The Open UniversitySkip to content

Reaction channel contributions to the helion optical potential

Mackintosh, R. S. and Keeley, N. (2019). Reaction channel contributions to the helion optical potential. Physical Review C, 100(6), article no. 064613.

Full text available as:
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (930kB) | Preview
DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


Background: The well-established coupled channel and coupled reaction channel processes contributing to direct reactions make particular contributions to elastic scattering that are absent from local density folding models. Very little has been established concerning the contribution of these processes to the optical model potentials (OMPs) for 3He scattering. For studying such processes, spin-saturated closed shell nuclei such as 16O and 40Ca are particularly suitable target nuclei and the (3He, 4He) reaction is easily handled within conventional reaction theory because it avoids complications such as breakup.
Purpose: To establish and characterize the contribution to the 3He-nucleus interaction generated by coupling to neutron pickup (outgoing 4He) channels; also to study the contribution of collective states and identify effects of dynamical nonlocality from these couplings.
Methods: Coupled reaction channel (CRC) calculations, including coupling to collective states, will provide the elastic channel S-matrix Sl j resulting from the included processes. Inversion of Sl j will produce the local potential that yields, in a single channel calculation, the elastic scattering observables from the coupled channel calculation. Subtracting the bare potential from the CRC calculations yields a local and l-independent representation of the dynamical polarization potential (DPP). From the DPPs, because of a range of combinations of channel couplings, the influence of dynamically generated nonlocality can be identified.
Results: Coupling to 4He channels systematically induces repulsion and absorption in the 3He OMP and also a reduction in the rms radius of the real part. The repulsion and absorption is less for 208Pb than for the lighter target nuclei although the qualitative effects, including the general undularity of the DPPs, are similar for all cases; therefore coupling to these channels cannot be represented by renormalizing folding model potentials. Evidence is presented for substantial dynamical nonlocality of the induced DPPs; for 40Ca this modifies direct reaction angular distributions. The local equivalent DPPs for individual couplings cannot be added to give the overall DPP for the complete set of couplings. For the 208Pb case, channel coupling reduces the reaction cross section although it increases it for 16O, with 40Ca an intermediate case.
Conclusions: The DPPs established here strongly challenge the notion that folding models, in particular local density models, provide a satisfactory description of elastic scattering of 3He from nuclei. Coupling to neutron pickup channels induces dynamical nonlocality in the 3He OMP with implications for direct reactions involving 3He. Departures from a smooth radial form for the 3He OMP should be apparent in good fits to suitable elastic scattering data.

Item Type: Journal Item
Copyright Holders: 2019 American Physical Society
ISSN: 0556-2813
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 68662
Depositing User: Raymond Mackintosh
Date Deposited: 03 Jan 2020 16:40
Last Modified: 04 Jul 2020 15:23
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU