CATECHOLAMINERGIC NEURONS IN MEDULLAR NUCLEI ARE AMONG THE POST-SYNAPTIC TARGETS OF DESCENDING PROJECTIONS FROM INFRALIMBIC AREA 25 OF THE RAT MEDIAL PREFRONTAL CORTEX

P. L. A. GABBOTT, T. WARNER AND S. J. BUSBY

*Department of Biological Sciences, The Open University, Milton Keynes, MK7 6AA UK
bUniversity Department of Pharmacology, Mansfield Road, Oxford, OX1 3QT UK

Abstract—The infralimbic (IL) ‘visceromotor’ area of the rat medial prefrontal cortex projects to strategic subcortical nuclei involved in autonomic functions. Central among these targets are the nucleus tractus solitarius (NTS) and the rostral ventrolateral medulla (rVLM). By combining tract-tracing using the anterograde tracer biotinylated dextran amine (BDA) with immunolabeling for tyrosine hydroxylase (TH; an enzyme marker of catecholaminergic neurons), a limited proportion of BDA-labeled IL axonal boutons in the NTS and rVLM was found to be closely associated with TH immunopositive (+) target structures. Such structural appositions were mainly located proximally over the labeled dendritic arbors of identified TH+ neurons.

Quantitative ultrastructural examination revealed that in NTS, TH+ dendritic shafts comprised 7.0% of the overall post-synaptic target population innervated by BDA-labeled IL boutons, whereas TH+ dendritic spines represented 1.25% of targets. In rVLM, TH+ shafts represented 9.0% and TH+ spines 2.5% of IL targets. Labeled IL boutons established exclusively asymmetric Gray Type 1 (presumed excitatory) synaptic junctions.

The results indicate that subpopulations of catecholaminergic neurons in the NTS and rVLM are among the spectrum of post-synaptic neurons monosynaptically innervated by descending ‘excitatory’ input from IL cortex. Such connectivity, albeit restricted, identifies the potential direct influence of IL cortex on the processing and distribution of cardiovascular, respiratory and related autonomic information by catecholaminergic neurons in the NTS and VLM of the rat.

Key words: visceromotor cortex, NTS, rVLM, cardiovascular functions, autonomic functions.

The medial prefrontal cortex (mPFC) is directly involved in the integration of cognitive and autonomic functions underlying flexible goal-directed behavior (Cechetto and Saper, 1990; Neafsey et al., 1993; Loewy, 1991; Owens et al., 1999; Van Eden and Buijs, 2000; Drevets, 2000; Uylings et al., 2000; Heidbreder and Groenewegen, 2003). In the rat, the mPFC is composed of the anterior cingulate (ACd, Brodmann area 24b), prelimbic (PL, area 32), infralimbic (IL, area 25), and peduncular (P) cortices (Neafsey et al., 1993; Gabbott et al., 2005; Resstel and Corrêa, 2006b).

Anatomical and physiological evidence indicates that areas of dorsal (d) mPFC (ACd and dPL cortices) process cognitive information, whereas regions of ventromedial prefrontal cortex (vmPFC) (vPL, IL and P cortices) are also involved in autonomic and visceral functions, especially, cardiovascular and respiratory activities (Hardy and Mack, 1990; Neafsey, 1990; Loewy, 1991; Neafsey et al., 1993; Spyer, 1994; Fisk and Wyss, 2000; Uylings et al., 2003; Heidbreder and Groenewegen, 2003). Descending efferent projections from vmPFC, in particular IL cortex, innervate a wide range of subcortical autonomic centers, including the nucleus tractus solitarius (NTS) and ventrolateral medulla (VLM), brain stem nuclei strategically involved in cardiopulmonary activities (Agarwal and Calaresu, 1992; Van Giersbergen et al., 1992; Dampney, 1994; Owens and Verberne, 1996, 2000, 2001; Owens et al., 1999). Indeed, stimulation of the vPL and IL cortices is known to influence arterial blood pressure and blood flow through specific vascular beds (Owens and Verberne, 2001). As a result, the vmPFC has been considered to represent a ‘visceromotor’ territory of the rodent PFC (Terreberry and Neafsey, 1987; Ruit and Neafsey, 1990; Loewy, 1991; Neafsey et al., 1993; Resstel and Corrêa, 2006a, b).

