Copy the page URI to the clipboard
Mousavian, R. Taherzadeh; Behnamfard, S.; Khosroshahi, R. Azari; Zavasnik, J.; Ghosh, P.; Krishnamurthy, S.; Heidarzadeh, A. and Brabazon, D.
(2020).
DOI: https://doi.org/10.1016/j.msea.2019.138639
Abstract
A process was developed to disperse β-SiC nanoparticles (NPs), with a high propensity to agglomerate, within a matrix of A356 aluminum alloy. A suitable dispersion of 1 wt% SiC NPs in the A356 matrix was obtained through a hybrid process including a solid-state modification on the surface of the NPs, a two-step stirring process in the semi-solid and then the liquid-state, and a final hot-rolling process for fragmentation of the brittle eutectic silicon phase and porosity elimination. Titanium and nickel where used as the nanoparticle SiC surface modifiers. Both modifiers were found to improve the mechanical properties of the resulting material, however, the highest improvement was found from the nickel surface modification. For the nickel modification, compared to the non- reinforced rolled alloy, more than a 77%, 85%, and 70% increase in ultimate tensile strength (UTS), yield strength (YS), and strain % at the break, respectively were found with respect to the unreinforced rolled A356. For the rolled nanocomposite containing 1 wt % SiCnp and nickel modification, an average YS, UTS, and strain % at the break of 277 MPa, 380 MPa, and 16.4% were obtained, respectively, which are unique and considerable property improvements for A356 alloy.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 68106
- Item Type
- Journal Item
- ISSN
- 0921-5093
- Project Funding Details
-
Funded Project Name Project ID Funding Body Plasma engineering of graphene and metal oxide functional layers for hybrid solar cells IES\R2\170272 The Royal Society - Keywords
- SiC NPs; Aluminium nanocomposite; Nanoparticles; Mechanical properties
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Engineering and Innovation
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Copyright Holders
- © 2019 Elsevier B.V.
- Depositing User
- Satheesh Krishnamurthy