Characterization of CONSTANS, an Arabidopsis gene that promotes flowering.

Thesis

How to cite:

For guidance on citations see FAQs.

© 1998 Frances Clare Robson

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.21954/ou.ro.00010217

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Characterization of *CONSTANS*, an *Arabidopsis* gene that promotes flowering

FRANCES CLARE ROBSON BSc

A thesis submitted in partial fulfilment of the requirements of the Open University for the degree of Doctor of Philosophy

June 1998

John Innes Centre

Author's Number: P9274776 Norwich

Date of Award: 19 February 1999 UK
Abstract

Under long day conditions *Arabidopsis thaliana* plants grow vegetatively for approximately two weeks before they initiate flowering while under short day conditions the vegetative period lasts around six weeks. The *constans (co)* mutant flowers later than wild type under long days but at approximately the same time as wild type under short days. This suggests that the CO product promotes flowering in response to long days. The CO gene was cloned previously by chromosome walking and encodes a 373 amino acid protein containing two zinc fingers suggesting that it binds DNA and is involved in regulation of gene expression.

A series of mutant alleles of the CO gene was characterized and the effect of each mutation on flowering time examined. All seven co mutants are semi-dominant, with the heterozygotes having flowering times and leaf numbers intermediate between wild type and the homozygous co parent, and all differ quantitatively with respect to flowering time and leaf number.

The CO alleles were characterized at the molecular level and the mutations were clustered into two regions of the gene that define important domains of the predicted CO protein. Five of the mutations affect the zinc finger region near the N-terminus of the protein and the remaining two mutations affect adjacent amino acids in a basic domain near the C-terminus of the protein. Both of these domains and the individual amino acids affected by the mutations are highly conserved. Homology searches revealed a family of at least 14 closely related genes in *Arabidopsis* and homologues in a number of other plant species.

The seven co mutations all cause in-frame changes and none were unambiguous null alleles. To investigate the effect of loss of CO function a putative null allele, co-8, was isolated after gamma-irradiation. This was characterized at the molecular level and found to contain a 1.3 kb deletion which removes approximately 1 kb of the promoter and 0.3 kb of the coding sequence at the 5' end of the CO ORF that includes the zinc finger domain. The new co-8 mutant has an intermediate flowering time with respect to the seven previously isolated co mutants, and is also semi-dominant.

A number of constructs designed to express derivatives of the CO protein were introduced into *Arabidopsis* to investigate whether it was possible to repress flowering by the creation of dominant negative mutations. However, with the exception of one or two small effects these did not greatly affect flowering time.

A *Brassica napus* homologue of the CO gene was isolated. The predicted protein is 74% identical to the *Arabidopsis* CO protein, with the greatest conservation over the zinc fingers (91% identical) and C-terminal basic domain (94% identical). The homologue was able to complement the *Arabidopsis* co-2 mutation and restore wild type flowering time.
Acknowledgements

I would like to thank the following people for their help and support during my PhD:-

My supervisor George Coupland for his help and advice during my time in his group, for accepting and encouraging my progression from assistant to PhD student to post-doc, and in particular for taking the time to thoroughly (and constructively) criticize my thesis as it took shape.

Jo Putterill for her guidance and supervision during the early years and for her support since the beginning of my PhD.

All members of the Coupland group, past and present, but in particular Karen Lee, Jon Clarke, Dave Stevenson, Paul Reeves, Hitoshi Onouchi, Kay Wheatley, Kathryn Graves, Paula Suárez-López, Giovanni Murtas, Alon Samach, Manolo Pineiro, Manuela Costa and Shelley Hepworth who have all been around during my writing up phase, some for a long time before and some newly arrived. Thank you for your friendship, for always being ready for a coffee, and for putting up with my mood swings. I really appreciate it. Past members of the Coupland group; Robert Schaffer, Maribel Igeno, Kate Wilson, Kate Dixon and Laurian Robert, for e-mailing at regular intervals. My other friends in Molecular Genetics, in particular Clare Lister, Yaron Levy, Tony Gendall, Ruth Meissner, Fred Rook and Claire Hutchison for friendship and company during lunch and Claus Schwechheimer and Kati King for explaining the mysterious workings of computers to me. Cindy Cooper and Jill Murton for making us laugh and for keeping the media kitchen in Molecular Genetics running smoothly. Xiaohe Hu for her technical assistance over the past year.

Phil Smith for his help with the statistical analysis, and for his companionship while we wrote up together in the library. My ex-flatmate Helma Tatge and my current flatmate Vibeke Alm, for their friendship, for feeding the cats and for not minding me moaning to them about writing up.

Matt Hills for his support and encouragement, for cooking endless meals, providing unlimited supplies of alcohol and chocolate and for being so patient and understanding.

The library staff for allowing me to live on the premises for so long and in particular Ingrid Walton for the translation of the words of Johannes Thai and Rachel Lewis for always being cheerful and friendly and for photocopying references for me when time was short. The greenhouse staff, in particular Mervyn who has worked miracles in S67 since he took over the care of our plants. The photography department, in particular Andrew Davis, who took most of the plant photographs in this thesis. The computing department, in particular Bob Findlay for patiently helping me with the thesis template program and Doug Atkinson for helping to find and set up my computer. The security guards for making me cups of coffee.

My parents for their wholehearted and much appreciated support and encouragement. My sister Charlotte and my brother-in-law, Michael, for cheerfully providing a holiday retreat on so many occasions over the past few years.

And Beryl and Soot, for being there.
Table of contents

Abstract

Acknowledgements

Abbreviations

1 Introduction

1.1 Flowering

1.1.1 Control of flowering by photoperiod

1.2 Arabidopsis thaliana

1.2.1 Flowering in Arabidopsis thaliana

1.2.1.1 Environmental control of flowering in Arabidopsis

1.2.1.1.1 Photoperiod and light quality

1.2.1.1.2 Vernalization

1.2.1.2 Genetic analysis of the control of flowering time

1.2.1.2.1 Natural variation in flowering time

1.2.1.2.2 Mutations affecting flowering time

1.2.1.2.2.1 Late-flowering mutants

1.2.1.2.2.2 Early-flowering mutants

1.2.1.2.3 Models for the genetic control of flowering time

1.2.1.2.3.1 The environmental response pathway

1.2.1.2.3.2 The autonomous pathway

1.2.1.2.3.3 The gibberellic acid promotion pathway
Characterization of the phenotypes caused by seven constans mutant alleles

2.1 Introduction

- **2.1.1** Backcrossing *co-1* into Landsberg erecta

2.2 The phenotypes caused by seven *co* mutant alleles

- **2.2.1** Flowering time in long days
- **2.2.2** Flowering time in short days
- **2.2.3** Other phenotypes
 - **2.2.3.1** Chimeric flowering shoots
 - **2.2.3.2** Altered number of floral organs

2.3 The semi-dominance of the *constans* mutations

2.4 Discussion

Molecular characterization of the *constans* alleles

3.1 Introduction

3.2 Identifying the mutations in the seven *constans* alleles

- **3.2.1** Southern analysis
- **3.2.2** PCR amplification and cloning of the *constans* alleles
- **3.2.3** Sequencing the *constans* alleles
- **3.2.4** The mutations in the seven *constans* alleles define domains of the protein that are important for CO function
- **3.2.5** Analysis of expression of *co* mutant alleles
4 Isolation and characterization of co-8