Although the pathways from IL cortex to autonomic centers in the brain stem have been described in previous light microscope studies (Sesack et al., 1988; Hurley et al., 1991; Takagishi and Chiba, 1991; Van Eden and Buijs, 2000; Heidbreder and Groenewegen, 2003; Vertes, 2004; Gabbott et al., 2005), the ultrastructural identities and neurochemical content of the post-synaptic target nuclei have not been investigated in detail (Zagon et al., 1994; Torrealba and Müller, 1999). Of specific functional significance is that catecholaminergic neurons in the NTS and rostral ventrolateral medulla (rVLM) are strategically in-
Fig. 1. (Ai) Schematic diagram of rat brain showing the descending projection from IL cortex (black region, located at +3.2 mm in front of B) to the NTS and the rVLM (located at −13.68 mm behind B). In Aii, the positions of the NTS (gray) and rVLM (black) are shown. The NTS is shown enlarged in Aiii. Note that some IL projection neurons have divergent axons (asterisk) innervating both NTS and VLM (Gabbott et al., 2005). (Bi) Drawing of section from +3.2 mm anterior to B. (Bii) Histological section (same level as Bi) showing the umbra of the BDA injection site (dark DAB-labeled region)
involved in the central control of cardiovascular, respiratory and other autonomic functions in the rat (Kubo et al., 1990; Yasui et al., 1991; Dampney, 1994; Murphy et al., 1994; Owens and Verberne, 1996, 2000, 2001; Owens et al., 1999; Dampney et al., 2003; Krout et al., 2005; Resstel and Corrêa, 2006a,b). The principal aim of this study was to use tract-tracing methods in combination with immunocytochemical and light/electron microscopical techniques to ascertain whether catecholamine-containing neurons in the NTS and rVLM were post-synaptic targets of descending input from IL cortex. Such anatomical evidence would provide novel and significant information further defining brain stem neural circuitry whereby layer 5 projection neurons in the ‘visceromotor’ sub-region of vmPFC have the potential to directly modulate central cardiovascular and related functions in the rat (Neasey et al., 1993; Uylings et al., 2000, 2003; Groenewegen and Uylings, 2000; Van Eden and Buijs, 2000; Heidbreder and Groenewegen 2003; Vertes, 2004; Krout et al., 2005). Part of this investigation has been reported previously in abstract form (Bacon and Gabbott, 1997).

EXPERIMENTAL METHODS

Twenty adult male Sprague-Dawley rats (230–280 g) were used in the present study. The rats were maintained on a 12-h light/dark cycle, with ad libitum access to food and water. The animals were anaesthetized with equithesin (0.3 ml/100 g body weight i.p.; Millenbruck and Wallinga, 1946) and iontophoretic injections [pulsed (0.1–1.0 Hz) DC current (2–10 μamp)] for 15–20 min of the anterograde pathway tracer biotinylated dextran amine [BDA; 10,000 MWt, Molecular Probes, Invitrogen Ltd., Paisley, Glasgow, UK; 5–10% in 0.01 M phosphate buffer (PB), pH 7.4] were made into sites located in the left hemisphere within the following coordinate ranges relative to Bregma (B): anterior/posterior +2.5 mm to +3.2 mm; mediolateral 0.75 mm to 0.85 mm; and dorsoventral +4.8 mm to −5.4 mm (Fig. 1A, B, C; Swanson, 1998). These coordinates lie within the IL area of the vmPFC (Swanson, 1998; Gabbott et al., 2005).

After a survival period of 7–10 days the animals were reanaesthetized and transcardially perfused, initially with 50 ml physiological saline (0.9% NaCl), followed by a 400–500 ml fixative solution containing 0.1–1.0% glutaraldehyde and 2–4% paraformaldehyde in 0.1 M PB (pH 7.4) (Bolam, 1992). All surgical and animal procedures were performed in strict accordance with the Society for Neuroscience ‘Policy on the use of animals in neuroscience research’ and were licensed under the UK Animals (Scientific Procedures) Act, 1986. No post-operative complications were observed in animals. The experimental design minimized the number of animals used and kept any suffering to a minimum.

Following perfusion, the brains were carefully removed and serial coronal Vibratome sections (50–100 μm thick) cut through the injection site in vmPFC and throughout the rostrocaudal extent of the brain stem (Fig. 1C). To visualize the IL cortical injection site and the anterogradely labeled terminal arbors of IL axonal afferents to brain stem nuclei (Fig. 1B, C), selected sections from both regions were processed using an ABC Vectastain kit (Vector Laboratories, Peterborough, UK) with the chromagen 3,3’-diaminobenzidine (DAB). DAB produces a brown reaction end-product (Bolam 1992). Selected sections were Nissl-counterstained to reveal the areal and laminar organization of the mPFC (Fig. 1B) and the cytoarchitecture of the brainstem (Fig. 1C, D; Paxinos et al., 1999; Gabbott et al., 2005).

Anterograde tract-tracing combined with tyrosine hydroxylase (TH) immunocytochemistry

Tissue sections, with extensive BDA-labeled IL axonal afferents in the NTS and rVLM (Bacon and Gabbott, 1997), were further processed immunocytochemically to localize TH, the key rate limiting enzyme in the biosynthesis of catecholamines. TH is a recognized cell marker for catecholamine containing neurons in the NTS and rVLM (Halliday and McLachlan, 1991; Dampney and Horuchi, 2003).

