Towards Citizen Forensics: Improving Citizen-Police Collaboration

Conference or Workshop Item

How to cite:

Bandara, Arosha; Zhang, Min; Price, Blaine; Pike, Graham; Elphick, Camilla; Walkington, Zoe; Frumkin, Lara; Philpot, Richard; Levine, Mark; Stuart, Avelie and Nuseibeh, Bashar (2020). Towards Citizen Forensics: Improving Citizen-Police Collaboration. In: Workshop on Crime and/or Punishment: Joining the Dots between Crime, Legality and HCI, Extended Abstracts of ACM Conference on Human Factors in Computing Systems, 25-30 Apr 2020, Honolulu, HI, USA.

For guidance on citations see FAQs.

© 2020 ACM

Version: Accepted Manuscript
Towards Citizen Forensics: Improving Citizen-Police Collaboration

Arosha K. Bandara*
Min Zhang*
Blaine Price*
Graham Pike*
Camilla Elphick*
Zoe Walkington*
Lara Frumkin*
*Open University
Milton Keynes, MK7 6AA, UK
first.lastname@open.ac.uk

Richard Philpot
Mark Levine
Lancaster University
Lancaster, LA1 4WA, UK
r.philpot,
 m.levine@lancaster.ac.uk

Avelie Stuart
University of Exeter
Exeter, EX4 4PY, UK
a.stuart@exeter.ac.uk

Bashar Nuseibeh†*
†Lero, University of Limerick,
Ireland
Bashar.Nuseibeh@lero.ie

Abstract
Pervasive digital technologies are increasingly used to record different aspects of citizens’ lives, from activity and location tracking, to social interactions and video recordings of life experiences. However, effective use of these technologies to strengthen collaborations between citizens and police requires a fresh examination of the creation and use of evidence. We extend the concept of Citizen Forensics to denote this new model of citizen-police collaboration. By drawing on the literature on citizen science and community policing, we identify the challenges that must be addressed to meet the important societal need of improving citizen-police collaborations.

Author Keywords
Forensics; crime; citizen participation; citizen forensics; community policing; citizen-police collaboration.

CSS Concepts
• Human-centered computing~Human computer interaction (HCI)~HCI theory, concepts and models

Introduction
Due to the fear of becoming a victim, crime is of continuing concern to the general public. With the proliferation of information and communication technologies (ICTs), citizens are exposed to more
Community Policing

The most popular definition of community policing is coined by Myhill [33]: “Community policing is the process of enabling the participation of citizens and communities in policing at their chosen level”. For this research, we view community policing as a collaboration between police (professional) and citizens in which citizens implement tasks which have traditionally been conducted by the police.

There has been a growth of work for encouraging citizen engagement in policing practice, such as citizen patrol, Neighborhood Watch program, ‘If You See Something, Say Something’ campaign, and the anonymous crime reporting system Crime Stoppers, etc.

This paper presents a new model of citizen-police collaboration, adopting the term Citizen Forensics and extending its scope beyond the context of missing persons investigations considered previously [13]. By drawing on previous research on citizen science and community policing, we identify several challenges and design opportunities to improve citizen-police collaboration. With this work, we hope to inspire designers to consider supporting citizen participation in community policing. Moreover, we hope to call for more HCI research contributing to addressing issues of crime in society.

Related Work

There is relevant previous research on HCI in community policing [7,27], citizen science [2,22], and the role of technology designed to promote citizen participation [16,18,28].

HCI researchers are increasingly working on designing technology that supports citizen’s participation in policing. Kadar et al. [27] designed a crime prevention system allowing people to report crimes in real-time. CityWatch [26] notifies users about the safety of their territory through other community members’ reporting. Brush et al. [7] integrated home surveillance cameras to build the digital neighborhood watch network. Another strand of research is related to alleviating the personal safety concerns of residents [5], especially for vulnerable people. For example, hate crime reporting for LGBTs [19] and transgenders [36], and location-based crowdsourcing solutions against street sexual harassment for women [1].

Other research has focused on exploring the use of existing technology for online community policing.
Citizen Science

There is no definitive description of citizen science, but in general the term refers to the involvement of non-specialist volunteers in scientific activities. The level and nature of citizen participation can vary significantly, where at the most basic level, individuals provide data or knowledge, donate resources such as computing capacity, or fund scientific research.

Citizen participation offers scientists access to new resources that would be otherwise inaccessible without this collective practice.