4.1 Introduction

4.2 Screening for new co alleles in an M2 population made from gamma-irradiated pollen

4.2.1 Identification of a new allele, co-8

4.3 Characterization of co-8

4.3.1 Molecular characterization of co-8

4.3.1.1 Analysis of co-8 by Southern hybridization

4.3.1.2 Construction of a co-8 cosmid library

4.3.1.2.1 Screening the library

4.3.1.2.2 Characterization of co-8 cosmid clones by restriction mapping, Southern hybridization and subcloning

4.3.1.3 Isolation of the DNA flanking the CO ORF in co-8 by IPCR

4.3.1.4 The deletion at the CO locus in co-8

4.3.1.5 Confirmation of the rearrangement in co-8 by PCR

4.3.1.6 Determining the chromosomal location of the second breakpoint in co-8

4.3.1.7 Analysis of RNA produced by the co-8 allele

4.3.1.8 Sequence analysis of the co-8 rearrangement

4.3.1.9 A summary of the rearrangement in the co-8 allele

4.3.2 Phenotypic characterization of co-8 mutants

4.3.2.1 Flowering time

4.3.2.2 Other phenotypes
4.3.2.3

co-8 is semidominant .. 95

4.4 Discussion ... 95

5 Overexpression of modified CONSTANS proteins 102

5.1 Introduction .. 102

5.2 Description of the modified CONSTANS proteins 103

5.3 Plasmid construction ... 104

5.3.1 35S:co-7 .. 104

5.3.2 35S:co-3 .. 105

5.3.3 35S:ZF (Zinc Fingers) .. 105

5.4 Introduction of the constructs into Arabidopsis thaliana 107

5.5 Identification of homozygous families carrying the T-DNA at

a single locus .. 108

5.6 Phenotypic analysis of the transformants under long and short

days .. 108

5.6.1 35S:co-7 .. 109

5.6.2 35S:co-3 .. 111

5.6.3 35S:ZF ... 111

5.7 Analysis of the expression of the transgenes by Northern

hybridization .. 112

5.8 Discussion .. 112

6 Investigation of the conserved function of a Brassica

napus CO homologue ... 120

6.1 Introduction .. 120

6.2 Sequence comparison of the Brassica napus CO homologue

Bn1CON10, and Arabidopsis thaliana CO 123

6.3 Plasmid construction ... 123

6.3.1 The Brassica napus CO homologue expressed from its

native promoter ... 124

6.3.2 The Arabidopsis CO promoter with the Brassica

napus CO coding sequence .. 124

6.4 Introduction of the constructs into the co-2 mutant 125
6.5 Identification of transgenic plants homozygous for the T-DNAs ... 126
6.6 Phenotypic analysis of the transformants under long and short days .. 126
 6.6.1 Flowering time of transformants carrying BnCO ... 126
 6.6.1.1 Phenotypes other than early flowering conferred by pBnCO ... 127
 6.6.2 Flowering time of transformants carrying ApBnCO .. 128
6.7 Analysis of the expression of the transgenes by Northern hybridization and RT-PCR 128
6.8 Discussion .. 130

7 Materials and Methods .. 137
7.1 Materials ... 137
 7.1.1 Plant Materials .. 137
 7.1.2 Bacterial and Yeast Strains ... 137
 7.1.3 Plasmids .. 138
 7.1.4 General Media and Solutions ... 139
 7.1.5 Plant Media .. 140
7.2 Methods ... 142
 7.2.1 Bacterial and General DNA Techniques ... 142
 7.2.1.1 Methods of DNA Extraction .. 142
 7.2.1.2 Glycerol Stocks .. 143
 7.2.1.3 Preparation of Competent E. coli Cells ... 144
 7.2.1.4 Transformation of E. coli .. 144
 7.2.1.5 Transfer of Plasmids from E. coli to Agrobacterium tumefaciens .. 145
 7.2.1.6 Preparation of Filters for Colony Hybridization .. 146
 7.2.1.7 Cleavage of DNA with Restriction Enzymes ... 147
 7.2.1.8 Agarose Gel Electrophoresis of DNA ... 148
 7.2.1.9 Isolation and Recovery of DNA Fragments from Agarose Gels .. 149
7.2.1.10 DNA Ligations .. 149
7.2.1.11 Southern Blotting 150
7.2.1.12 Hybridization of Radio-labelled DNA probes to DNA Immobilized on Nylon Membranes .. 151
7.2.1.13 Autoradiography .. 152
7.2.1.14 Radioactive Labelling of DNA Fragments 152
7.2.1.15 Quantification of Nucleic Acid Concentration 153
7.2.1.16 Ethanol Precipitation of DNA 153
7.2.1.17 Isopropanol Precipitation of DNA 154
7.2.1.18 Phenol/Chloroform Extraction of DNA 154
7.2.2 Plant DNA Extraction Methods .. I 154
7.2.2.1 CTAB (Cetyl trimethyl ammonium bromide) Plant DNA Extraction 154
7.2.2.2 Dellaporta DNA Microprep ; 155
7.2.3 Polymerase Chain Reaction Techniques 156
7.2.3.1 PCR Amplification of Genomic and Plasmid DNA 156
7.2.3.2 Rapid Preparation of Plant Material for Diagnostic Screening by PCR 157
7.2.3.3 Inverse Polymerase Chain Reaction (IPCR) 157
7.2.3.4 Cloning PCR Products 158
7.2.3.5 Colony PCR .. 158
7.2.3.6 Oligonucleotide Preparation 159
7.2.4 RNA Extraction and Manipulation 161
7.2.4.1 Small Scale Total RNA Extraction from Plant Tissue 161
7.2.4.2 Northern Analysis ... 162
7.2.4.3 RT-PCR (Reverse transcription - Polymerase Chain Reaction) 163
7.2.5 DNA Sequencing .. 164
7.2.5.1 Sequencing Reactions 164
7.2.5.2 Polyacrylamide Gel Electrophoresis 165
7.2.5.3 Analysis of DNA Sequences 165