Tissue sections were incubated with a monoclonal anti-TH antibody (mouse anti-TH, diluted 1:1000–5000 in phosphate-buffered saline, T2928 Sigma-Aldrich, Poole, UK) for 48 h at 4 °C, then in biotinylated horse anti-mouse antibody (1:200, Vector Laboratories), and finally in avidin–biotin peroxidase complex (ABC, Vector Laboratories) for 2 h at room temperature. TH immunolabeling was visualized using the slate gray (SG) peroxidase staining kit (Vector Laboratories, Nottingham, UK) which produces a distinct gray-gray–black label (Hussain et al., 1996; Gabbott et al., 2002). Specific immunolabeling was absent in control incubations where the primary antibody and/or secondary link antibody had been omitted.

Tissue sections for light-microscopy were air-dried, dehydrated using conventional methods and finally embedded on glass slides in DPX (Bolam, 1992). Sections for combined light/electron-microscopical examination, were treated with osmium tetroxide [1% OsO4 (aq), 40 min], dehydrated in an ascending alcohol series (with 1% uranyl acetate in the 70% alcohol), passed swiftly through fresh propylene oxide, flat-embedded between a glass slide and a coverslip in Durcupan resin (ACM Fluka) then cured at 60 °C for 48 h (Bolam, 1992). Sections were extensively examined in a light microscope and interesting structures recorded by line drawings, photomicrographs or digital images.

In two complete sets of serial sections, the mediolateral density distribution of the BDA labeled IL fibers in NTS and VLM were assessed in each section. The densities of the labeled fibers were graded as light (+), moderate (+++) and heavy (+++). Projection maps were subsequently constructed of the mediolateral/rostro-caudal boundaries of the IL (Fig. 1C). The anterogradely labeled terminal axonal arbors in the NTS and VLM were post-synaptic targets of descending input from IL cortex.
caudal distribution of the labeled axonal fibers as viewed from the dorsal surface (Fig. 1C, D).

Ultrastructural investigations

The electron microscopical features of identified labeled objects (either anterogradely labeled BDA axonal varicosities and/or TH-immunolabeled elements) seen in the light microscope were studied ultrastructurally using a correlated light and electron microscopical examination procedure described previously in detail (Bolam, 1992). In brief, serial ultrathin sections (70 nm thick) were cut through the same identified neural elements seen in the light microscope, collected on Formvar-coated single slot grids, stained with Reynold’s lead citrate and examined ultrastructurally.

In the electron microscope, anterogradely labeled IL axonal fibers and varicosities that were revealed using DAB possessed the characteristic dark precipitate end-product of the peroxidase reaction (Bolam, 1992). In comparison, TH-immunoreactive structures labeled using Vector SG contained a distinctive granular reaction end-product embedded in a fine diffuse background label (Hussain et al., 1996; Gabbott et al., 2002). Structures labeled with DAB or SG could be readily distinguished in the electron microscope (see Fig. 4E, F, G), especially using the correlated light/electron microscope procedure adopted here (Hussain et al., 1996). Electron micrographs of identified structures were produced photographically, scanned digitally and electronic image files created.

A quantitative analysis was undertaken of the cellular targets innervated by the anterogradely labeled IL boutons in contralateral NTS and rVLM. A ‘systematic random non-serial’ sampling procedure was used to quantify the percentage distribution of postsynaptic structures (e.g. spines heads, dendritic shafts, somata and axon initial segments) innervated by labeled presynaptic IL boutons (Bacon et al., 1996). A combined sample of 600 labeled presynaptic IL boutons in the ventrolateral NTS and rVLM in two animals was analyzed (200 boutons in NTS/100 boutons in rVLM per animal: Howard and Reed, 2005). Only labeled boutons displaying distinct pre- and postsynaptic membranes and well-defined target structures were included in the analysis. To avoid the repeated sampling of individual synaptic boutons (max. diam: 1.5 μm), quantitative estimates were made in ultrathin sections spaced more than about 1.75 μm apart (i.e. approximately every 25th ultrathin section). In the same non-serial sections, an assessment was also made of the percentage (P% in the equation below) that asymmetrical synapses formed by IL boutons (IL.asym) composed of the total population of asymmetric synapses present (T.asym). Perforated or complex asymmetric synaptic junctions associated with a single post-synaptic element were considered to represent a single synaptic junction. An estimate of P% (= [IL.asym/T.asym] × 100) was obtained for both NTS and rVLM.

The mean profile areas of 50 randomly selected labeled presynaptic IL boutons taken from both medullary structures were calculated using NIH image measuring program (http://rsb.info.nih.gov/NIH-image).

Digital images were finally imported into Adobe Photoshop CS2 where photographic montages, and/or TH-immunolabeled elements were found in the following brainstem structures: ventrolateral periaqueductal gray (vIPAG), parabrachial nucleus (PBN), Barrington’s nucleus, NTS, VLM as well as the nucleus ambiguus and the dorsal motor nucleus of the vagus (DMX).

RESULTS

Injections of BDA into IL cortex

Iontophoretic injections of the anterograde tracer BDA into IL cortex were centered on lower layer 5 and occupied a large proportion of the target area (Fig. 1Bi, Bli, Bii). Injection sites in IL cortex were located between AP coordinates B +2.4 mm and B +3.3 mm (Fig. 1B; Swanson, 1998).

