Copy the page URI to the clipboard
King, Ashley J.; Phillips, K. J. H.; Strekopytov, S.; Vita-Finzi, C. and Russell, Sara S.
(2020).
DOI: https://doi.org/10.1016/j.gca.2019.09.041
Abstract
The rare CI carbonaceous chondrites are the most aqueously altered and chemically primitive meteorites but due to their porous nature and high abundance of volatile elements are susceptible to terrestrial weathering. The Ivuna meteorite, type specimen for the CI chondrites, is the largest twentieth-century CI fall and probably the CI chondrite least affected by terrestrial alteration that is available for study. The main mass of Ivuna (BM2008 M1) has been stored in a nitrogen atmosphere at least since its arrival at the Natural History Museum (NHM), London, in 2008 (70 years after its fall) and could be considered the most pristine CI chondrite stone. We report the mineralogy, petrography and bulk elemental composition of BM2008 M1 and a second Ivuna stone (BM1996 M4) stored in air within wooden cabinets. We find that both Ivuna stones are breccias consisting of multiple rounded, phyllosilicate-rich clasts that formed through aqueous alteration followed by impact processing. A polished thin section of BM2008 M1 analysed immediately after preparation was found to contain sulphate-bearing veins that formed when primary sulphides reacted with oxygen and atmospheric water. A section of BM1996 M4 lacked veins but had sulphate grains on the surface that formed in ≤6 years, ∼3 times faster than previous reports for CI chondrite sections. Differences in the extent of terrestrial alteration recorded by BM2008 M1 and BM1996 M4 probably reflect variations in the post-recovery curation history of the stones prior to entering the NHM collection, and indicate that where possible pristine samples of hydrated carbonaceous should be kept out of the terrestrial environment in a stable atmosphere to avoid modification. The bulk elemental composition of the two Ivuna stones show some variability due to their heterogeneous nature but in general are similar to previous analyses of CI chondrites. We combine our elemental abundances with literature values to calculate a new average composition for the Ivuna meteorite, which we find is in good agreement with existing compilations of element compositions in the CI chondrites and the most recent solar photospheric abundances.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 67621
- Item Type
- Journal Item
- ISSN
- 0016-7037
- Project Funding Details
-
Funded Project Name Project ID Funding Body Not Set ST/J001473/1 Science and Technology Facilities Council (STFC) Not Set ST/ M00094X/1 Science and Technology Facilities Council (STFC) - Keywords
- Meteorites; Chondrites; Asteroids; Hayabusa2; OSIRIS-REx
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Research Group
-
Astronomy
Space - Copyright Holders
- © 2019 The Authors
- Depositing User
- Ashley King