7.2.6 The Preparation and Screening of a Cosmid Library ... 166

7.2.7 Yeast Techniques 169

7.2.7.1 Screening the CIC YAC (Yeast Artificial Chromosome) Library 169
7.2.7.2 Yeast Genomic DNA Extraction 170

7.2.8 Arabidopsis Transformation and Tissue Culture Techniques 171

7.2.8.1 Transformation of Arabidopsis thaliana Root Explants 171
7.2.8.2 Transformation of Arabidopsis thaliana by Vacuum Infiltration 172
7.2.8.3 Seed Sterilization 174
7.2.8.4 Selective Assay on Kanamycin 174

7.2.9 Plant Growth Conditions 175

Appendix 177

References 191
Figures

Figure 1.1 A diagram to illustrate possible interactions of the pathways that control the transition to flowering in *Arabidopsis*.

Figure 1.2 Comparison of the amino acid sequences of the two predicted zinc fingers within the CO sequence.

Figure 2.1 Wild type Landsberg *erecta* and the *co-2* mutant grown in long day (LD) and short day (SD) conditions.

Figure 2.2 The *co-1* mutant in Landsberg with the wild type *ERECTA* gene compared to *co-1* in Landsberg *erecta*.

Figure 2.3 The flowering times, represented as the mean rosette and cauline leaf numbers of the seven *co* mutants compared to wild type Landsberg *erecta* in LDs.

Figure 2.4 The phenotypes of the seven *co* mutants, each carrying a different *co* mutant allele.

Figure 2.5 The *co* mutant plants carrying the weak *co-4* allele and the strong *co-3* allele compared to wild type Landsberg *erecta*.

Figure 2.6 The flowering times, represented as total leaf number, of wild type Landsberg *erecta* plants and *co-2* mutant plants grown under both LD and SD conditions.

Figure 2.7 Examples of chimeric shoots.

Figure 2.8 Examples of flowers with an altered number of petals and/or stamens.

Figure 2.9 From the left, a wild type Landsberg *erecta* plant, a *co-4* heterozygote, a *co-4* homozygote, a *co-3* heterozygote, a *co-3* homozygote, a *co-7* heterozygote and a *co-7* homozygote.

Figure 2.10 Bar charts showing the distribution of leaf numbers in the seven *co* mutant populations compared to the heterozygotes and wild type Landsberg *erecta*.

Figure 2.11 Summary of leaf numbers of the seven homozygous *co* mutants in LDs compared to the heterozygotes and wild type Landsberg *erecta*.

Figure 3.1 Southern blot of plant DNA extracted from wild type Landsberg *erecta* and the seven *co* mutants, digested with the enzymes indicated and probed using cosmid 129.

Figure 3.2a The sequencing gel that first identified the mutations in *co-4* and *co-6*.
Figure 3.2b The sequencing gel that first identified the mutations in co-5 and co-7.

Figure 3.3 The CO genomic region amplified by PCR and sequenced from all the co mutants.

Figure 3.4 The DNA sequence of the CO ORF and the predicted amino acid sequence of the protein.

Figure 3.5a The predicted protein sequence of CONSTANS zinc finger 1 and zinc finger 2 with the prediction of secondary structure and the calculated probability of a secondary structure being formed underneath.

Figure 3.5b The predicted protein sequence of CONSTANS C-terminal basic domain with the prediction of secondary structure and the calculated probability of a secondary structure being formed underneath.

Figure 3.6 The CO amino acid sequence with a number of features marked.

Figure 3.7 Southern blot of RT-PCR products from wild type Landsberg erecta and the co mutants.

Figure 3.8 Prettybox comparison of the predicted CONSTANS protein with CONSTANS-LIKE1 and CONSTANS-LIKE2.

Figure 3.9 Prettybox comparison of the predicted protein sequence of the CO zinc fingers with a number of homologues from the GenBank database.

Figure 3.10 Prettybox comparison of the predicted protein sequence of the CONSTANS zinc fingers with two proteins in the Swissprot database.

Figure 3.11 Prettybox comparison of the predicted protein sequence of the CO C-terminal basic domain with a number of homologues in the GenBank database.

Figure 3.12 A summary of some of the structural features of the CO protein thought to be important for its function.

Figure 3.13 Sequence of the CONSTANS zinc finger region with secondary structure predicted by the PHD predict protein program.

Figure 4.1 The strategy for generating new co alleles by gamma-irradiation of wild type pollen.

Figure 4.2 Southern blot of plant DNA digested with Hind III and probed with the 2.3 kb EcoR 1-Pst 1 fragment shown below.

Figure 4.3 Southern blot of plant DNA digested with the restriction enzymes indicated and probed with the 950 bp probe shown below.

Figure 4.4 The strategy used to isolate DNA adjacent to the CO promoter in co-8.
Figure 4.5 Schematic diagram to illustrate how the DNA adjacent to the CO ORF in $co-8$ was cloned by Inverse PCR.

Figure 4.6 The sequence of the DNA which has been deleted from the CO locus in the $co-8$ allele.

Figure 4.7 Southern blot of PCR products using the primers indicated and DNA extracted from either wild type or the $co-8$ mutant.

Figure 4.8 DNA sequence of the junctions in the $co-8$ allele.

Figure 4.9 The PCR strategy used to establish whether an inversion or insertion had occurred in $co-8$.

Figure 4.10 Genetic map positions of the YAC contigs at the CO locus and the contig at the second breakpoint in $co-8$.

Figure 4.11 Southern blot of YAC DNA digested with EcoR I and BamH I.

Figure 4.12 Southern blots of RT-PCR products probed with the CO cDNA, where amplification was with CO primers or with the $APETALA2$ cDNA, where amplification was with the $AP2$ primers.

Figure 4.13 The CO amino acid sequence showing in red the amino acids which are predicted to be deleted from the ORF in $co-8$.

Figure 4.14 The chromosomal rearrangement in $co-8$.

Figure 4.15 The co mutants grown in LDs, as in Figure 2.4.

Figure 4.16 The total leaf number of the eight co mutants compared to wild type Landsberg erecta in LDs.

Figure 4.17 Days to flowering plotted against total leaf number for each co mutant and wild type grown in LDs.

Figure 4.18 The $co-8$ mutant compared to a $co-8$ heterozygote and wild type Landsberg erecta.

Figure 4.19 Summary of total leaf numbers of the co mutants grown in LDs, compared to the heterozygotes and wild type Landsberg erecta.

Figure 5.1 Restriction maps of the constructs designed to express modified CO proteins.

Figure 5.2 The sequence of the DNA fragment amplified to create the 35S:ZF construct.

Figure 5.3 A wild type Landsberg erecta plant on the left, and a plant carrying the 35S:co-7 construct on the right.
Figure 5.4 Northern blot of RNA extracted from the 35S:co-3, 35S:ZF and 35S:co-7 transformants.