Following suitable histological processing, the central umbra of the injection sites displayed numerous darkly labeled cells in layers 3, 5 and 6 of IL cortex (Fig. 1Bii). In the injection penumbra, the majority of labeled somata were present in layer 5. Such cells were clearly pyramidal in morphology and frequently possessed a single prominent radially oriented BDA labeled process (presumed apical dendrite) that ascended perpendicular to the pial surface through the superficial layers to terminate in layer 1 (Fig. 1Biii). The precise areal and laminar position of injection sites was confirmed in adjacent Nissl-stained sections (Gabbott et al., 2005).

Light microscopical observations

Following injections of BDA into IL cortex, anterogradely labeled fibers were found in specific cortical and subcortical target structures as described previously (Sesack et al., 1989; Hurley et al., 1991; see also Fig. 3 in Van Eden and Buijs, 2000). Labeled IL fibers were found in the following brainstem structures: ventrolateral periaqueductal gray (vIPAG), parabrachial nucleus (PBN), Barrington’s nucleus, NTS, VLM as well as the nucleus ambiguus and the dorsal motor nucleus of the vagus (DMX).

Abbreviations used in the figures

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ald</td>
<td>dorsal agranular insular cortex</td>
</tr>
<tr>
<td>Alv</td>
<td>ventral agranular insular cortex</td>
</tr>
<tr>
<td>AP</td>
<td>area postrema</td>
</tr>
<tr>
<td>c</td>
<td>commissural part of nucleus tractus solitarius</td>
</tr>
<tr>
<td>C</td>
<td>caudal</td>
</tr>
<tr>
<td>cc</td>
<td>central canal</td>
</tr>
<tr>
<td>Cu</td>
<td>cuneate nucleus</td>
</tr>
<tr>
<td>cVLM</td>
<td>caudal ventrolateral medulla</td>
</tr>
<tr>
<td>D</td>
<td>dorsal</td>
</tr>
<tr>
<td>DP</td>
<td>dorsal peduncular cortex</td>
</tr>
<tr>
<td>Ge5</td>
<td>gelatinous layer of the caudal spinal trigeminal nucleus</td>
</tr>
<tr>
<td>ft</td>
<td>fiber tract</td>
</tr>
<tr>
<td>Gr</td>
<td>gracile nucleus</td>
</tr>
<tr>
<td>IRT</td>
<td>intermediate reticulor nucleus</td>
</tr>
<tr>
<td>L</td>
<td>lateral nucleus tractus solitarius</td>
</tr>
<tr>
<td>LRT</td>
<td>lateral reticular tract</td>
</tr>
<tr>
<td>M</td>
<td>medial nucleus tractus solitarius</td>
</tr>
<tr>
<td>M1</td>
<td>primary motor cortex</td>
</tr>
<tr>
<td>MdD/V</td>
<td>medullary reticulor nucleus pars dorsalis/ventralis</td>
</tr>
<tr>
<td>OI</td>
<td>lateral orbital cortex</td>
</tr>
<tr>
<td>Om</td>
<td>medial orbital cortex</td>
</tr>
<tr>
<td>orbital lat</td>
<td>lateral orbital cortex</td>
</tr>
<tr>
<td>orbital med</td>
<td>medial orbital cortex</td>
</tr>
<tr>
<td>pa</td>
<td>parasolitary nucleus</td>
</tr>
<tr>
<td>PrCrM</td>
<td>medial precentral cortex</td>
</tr>
<tr>
<td>R</td>
<td>rostral</td>
</tr>
<tr>
<td>ROB</td>
<td>nucleus raphe obscurus</td>
</tr>
<tr>
<td>Sp5</td>
<td>spinal trigeminal tract</td>
</tr>
<tr>
<td>ts</td>
<td>tractus solitarius</td>
</tr>
<tr>
<td>V</td>
<td>ventral</td>
</tr>
<tr>
<td>12</td>
<td>hypoglossal nucleus</td>
</tr>
</tbody>
</table>
Labeled IL fibers in NTS and VLM

All BDA injections in IL cortex produced bilateral anterograde labeling of fine caliber varicose axonal arbors in both the NTS and rVLM (see Fig. 4A). However labeled varicose fibers were denser and more widely distributed in the contralateral target structures with the number of labeled axonal varicosities being much greater in NTS than in rVLM (Fig. 1D).

In contralateral NTS, anterogradely labeled IL fibers were present rostrally but were more numerous toward the intermediate and caudal sectors (Fig. 1D). A similar rostrocaudal distribution pattern was present in rVLM (Fig. 1D). Labeled varicose fibers were particularly concentrated in caudal NTS where they ramified extensively throughout the commissural, mediolateral, intermediate, ventral, interstitial, dorsolateral, and lateral subdivisions, but were most dense in the ventrolateral aspects (Van Giersbergen et al., 1992). Injections into more posterior regions of IL cortex (c. B +2.5 mm) produced a comparatively greater number of anterogradely labeled IL fibers in middle and caudal NTS, as well as rVLM, compared with injections located more rostrally. Of note is that anterogradely labeled IL fibers were also present in the intermediate and caudal (c) sectors of the VLM, however the number was reduced compared with the innervation of the rVLM. Anterogradely labeled IL axonal swellings in both the NTS and VLM were variable in size (range 0.2–1.54 μm in diameter; Figs. 2A, B; 4E) with a prevalence of small-sized varicosities.

Following BDA injections into IL cortex anterograde labeling in the NTS and VLM only consisted of varicose axonal fibers; dendritic and somatic labeling was absent. This excludes the possibility that BDA was transported retrogradely; an unlikely occurrence since direct ascending pathways from these brainstem nuclei to the mPFC have not been demonstrated. Consequently it is considered that the identified varicose plexuses in the NTS and VLM were the anterogradely labeled terminal arbors of descending axonal fibers from injection sites in IL cortex.

Tyrosine hydroxylase immunopositive (TH+) neurons in NTS and rVLM

Of note is that TH+ immunoreactive structures were present throughout most of the depth of the histological sections, indicating good penetration of the antisera into the interior of the tissue.

Populations of TH+ neurons were present along the rostrocaudal axis of the NTS and VLM as described previously (Fig. 1E, F; see also Van Giersbergen et al., 1992; Dampney, 1994). The characteristic somatodendritic and axonal morphologies as well as distributions of TH+ neurons in the NTS have been reported in detail elsewhere (Halliday and McLachlan, 1991; Jia et al., 1997). In brief, TH+ immunoreactivity was present in neuronal cell bodies, smooth and spiny dendrites, as well as fine fragmented varicose fibers that were morphologically distinct from brown DAB labeled afferent IL fibers (Fig. 1G; 2Ai–iii, Bi, ii; 3A, C; 4A, E). TH+ neurons displayed various somatodendritic morphologies and orientations ranging from bitufted cells with oval soma oriented perpendicularly along the mediolateral axis of the NTS, to large multitufted cells with long radiate dendrites and ovoid cell bodies (Fig. 3A, C; 4E). In rVLM, TH+ neurons were tufted cells with long dendritic processes of varying thicknesses aligned along the fiber tracts traversing through this structure. Nuclei of TH+ neurons were devoid of immunolabel (Figs. 1G; 3A; 4E).

Immunopositive dendritic spines could be found over the more distal processes of TH+ neurons in both NTS and rVLM (Fig. 3C, cells 7, 8, 11). However in many cases spine necks were frequently too thin, or too weakly immunolabeled to be seen with clarity.

Relationship of labeled IL axonal varicosities with TH+ profiles

Careful observation revealed brown DAB-labeled IL axonal swellings closely apposed to gray SG immunolabeled dendritic shafts of identified TH+ neurons in NTS and (Fig. 2Ai–iii, Bi, ii). Although such appositions were not numerous, they could be found throughout rostral NTS and VLM, and with increasing frequencies in caudolateral NTS and
toward the posterior region of rVLM and in cVLM (Fig. 2Ai–iii, Bi, ii). In both NTS and rVLM, DAB-labeled varicosities were most commonly found abutting the proximal (primary or secondary) dendritic shafts of identified TH neurons (Fig. 3A, B). In the light microscope, a combined survey of 352 TH neurons from NTS and VLM (with well-labeled dendritic arbors) revealed that 41 of these cells had brown DAB-labeled IL boutons abutting their immunolabeled processes (Fig. 3 A, B, C). A maximum of two labeled IL axonal varicosities was found to be associated with an individual TH neuron (boxed region). Capillary, c. Scale bar=20 μm. (B) Enlargement of the boxed region shown in A showing the two IL axonal varicosities (arrows) in close structural contact with the TH–immunolabeled dendritic shaft. Scale bar=5 μm. (C) Line drawings of TH neurons in NTS (cells 1–8) and rVLM (cells 9–15) showing the positions of labeled IL axonal varicosities (dark circles) in close contact with the immunolabeled dendritic shafts (encircled). Note that the relative positions of somata have been altered for clarity and that dendritic processes ramify entirely within their respective nuclei. Courses of major ft in rVLM are indicated (dashed lines). Scale bar=100 μm.

Ultrastructural observations

Anterogradely labeled synaptic boutons in NTS and rVLM. In both medullary target regions, anterogradely labeled synaptic boutons from IL cortex were small to medium in size (cross-sectional area of 0.51 μm²±0.04 μm²; mean±S.E.M., n=50; c.f. Torrealba and Müller, 1999). Labeled synaptic boutons could be seen to contain numerous spherical synaptic vesicles and mitochondrial profiles (Fig. 4Ai, ii, B, C). These labeled boutons established exclusively asymmetrical (Gray Type 1; Gray, 1959) synaptic junctions with post-synaptic target structures (Fig. 4Ai, ii; B, C).

Dendritic spines and medium/large caliber dendritic shafts (1.2–2.3 μm in mean cross-sectional diameter) were the only post-synaptic targets innervated by labeled IL boutons in both NTS and rVLM (Fig. 4Ai, ii, B, C; Table 1). The somata and axon initial segments of NTS and rVLM neurons did not receive input from labeled IL boutons.

An analysis of a large population of BDA labeled IL boutons from two animals indicated that dendritic spines represented approximately 26% and dendritic shafts 74% of the post-synaptic targets in NTS (Table 1). In contrast, a similar analysis indicated that dendritic spines constituted about 21% and dendritic shafts 79% of the post-synaptic structures in rVLM (Table 1). In non-serial ultrathin sections, the vast majority (>96%) of individual BDA labeled IL synaptic boutons in both NTS...
and rVLM were found to innervate a single post-synaptic target structure (Fig. 4Ai, ii, B, C).

A preliminary analysis indicated that the asymmetric synapses derived from IL boutons constituted 5.4% of all asymmetric synaptic junctions in caudal NTS. In rVLM, asymmetric IL synapses represented 3.2% of the overall number of asymmetric synaptic junctions.

Anterogradely labeled IL synaptic input to identified TH+ labeled processes. Table 1 details the percentages that TH+ dendritic shafts and spines composed of the overall target populations innervated by labeled IL synaptic boutons in NTS and rVLM (Fig. 4D, F, G).

Correlated light- and electron-microscopy of labeled IL input to identified TH+ neurons. A total of 21 identified TH+ neurons (14 in caudalateral NTS and seven in rVLM) with anterogradely labeled IL varicosities closely apposed to their immunopositive dendritic processes were selected for ultrastructural investigation using correlated light- and electron-microscopy (Fig. 4E).

Twelve TH+ neurons in NTS were found to receive asymmetric synaptic input from BDA-labeled IL boutons, examples are shown in Figs. 3 and 4E. These axonal boutons were located proximally over the primary and secondary order dendritic shafts of the TH+ cells. In the electron microscope, a maximum number of two labeled synaptic boutons were found to innervate a single identified TH+ neuron in the NTS (Fig. 3E–G). Labeled IL synaptic inputs to six of the seven identified TH+ rVLM neurons were confirmed ultrastructurally. In rVLM, IL innervation of TH+ neurons was also located on primary and secondary order dendritic shafts (Fig. 3, cells 9–15) and one TH+ neuron was found to receive labeled synaptic input from two identified IL boutons (Fig. 3, cell 15).

DISCUSSION

Direct projections from the IL cortex to the NTS and VLM in the rodent have been well described in previous retrograde and anterograde tract-tracing light microscope studies (Neafsey et al., 1986; Sesack et al., 1989; Hurley et al., 1991; Takagishi and Chiba, 1991; Van Eden and Buijs, 2000; Cobos et al., 2003; Torrealba and Müller, 1999; Vertes, 2004; Gabbott et al., 2005). However, the neurochemical and ultrastructural identities of the post-synaptic targets, and their relative frequencies, have not been defined.

The main findings of this study are that the dendritic shafts and spines of TH+ neurons in NTS and rVLM of the rat constitute a modest proportion (<10%) of the post-synaptic targets monosynaptically innervated by descending projections from IL cortex and that labeled IL boutons established asymmetric (Gray Type 1), presumed excitatory, synaptic junctions with target structures. Furthermore, the quantitative data indicated that the TH+ neurons innervated by labeled IL boutons were limited subsets of the overall TH+ neuron populations in these medullary nuclei. The importance of these observations are that they provide novel quantitative ultrastructural evidence for the direct synaptic connectivity of labeled IL boutons and TH+ neurons in the NTS and rVLM.

Methodological considerations

The comparatively low number of close structural associations between anterogradely labeled IL axonal varicosities and TH+ structures in NTS and VLM reported here is unlikely related to methodology. Large BDA injection sites in IL cortex combined with good penetration of antisera into tissue sections will have optimized the potential to observe labeled IL varicosities abutting TH+ somata and dendrites.

Pathways from IL ‘visceromotor’ cortex to NTS and VLM

In accord with previous tract-tracing studies, anterogradely labeled IL fibers were distributed throughout the rostrocaudal extent of the NTS with an overall contralateral dominance and with the densest labeling at levels caudal to obex (Fig. 1D: Terreberry and Neafsey, 1987; Zagon et al., 1994; Torrealba and Müller, 1999; Van Eden and Buijs, 2000; Cobos et al., 2003; Vertes, 2004). Similarly, tracer injections into posterior IL cortex produced a comparatively dense innervation of VLM (Van Eden and Buijs, 2000; Cobos et al., 2003; Vertes, 2004).

