Mobile AR: Promising innovation or misplaced trust?

Conference or Workshop Item

How to cite:

For guidance on citations see FAQs.

© [not recorded]

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Mobile AR: Promising innovation or misplaced trust?

David Bowers
School of Computing & Communications
The Open University
Outline

• Importance of landmarks for visual navigation
• Principles of Augmented Reality (AR)
• Registration
• Augmented Reality at sea
• Measuring deviation (compass error)
• The results
• Implications
• A possible approach
• Conclusions
Visual navigation

• Important in the air, on the sea, in open country
• Depends crucially on identifying landmarks
 • Either to “fix” position
 • Or to define (approach) direction

• Traditionally
 • Chart / map
 • Binoculars
 • (possibly) sailing / flying / walking guides / directions
Recognizing landmarks

• The chart shows three “conspicuous buildings” on the coast here –
 • But which are they?

• NB: the “mega” building isn’t one of them
 • That didn’t appear on the chart until about 3 years after it was built
Electronic navigation to the rescue?

• GPS (fixed) can tell you your position and velocity
• Handheld devices that are both location and aspect (i.e., which way the device is facing) aware *should* be able to help identify landmarks
• Or even do it for you
 • Adding markers to camera image
• Augmented Reality
Principles of AR

• 2-D for simplicity
• Known position...
• .. And aspect
• Known relative position of Point of Interest
• Known camera field of view
• Place marker within camera image
etips travel guides (2012) https://www.youtube.com/watch?v=a90DDQZmGj4
AR in urban environments - challenges

- GPS poor
 - Canyon effect, multi-path, screening, interference
 - 5m accuracy optimistic
 - 5m position error @ 50m ≈ 6°

- => “Registration” of camera image
 - Limited – no universal 3D model
 - Although there are topographic maps at smaller scales
 - Look for vertical edges, match against building footprints
 - Relies on limited information
 - Easily confused – e.g., by recessed doorways, canopies, lamp-posts, trees ...
Milton Keynes Centre...
Milton Keynes Centre
Augmented Reality at sea

• Vertical edges in short supply
• Coast relatively distant - ~ 1 Nm
 • Small vertical angle within image
 • 100m cliff at 5 km is about one degree of vertical angle
 • Field of view ~ 30 degrees

• Large open spaces
 • Few nearby objects (apart from the odd wind farm or navigation buoy)

• And everything is MOVING....!
Registration at sea?

• Challenging –
 • Foreground moving (waves)
 • Coast / clouds – if any – moving (motion of vessel)
 • Whole image moving – trying to hold a tablet still as the boat moves...
 • And the pattern of motion is almost designed to completely confuse inertial sensors
 • Not many distinguishable edges
 • Might be able to use headlands – if there are any
 • But they’re still moving
 • So reliant on built-in sensors
 • GPS – for position – probably OK.
 • Compass for aspect
Smartphone / tablet compasses

• Claim incredible precision...
• ... but how accurate are they?
Measuring compass error

- Classic operation of “swinging the compass”
- Measure ”deviation” by comparing compass reading with series of known directions
- ”Deviation curve" shows deviation against direction (aspect)
- Not a simple linear error
 - Known since 18th century to be harmonic curve
 - “soft iron” – period of 360°
 - “hard iron” (magnetised) – period of 180°
 - Linear offset
 - Multiple contributions
 - Including currents flowing within device!
Experimental Design

• A dozen markers placed round cricket field
• Bearings measured by compass and sextant
• Subjects sit on plastic stool
• Measure bearings to markers

The results – for “calibrated” devices
Calibrated data

<table>
<thead>
<tr>
<th>Android</th>
<th>offset</th>
<th>amp</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samsung S4</td>
<td>10.00</td>
<td></td>
<td>6.37</td>
</tr>
<tr>
<td>Sony Xperia Z1 c</td>
<td>-2</td>
<td>9.00</td>
<td>5.81</td>
</tr>
<tr>
<td>Redmi Note 3</td>
<td>-2</td>
<td>10.00</td>
<td>6.94</td>
</tr>
<tr>
<td>Redmi Note 4</td>
<td>5.50</td>
<td></td>
<td>3.91</td>
</tr>
<tr>
<td>Samsung Note 4</td>
<td>13.50</td>
<td></td>
<td>9.32</td>
</tr>
<tr>
<td>Samsung S6</td>
<td>9.50</td>
<td></td>
<td>6.42</td>
</tr>
<tr>
<td>Alcatel 3</td>
<td>-1</td>
<td>4.50</td>
<td>2.76</td>
</tr>
<tr>
<td>Pixel x1</td>
<td>4.00</td>
<td></td>
<td>2.15</td>
</tr>
<tr>
<td>mean</td>
<td>-1.67</td>
<td>8.25</td>
<td>5.46</td>
</tr>
<tr>
<td>median</td>
<td>-2.00</td>
<td>9.25</td>
<td>6.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>iPhone</th>
<th>offset</th>
<th>amp</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPhone 8 plus</td>
<td>2</td>
<td>6.00</td>
<td>2.99</td>
</tr>
<tr>
<td>iPhone SE</td>
<td>5</td>
<td>5.75</td>
<td>3.89</td>
</tr>
<tr>
<td>iPhone 8</td>
<td>2</td>
<td>1.50</td>
<td>0.96</td>
</tr>
<tr>
<td>iPhone 6s</td>
<td>3</td>
<td>3.25</td>
<td>1.65</td>
</tr>
<tr>
<td>iPhone 5s</td>
<td>3</td>
<td>4.25</td>
<td>2.47</td>
</tr>
<tr>
<td>iPhone 8</td>
<td>1</td>
<td>2.00</td>
<td>1.40</td>
</tr>
<tr>
<td>mean</td>
<td>2.67</td>
<td>3.79</td>
<td>2.23</td>
</tr>
<tr>
<td>median</td>
<td>2.50</td>
<td>3.75</td>
<td>2.06</td>
</tr>
</tbody>
</table>
And different apps on the same device...
Uncalibrated data