Figure 6.1 Prettybox comparison of the predicted protein sequence of the *Brassica napus* Bn1CON10 allele with *Arabidopsis* CO.

Figure 6.2 Restriction map of the λ clone N.o.101 which contains the Bn1CON10 allele.

Figure 6.3 From the left, a wild type Landsberg erecta plant, a co-2 tt4 mutant and a co-2 tt4 mutant carrying the *Brassica napus* CO homologue, Bn1CON10.

Figure 6.4 Examples of phenotypes observed in some BnCO transformants.

Figure 6.5 From the left, a wild type Landsberg erecta plant, a co-2 tt4 mutant and two co-2 tt4 mutants, each carrying the *Arabidopsis* promoter:*Brassica napus* ORF construct, ApBnCO, which did not complement the co mutant phenotype.

Figure 6.6 Northern blots of RNA extracted from the BnCO transformants.

Figure 6.7 Southern blots of RT-PCR products amplified from RNA extracted from the BnCO and ApBnCO transformants and untransformed control plants.
Tables

Table 1.1 Genes involved in the control of flowering time in *Arabidopsis thaliana*.

Table 1.2 Potential metal-binding residues in zinc finger-like proteins compared to CONSTANS.

Table 2.1 Flowering times and leaf numbers of the seven co mutants grown in LDs compared to wild type Landsberg *erecta*.

Table 2.2 Number of individuals with at least one flower with an altered number of petals and stamens, and the number of individuals with a chimeric inflorescence.

Table 2.3 Flowering times and leaf numbers in LDs of F₁ progeny of crosses between each co mutant and Landsberg *erecta*, compared to the homozygous parental mutants and Landsberg *erecta*.

Table 3.1 The mutations in the seven co alleles, the domains of the CO protein they affect and the mean flowering times of the co mutants represented as total leaf numbers.

Table 3.2 The CO homologues with similarity over the zinc fingers.

Table 3.3 The CO homologues with similarity over the basic, C-terminal domain.

Table 4.1 The screen for lines which do not segregate early flowering plants in the M₂ generation and which therefore may carry a new co allele.

Table 4.2 The analysis in the M₃ generation of the six late flowering lines picked from the M₂ screen and the identification of a line homozygous for wild type LUTESCENS and therefore potentially homozygous for a new co allele.

Table 4.3 Flowering times and leaf numbers of the eight co mutants grown in LDs compared to wild type Landsberg *erecta*.

Table 5.1 The kanamycin segregation analysis of the transformants in the T₂ and T₃ generations.

Table 5.2 Flowering time and leaf number analysis of the transformants in LDs and, where examined, SDs, compared to untransformed wild type Landsberg *erecta* and the co-2 mutant.
Table 6.1 The kanamycin segregation analysis for the transformants in the T$_2$ and T$_3$ generations and the identification of families homozygous for the T-DNA/s to be used in further analysis of flowering time.

Table 6.2 Flowering time and leaf number analysis for the transformants in the co-2 tt4 mutant background, in LDs and where applicable, SDs, compared to untransformed co-2 tt4 and wild type Landsberg erecta.
Abbreviations

