Copy the page URI to the clipboard
Xanthopoulou, Galina; Thoda, Olga; Boukos, Nikos; Krishnamurthy, Satheesh; Dey, Avishek; Roslyakov, Sergey; Vekinis, George; Chroneos, Alexandros and Levashov, Evgeny
(2019).
DOI: https://doi.org/10.3390/app9224925
Abstract
The morphology and surface characteristics of SCS(Solution Combustion Synthesis)-derived Ni−NiO nanocatalysts were studied. The ΤΕΜ results highlighted that the nanomaterial’s microstructure was modified by changing the reactants’ concentrations. The dendrites’ growth conditions were the main factors responsible for the observed changes in the nanomaterials’ crystallite size. Infrared camera measurements demonstrated a new type of combustion through dendrites. The XPS analysis revealed that the NiO structure resulted in the bridging of the oxygen structure that acted as an inhibitor of hydrogen adsorption on the catalytic surface and, consequently, the activity reduction. The RF-IGC indicated three different kinds of active sites with different energies of adsorption on the fresh catalyst and only one type on the aged catalyst. Aging of the nanomaterial was associated with changes in the microstructure of its surface by a gradual change in the chemical composition of the active centers.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 68148
- Item Type
- Journal Item
- ISSN
- 2076-3417
- Keywords
- SCS; combustion synthesis; dendrite combustion; nanomaterial; nickel-based catalysts; room temperature aging; nanomaterials aging
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Engineering and Innovation
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Copyright Holders
- © 2019 The Authors
- SWORD Depositor
- Jisc Publications-Router
- Depositing User
- Jisc Publications-Router