<table>
<thead>
<tr>
<th>iPhones</th>
<th>Offset</th>
<th>Amp</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPhone 8</td>
<td>22</td>
<td>117.5</td>
<td>99.37</td>
</tr>
<tr>
<td>iPhone 6s</td>
<td>5</td>
<td>3.75</td>
<td>2.70</td>
</tr>
<tr>
<td>iPhone 5s</td>
<td>3</td>
<td>7</td>
<td>3.34</td>
</tr>
<tr>
<td>iPhone SE</td>
<td>7</td>
<td>4.25</td>
<td>2.93</td>
</tr>
<tr>
<td>iPhone 8 plus</td>
<td>2.25</td>
<td></td>
<td>1.17</td>
</tr>
</tbody>
</table>

| Mean | 26.60 | 23.50 | 19.02 |
A couple of comments

• Calibration –
 • “figure of 8” motion
 • Not a very definitive algorithm...
 • Comparison of change in compass “reading” with gyro/accelerometer
 • Can detect inconsistent rotational measurements, but not linear offsets
 • Appears not to persist...!

• Fabrication
 • No guarantee that true 3 axis compass
 • 2D compass is normal silicon fabrication
 • Third dimension *may* have different characteristics
 • May explain difference between Android and Apple (/Google)
Does it matter?

• One key use of landmarks is to define a leading line (approach vector)

• Leading (approach) line from ~D to C

• Using the approximation $\tan \theta \approx \theta \approx \sin \theta$, for θ less than about 0.1 radian

• Error in identifying front mark B due to compass error θ gives error in leading line ϕ, where

$$\phi \approx \theta \cdot \frac{d2}{d1}$$
So – what do we need to solve?

- Want to place annotations / markers
- Limited / no possibility of registration
- Significant / unknown / varying compass errors
- Hence, markers almost certainly in wrong place

- Likely to use AR only when unfamiliar with location
 - Wrongly positioned markers could lead to major navigation errors

- This is a **real safety risk**

- How should we represent / manage the errors?
Approaching St Peter Port (CI)

- Pale blue/white – probably enough water to float
- Green – rocks – call the RNLI
- Yellow – land – call the AA

- Interested in three landmarks
- Separated by only a few degrees (from current position)
- Not a lot of scope for error
Representing the errors

• Use error bars?

• Error bars will probably overlap...
• And, in any case, error is unknown
• But – errors *are* correlated
 • The deviation is the same for each landmark for a given aspect
Representing the errors

• Connect markers using Yoke

• Nudge arrows to align one of the markers visually
 • (while holding the thing still...)
 • In which case the others will also be correct
 • But only for that aspect
Aligning the markers

• Bring the human into the equation
 • Harness remarkable ability of humans to recognise objects
 • Avoids “head-down” navigation (major concern for RNLI...)

• Display image(s) of landmark(s)
 • Where?
 • When?
 • Which?
 • Selected or automatic?
 • How respond if change aspect of device?
Pop-ups on chart?
Inset in display image?
Combine with “yoked” markers

- BT
- R
- P

Brehon Tower
212° 1.84 NM

Rouste
233° 0.77NM

Platte
242° 1.36NM
Questions to explore

• Overall format of display
 • Usability
 • Non-ambiguity
 • Robustness

• Reference images
 • Direction
 • Lighting conditions
 • Weather (visibility etc.)

• User-centred approach essential
Conclusions

• Mobile Augmented Reality offers impressive technical opportunities
• BUT has to rely on internal sensors if registration not feasible
 • Only sensors available for marine navigation – gps and compass
 • Compasses really are inaccurate
• Users need to understand better limitations intrinsic to devices
 • And developers must design apps (including navigation apps) appropriately
• Limit impact of intrinsic errors by working with users
 • not just providing on plate
• Exploit human ability to recognise objects
 • will also avoid “head-down” navigation
Thank you

david.bowers@open.ac.uk