Activity within IL cortex is known to significantly influence cardiovascular functions (Cechetto and Saper, 1990; Hardy and Mack, 1990; Neafsey, 1990; Loewy, 1991; Neafsey et al., 1993; Verberne and Owens, 1998; Fisk and Wyss, 2000; Heidbreder and Groenewegen, 2003; Resstel and Corrêa, 2006a,b). In anesthetized animals, electrical stimulation of vmPFC elicits a decrease in mean arterial blood pressure (MAP) coupled with increases in splanchic and iliac vascular conductance (Verberne et al., 1997; Owens and Verberne, 2000). Sympathoinhibitory mechanisms within the medulla are considered to mediate this depressor response (Hardy and Mack, 1990; Owens et al., 1999; Owens and Verberne, 2000). Furthermore, discrete chemical stimulation of IL cortex in anesthetized rats also produces a significant depressor effect in the femoral artery (circa 16 mm Hg, a reduction of 18%; Busby and Gabbott, unpublished observations). In contrast however, electrical stimulation of the vmPFC in unanaesthetized rats produces a sympathetically related increase in MAP (Tavares et al., 2004) while chemical stimulation with L-glutamate causes a pressor effect with an associated tachycardic response involving activation of sympathetic brainstem circuits (Dampney and Horiuchi, 2003; Resstel and Corrêa, 2006b).
Fig. 4. (A) Light-microscope photomontage. Anterogradely labeled fine caliber BDA fiber from IL cortex in the NTS. A portion of the axonal fiber (framed area) is shown enlarged in the inset. Two axonal swellings (1, 2) are indicated. (Ai) Ultrathin section through labeled fiber swelling 1 seen in A. The labeled synaptic bouton (sb1) makes an asymmetrical synaptic junction (inset, arrows) with a small caliber distal dendritic shaft (d). Scale bar = 0.5 \(\mu \)m. (Aii) Ultrathin section through fiber swelling 2 seen in A. The identified synaptic bouton (sb2) establishes an asymmetrical synapse (inset,

Table 1. Post-synaptic targets of BDA-labeled IL synaptic boutons in NTS and rVLM in sections immunoreacted for TH

<table>
<thead>
<tr>
<th></th>
<th>Dendritic spines</th>
<th></th>
<th>Dendritic shafts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TH+</td>
<td>TH−</td>
<td>TH+</td>
<td>TH−</td>
</tr>
<tr>
<td>(A) NTS targets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal #1</td>
<td>3/200 (1.5%)</td>
<td>55/200 (27.5%)</td>
<td>15/200 (7.5%)</td>
<td>127/200 (63.5%)</td>
</tr>
<tr>
<td>Animal #2</td>
<td>2/200 (1.0%)</td>
<td>43/200 (21.5%)</td>
<td>13/200 (6.5%)</td>
<td>142/200 (71.0%)</td>
</tr>
<tr>
<td>% Mean</td>
<td>1.25%</td>
<td>24.5%</td>
<td>7.0%</td>
<td>67.25%</td>
</tr>
<tr>
<td>(B) rVLM targets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal #1</td>
<td>3/100 (3.0%)</td>
<td>14/100 (14.0%)</td>
<td>8/100 (8.0%)</td>
<td>75/100 (75.0%)</td>
</tr>
<tr>
<td>Animal #2</td>
<td>2/100 (2.0%)</td>
<td>22/100 (22.0%)</td>
<td>5/100 (5.0%)</td>
<td>71/100 (71.0%)</td>
</tr>
<tr>
<td>% Mean</td>
<td>2.5%</td>
<td>18.0%</td>
<td>6.5%</td>
<td>73.0%</td>
</tr>
</tbody>
</table>

* Two hundred BDA-labeled IL boutons with clearly identified post-synaptic targets examined in NTS and 100 such boutons examined in rVLM per animal (n=2). TH+, tyrosine hydroxylase immunonegative.

tive behaviors with underlying autonomic components (Drevets, 2000; Uylings et al., 2000). These projections are shown schematically in Fig. 5A. Interconnections between these subcortical nuclei, some of which project directly to the NTS and VLM, are considered to play a significant role in mediating the cardiovascular effects elicited by stimulation of IL cortex and adjacent areas of vmPFC (Verberne et al., 1997; Fisk and Wyss, 2000; Owens and Verberne, 2001; Krout et al., 2005).

As discussed below, TH+ neurons in the NTS and VLM are strategically involved in the regulation of cardiovascular activities and project to a variety of common supramedullary regions also innervated by descending input from IL cortex (Fig. 5A).

Functions and projections of TH+ neurons in NTS and VLM

The caudal part of the NTS, the main termination territory of afferents from IL cortex, contains catecholaminergic neurons of the A2 noradrenergic (NA) cell group (Van Giersbergen et al., 1992). Of functional significance is that a large proportion of these TH+ cells receives direct input from arterial and carotid baroreceptors, as well as arterial chemoreceptors (Owens et al., 1999; Owens and Verberne, 2000). The VLM contains two major catecholaminergic cells groups, the C1 adrenergic cell group in the rVLM and the A1 NA cell group in the dorsal cVLM (Dampney, 1994). Catecholaminergic neurons in the rVLM provide tonic and phasic regulation of baroreceptor activity (Dampney et al., 2003). Moreover, following periods of hypotension approximately two-thirds of baroresponsive neurons throughout the VLM were TH+ neurons of the A1/C1 cell groups (Dampney and Horiuchi, 2003).

