The Open UniversitySkip to content
 

Effects of Precursor Concentration in Solvent and Nanomaterials Room Temperature Aging on the Growth Morphology and Surface Characteristics of Ni–NiO Nanocatalysts Produced by Dendrites Combustion during SCS

Xanthopoulou, Galina; Thoda, Olga; Boukos, Nikos; Krishnamurthy, Satheesh; Dey, Avishek; Roslyakov, Sergey; Vekinis, George; Chroneos, Alexandros and Levashov, Evgeny (2019). Effects of Precursor Concentration in Solvent and Nanomaterials Room Temperature Aging on the Growth Morphology and Surface Characteristics of Ni–NiO Nanocatalysts Produced by Dendrites Combustion during SCS. Applied Sciences, 9(22) e4925.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (3MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.3390/app9224925
Google Scholar: Look up in Google Scholar

Abstract

The morphology and surface characteristics of SCS(Solution Combustion Synthesis)-derived Ni−NiO nanocatalysts were studied. The ΤΕΜ results highlighted that the nanomaterial’s microstructure was modified by changing the reactants’ concentrations. The dendrites’ growth conditions were the main factors responsible for the observed changes in the nanomaterials’ crystallite size. Infrared camera measurements demonstrated a new type of combustion through dendrites. The XPS analysis revealed that the NiO structure resulted in the bridging of the oxygen structure that acted as an inhibitor of hydrogen adsorption on the catalytic surface and, consequently, the activity reduction. The RF-IGC indicated three different kinds of active sites with different energies of adsorption on the fresh catalyst and only one type on the aged catalyst. Aging of the nanomaterial was associated with changes in the microstructure of its surface by a gradual change in the chemical composition of the active centers.

Item Type: Journal Item
Copyright Holders: 2019 The Authors
ISSN: 2076-3417
Keywords: SCS; combustion synthesis; dendrite combustion; nanomaterial; nickel-based catalysts; room temperature aging; nanomaterials aging
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Engineering and Innovation
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 68148
SWORD Depositor: Jisc Publications-Router
Depositing User: Jisc Publications-Router
Date Deposited: 19 Nov 2019 09:34
Last Modified: 25 Nov 2019 16:50
URI: http://oro.open.ac.uk/id/eprint/68148
Share this page:

Metrics

Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU