment area [5]. The ExoMars rover will be equipped with a wide range of instruments ranging from cameras (PanCam, CLUPI), spectrometers (ISEM, Ma-MISS; MicroOmega, RLS Raman Spectrometer), two instruments for the investigation of the subsurface (WISEDOM, Adron) and the mass spectrometer MOMA as well as the capability to drill up to 2 m deep.

Trials prior to ExoFiT: Leading up to the ExoFiT trials were a series of engineering and operations trials, of which SEEKER [6], SAFER [7] and MURFI [8] are mentioned here. SEEKER and SAFER were carried out in the Atacama desert (Paranal, Chile), in an area close to the ExoFiT site, and MURFI near Hanksville, Utah (USA). SEEKER’s objectives were to demonstrate long range autonomous navigation capabilities, reaching over 5 km of distance in one day [6]. SAFER was focused on remote operations with a remote control team, who operated the rover platform ‘Bridget’ [7]. MURFI was a trial organised by the UK Space agency together with the sample return trial of the Canadian Space agency [8].

ExoFiT: ExoFiT is an ESA funded, AIRBUS led field trial activity, carried out in two different ‘missions’ of two weeks each.

Fig. 1. Charlie on its way onto the landing platform in the Tabernas (Spain). PanCam is mounted on the mast, the drill box also containing CLUPI visible at the front and WISDOM at the back of the rover.

Set-up: ExoFiT uses the ‘Charlie’ rover (Fig. 1) built by AIRBUS based on a Bluebotics rover platform, as well as a lander mockup. The rover is equipped with representative ExoMars GNC navigation, the capability for wheel walking, and instrument payloads. Both trials simulated rover operations on Mars through a remote control team located at Harwell (RCC). The RCC team performed the rover planning on the basis of ‘orbital’ information at the resolution realistic for Mars missions and the data generated by the rover. For this, they analysed all available images and data and created DEMs. The planning was divided into long-term and sol-by-sol planning. For each sol a
plan was delivered to the field team (LCC). LCC set up
the site, produced the ‘orbital’ image by acquiring an
image mosaic with a drone, maintained the hardware
and executed the commands sent to the rover platform
in the RCC sol plans. Unlike other field trials, ExoFiT
was the first to have a full scale landing platform in the
field that could be used to simulate the full egress and
cross-commissioning process. This also provided the
RCC with the unique vantage point from which to per-
form longer term tactical planning.

Instruments: The rover Charlie was equipped with
a range of ExoMars instruments or emulations thereof
to make for a realistic experience in the RCC:

- CLUPI imager, provided by Space-X
- an emulator of the ISEM IR spectrometer, provided
 by Aberystwyth University
- the AUPE-3 PanCam emulator provided by Aber-
ystwyth University
- the WISDOM ground penetrating radar provided
 by LATMOS

A COTS drill was used to acquire subsurface samples,
however it was not accommodated on the rover.

The following payloads were used in a dedicated
tent in the field to analyse samples:

- MOMA, provided by MPI für Sonnensystemforschung
- RLS, provided by Universidad de Valladolid/CAB.

Aims during simulation: The aims of ExoFiT are to
egress from the lander safely, navigate away from the
area of potential rocket fuel contamination, check the
instruments and conduct the investigation of the area.
The ‘reference mission’ is to find, approach and drill an
outcrop identified by the science team as being of key
scientific interest. To support the science, the optical
payloads and the ground penetrating instruments are
used to characterize the geomorphology at and below
the surface, and the spectral instruments are used to gain
insight into the mineralogy. Once a sample is drilled, it
will be imaged by CLUPI and investigated by RLS.

Field test 1 (Tabernas, Spain). The first two-week
trial was carried out in the Tabernas desert in Spain, ~7 km
straight line distance SW of the village of Tabernas. An
area was chosen which is comprised of a sedimentary
sequence of sedimentary rocks and shows a wide range
of geomorphological and mineralogical features typical
for clay-rich desert surfaces. This includes erosional
features, mud cracks and salt efflorescence.

Field test 2 (Atacama, Chile). The second two
week trial was carried out in the Atacama desert, about
11 km W of the Paranal observatory. This site is com-
prised of very dry desert pavement made of gravel and
boulders, interspersed with finer grained, coarse sand
patches that can reach a considerable depth. The boul-
ders are made of the diorite found in the area and can
be seen in large concentrated boulder fields, which are
likely linked to surface outcrop. Of exobiological inter-
est are mainly clays and salts crusts.

Conclusions: At the time of writing, the second tri-
al is still ongoing. The first field trial in the Tabernas
demonstrated the challenges of being outside of a la-
boratory environment at the mercy of the elements. As
such, the remnant of a tropical storm passed the area
with high levels of rainfall, highly untypical for the
area, preventing the team from performing the planned
shake-down and site set-up activities. However, for the
Tabernas, a successful egress was performed into a
region with multiple, and obvious features for the RCC
team to survey. While unseasonably wet at times, the
RCC team successfully navigated the rover to an out-
crop, performing GPR soundings, and extracted multi-
ple core samples for CLUPI imaging and Raman analy-
ysis. The second ExoFiT trial aims to go beyond this,
by traversing larger distances in a more representative
environment, performing further egress and cross-
commissioning tasks, and testing wheel walking tech-
niques that could be used to help in difficult mobility
scenarios on Mars.

In the Tabernas, the RCC team successfully found
and characterized the most prominent outcrop in the
area. The approach was through image investigation
and WISDOM sounding, although the latter was com-
promised by the wetness of the underground. Subsur-
face coring was carried out and the core successfully
characterised. The second trial is ongoing at the time
of writing, but has already traversed over 70 m through
a complex, boulder-strewn terrain. The RCC team found
a target of interest despite the fact that the trial is set
in an area, which gives very little visual clues of those
areas from a distance, a realistic scenario at any Mar-
tian landing site.

Both trials offered a wide range of experience in
remote operations, critical insight into constraints and
opportunities of operations in a complex, natural envi-
ronment, and for operations of the specific payload of
the ExoMars rover in preparation for the 2021 landing.

References: [1] Vago, J. et al. (2017) Astrobiology 17-6/7,
471-510. [2] https://www.esa.int/Our_Activities/Human_and_Rob-
tic_Exploration/Exploration/ExoMars/ESA_s_Mars_rover_has_a_n-
and Planetary Science Conference, Houston, TX, 18th–22nd March 2019,
Lunar and Planetary Science Conference, Houston, TX, 18th–22nd
SAIRAS 2014: 12th International Symposium on Artificial Intelli-
gence, Robotics and Automation in Space, 17-19 Jun 2014, Montre-
al, Canada. [8] Balme et al. (2019) Planetary and Space Science,
2019, 31-56.