Pridmore et al. [35] investigated the WhatsApp neighborhood crime prevention (WNCP) groups initiated by citizens in the Netherlands, and found that WNCPs empower social control and collective efficacy. South African citizens initiated the Community Policing Forum on Facebook which increased community cohesion [24]. Similarly, Erete [15] found that community’s online participation can improve their community engagement in the real world.

However, citizen participations in the above examples tend to be either reporting suspicious activities via mobile applications/websites, or getting notifications and raising awareness; rather than the development of models and methods to support effective collaborations between citizens and the police.

As a cooperative approach already well established in natural science [4], citizen science offers insightful opportunities for creating strong collaborations between the police and citizens. Researchers have proposed several potential models of citizen science. Arnstein’s influential “ladder of participation” [3] was developed in the context of participatory urban planning, which was later expanded into three levels of collaboration between professionals and citizens – contributory, collaborative, and co-created [6]. Haklay [21] has focused on the level of participation, which was categorized into crowdsourcing, distributed intelligence, participatory science, and extreme science (see Figure 2a). We propose a similar typology of citizen participation in the context of policing, Citizen Forensics model, which we have identified analogous concepts of investigation, evidence collection, and analysis.

Citizen Forensics Model

In this section, we first propose Citizen Forensics model. We then demonstrate the expected benefits of adopting Citizen Forensics model with a hypothetical crime scenario (see the side note below Figure 1).

There are four levels of participation in Citizen Forensics model (as illustrated in Figure 2b), from ‘Crowdsourcing’ information at Level 1 to ‘Self-investigation’ at Level 4. We describe each of these below:

- **Level 1 Crowdsourcing**: is where citizens provide information to the police, either through direct reporting, such as responding to appeals or sharing their data (e.g., video footage, photographs, etc.). Many digital policing technologies currently deployed by the police fall into this level.

- **Level 2 Distributed Analysis**: involves asking citizens to help analyze information to help police draw meaningful conclusions from it. A common example of this is where citizens are asked to help to identify individuals from photographs or video footage.

- **Level 3 Co-investigation**: engages citizens at a deeper level in investigations, such as allowing them to propose potential lines of inquiry or defining priorities for policing activities.

- **Level 4 Self-investigation**: provides citizens with the tools to define their own policing or public safety problems ‘on their own terms’ [14], which they can then work among themselves to investigate these problems collaboratively with the police.
Figure 1: Police, technology, community interaction space. Consider a crime scenario involving vehicle thefts, which the police would investigate by interacting with citizens directly involved in the incident and a range of technologies (e.g., vehicle tracking data, CCTV footage, etc). As illustrated in Figure 1, the crime scenario (CS) is placed in a position that involves high levels of police and technology interactions with minimal community involvement. With the Citizen Forensics model, we hope to transform the position of the CS to an optimal point (CS') in the police-citizens-technology interaction space, by increasing the involvement of citizens in the investigation process of this type of crime.

Figure 2: Taxonomy of (a) citizen science [21]; and (b) Citizen Forensics.

Discussion
The success of community policing depends on citizens’ active participatory involvement to make their communities safe and secure. We list some challenges for realizing the vision of Citizen Forensics.

The capacity to engage citizens in the long-term is a big challenge. Trust is vital to citizen participation and continuous engagement in policing. HCI researchers have investigated trust-building between the community and government officials [12,31]. The policing practitioners and researchers need to explore how to make citizen-police collaboration more attractive, especially for low-income, high-crime rate communities [17] who tend to be less participatory.

Another challenging issue regards data quality [38]. As we move up the levels of Citizen Forensics, more specialized skills and training are needed to ensure that data is valid and correctly supports the investigation. This is necessary to support empowerment, inclusion, and engagement in citizen-police collaborations, and avoid negative effects like information overload, privacy breaches or vigilante activities [9].

With different types of stakeholders involving in community policing, future work needs to examine the design of multi-directional channels of collaboration between citizens and police, rather than solely one-way communication model.

Conclusions
From previous work on community policing and citizen science, we propose Citizen Forensics model to improve citizen-police collaboration. We also identify several challenges for deploying Citizen Forensics. We believe that with appropriate design considerations, Citizen Forensics could be a step towards safer communities via effective citizen-police collaboration.

Acknowledgements
This work is supported by Citizen Forensics, funded by UK EPSRC (EP/R033862/1) and Science Foundation Ireland (SFI 13/RC/2094).
References