Subpopulations of catecholaminergic neurons in the NTS and rVLM project to a variety of supramedullary structures that are involved in specific autonomic and neuroendocrine functions (see Fig. 5A). Estimates indicate that of TH+ neurons in the NTS, 51% project to PVN and 17% to PBN, with little overlap between the two populations (Petrov et al., 1993; Hermes et al., 2006). Of functional significance is that the TH+ NTS→PVN neurons are directly involved in cardiovascular responses (Kannan and Yamashita, 1985; Krukoff et al., 1995; Hermes et al., 2006).
A large proportion (78%) of TH/H11001 neurons in the medial, intermediate, and commissural subnuclei of the NTS projects to the vlPAG, a structure involved in cardiovascula

The tract-tracing study of Delfs et al. (1998) has shown that the caudal shell of the VS receives NA afferents primarily from the A2 NA cell group of the dorsomedial NTS, and to a much lesser extent from the A1 NA cell group of the cVLM and the locus coeruleus, the proportion of catecholaminergic neurons participating in these projections was not quantified. Of note is that the VS is a prominent target of projection neurons in vmPFC (Sesack et al., 1989; Ding et al., 2001; Gabbott et al., 2005).

Given the proportions that the TH+ projection neuron populations described above represent of the total number of catecholaminergic neurons in NTS and VLM, it is possible that the terminal axonal arbors of IL afferents to NTS and VLM innervate one or more of these populations.

Functional implications

Although the characteristic neurochemical, ultrastructural and functional properties of target neurons in the NTS and VLM receiving synaptic input from IL cortex need to be fully defined in future studies (Resstel and Corrêa, 2006a,b; Sevoz-Couche et al., 2006), one important question emerges from the present data: ‘What are the functional implications of the comparatively modest IL input to TH+ neurons in both the NTS and rVLM?’

Immunocytochemical evidence indicates that the descending projections from IL cortex would provide ‘excitatory’ glutamatergic input to the dendritic shafts and spines of neurochemically diverse target neurons in both NTS and rVLM (Torrealba and Müller, 1999). Recent data in the rat indicate that neurons projecting to NTS and rVLM represent approximately 7% and 4%, respectively, of the layer 5 projection pyramidal cells in IL cortex and that...
these projections mainly arise from separate neuron populations (Table 3A and Fig. 15 in Gabbott et al., 2005). Of functional significance is that the neuron populations responsible for the IL→NTS and IL→rVLM projections may be embedded in different cortical networks subserving specific autonomic processes.

Descending IL input, located proximally over the dendritic arbors of identified TH+ neurons (Figs. 3; 4E; 5B), could act in concert with other cortical and subcortical inputs to provide direct ‘feedback’ excitatory facilitation of distinct sub-populations of TH+ NTS neurons processing different aspects of afferent cardiovascular and pulmonary information (Dampney, 1994; Dampney et al., 2003). Such synaptic circuits might significantly influence, or ‘prime,’ the spatiotemporal patterning of neural activity in modality specific parallel pathways through the NTS, as well as affect TH+ neurons projecting to higher brain structures, especially those in the limbic forebrain (Zagon et al., 1994). Indeed some of the supramedullary targets receiving input from TH+ NTS neurons may also receive direct convergent afferent synaptic input from IL and other areas of cortex processing complementary autonomic information (Fig. 5A). Similarly, IL innervation of rVLM TH+ neurons could, together with other inputs (Viltart and Sequeira, 1999), affect descending projections to the spinal cord from functionally specific subpopulations of TH+ bulbo-spinal neurons in rVLM (see Fig. 5B; Coote and Lewis, 1995).

CONCLUSION

The direct innervation of TH+ neurons in the NTS and rVLM by input from IL cortex (or other cortical areas such as the insular and motor cortices; Ba-M’Hamed et al., 1998; Hayama and Ogawa, 2001), has not been previously demonstrated ultrastructurally. The novel findings reported here identify a part of the synaptic circuitry, related to catecholaminergic A2 and C1 neurons, whereby IL ‘visceromotor’ cortex has a limited, yet significant, potential to influence not only the physiological integration of afferent visceral information within the NTS, but also, in parallel, affect the outflow of information from select TH+ presynaptic bulbo-spinal rVLM neurons. Such data provide further structural details about how the cerebral cortex is able to influence autonomic functions in rats (Neafsey, 1990; Loewy, 1991; Neafsey et al., 1993), and possibly in higher mammals and humans (Arango et al., 1988).

Acknowledgments—We thank Paul Jays (Oxford University) and Tina Wardhaugh (The Open University) for technical assistance. Grant support from the Wellcome Trust [Grant No.: 047314/96/Z], WRE/MBJ, Beit Memorial Fund, MRC (UK) [Grant No.: G9312936N] and the Research Committee of The Open University, Milton Keynes is acknowledged gratefully.

REFERENCES

(Accepted 17 September 2006)
(Available online 13 November 2006)