A, dATP adenine, 2'-deoxyriboadenosine-5'-triphosphate
BAC Bacterial Artificial Chromosome
bp base pair
C, dCTP cytosine, 2'-deoxycytidine-5'-triphosphate
°C degrees Celsius
(CaMV) 35S Cauliflower Mosaic Virus 35S RNA promoter
C-terminal Carboxy terminal
cDNA complementary DNA from transcribed RNA
CER Controlled Environment Room
CHS Chalcone Synthase
cm centimetre
cM centiMorgan
COPS Controller of Phase Switching
dex dexamethasone
DNA deoxyribonucleic acid
DNase deoxyribonuclease
DNP Day Neutral Plant
EMS ethyl methane sulphonic acid ester
ESSA European Scientists Sequencing Arabidopsis
EST Expressed Sequence Tags
F₁/₂₃ F₁ = first filial generation; offspring resulting from first crossing of plants.
F₂, F₃ = progeny produced by self fertilization of F₁, F₂ individuals.
FLIP Floral Initiation Process
FT Flowering Time
g gram
G, dGTP guanine, 2'-deoxyguanosine-5'-triphosphate
GA Gibberellic Acid
GR glucocorticoid receptor
h hour(s)
IPCR Inverse Polymerase Chain Reaction
K, Kan, kanamycin
kb kilobase
L litre
LD(s) long day(s)
LDP Long Day Plant
Ler Landsberg erecta
LG Linkage Group
LN Leaf Number
m metre
M Molar
M₁/₂₃ M₁ = first generation after mutagenesis. M₂, M₃ = progeny resulting from self-fertilization of M₁, M₂ individuals.
Mb Megabase
MBq Mega Bequerels
mg milligram
ml millilitre
mm millimetre
mM milliMolar
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>µE</td>
<td>microEinstein</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>µl</td>
<td>microlitre</td>
</tr>
<tr>
<td>µM</td>
<td>microMolar</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>NLS</td>
<td>Nuclear Localization Signal</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>N-terminal</td>
<td>Amino terminal</td>
</tr>
<tr>
<td>NTP</td>
<td>nucleoside triphosphate</td>
</tr>
<tr>
<td>OD</td>
<td>Optical Density</td>
</tr>
<tr>
<td>ORF</td>
<td>Open Reading Frame</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>polyA</td>
<td>polyadenylation signal</td>
</tr>
<tr>
<td>QTL</td>
<td>Quantitative Trait Locus</td>
</tr>
<tr>
<td>RACE</td>
<td>Rapid Amplification of cDNA Ends</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriction Fragment Length Polymorphism</td>
</tr>
<tr>
<td>rif</td>
<td>rifampicin</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNase</td>
<td>ribonuclease</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse Transcription - Polymerase Chain Reaction</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>SD(s)</td>
<td>Short Day(s)</td>
</tr>
<tr>
<td>SDP</td>
<td>Short Day Plant</td>
</tr>
<tr>
<td>T, dTTP</td>
<td>thymine, 2'-deoxyribothymidine-5'-triphosphate</td>
</tr>
<tr>
<td>T-DNA</td>
<td>Transfer DNA</td>
</tr>
<tr>
<td>tet</td>
<td>tetracyclin</td>
</tr>
<tr>
<td>Tn</td>
<td>transformant</td>
</tr>
<tr>
<td>u</td>
<td>unit</td>
</tr>
<tr>
<td>UV-A</td>
<td>ultra-violet A</td>
</tr>
<tr>
<td>UV-B</td>
<td>ultra-violet B</td>
</tr>
<tr>
<td>var.</td>
<td>variety</td>
</tr>
<tr>
<td>WT</td>
<td>wild-type</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
<tr>
<td>YAC</td>
<td>Yeast Artificial Chromosome</td>
</tr>
<tr>
<td>5', 3'</td>
<td>5-prime, 3-prime</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Flowering

The transition from vegetative growth to flowering is one of the most dramatic developmental changes that occurs during the life cycle of flowering plants. Flowering enables the production of gametes, which in turn allow exchange of genetic information and ultimately the production of progeny. The survival of a species is dependent upon reproductive success, and it is strongly advantageous for plants, which are sessile, to recognize the most favourable environmental conditions in which to carry out reproductive development (Murfet, 1977). Many plants use environmental cues, particularly those which vary in predictable seasonal patterns, to regulate their transition to reproductive development. Hence the principal cues which regulate flowering are photoperiod (daylength), light quality and quantity, and temperature (Bernier et al., 1981). The requirement for particular day lengths or for a period of low temperature (vernalization) to initiate flowering enables plants to become adapted to a particular location or latitude. This was first apparent in a variety of tobacco called Maryland Mammoth that required short days for flowering to occur. When grown in the northern United States this variety grew vegetatively throughout the summer months but flowered rapidly in the winter when the days became shorter (Garner and Allard, 1920). Similarly, many plants in northern latitudes flower only after an extended cold period, ensuring that flowering occurs in the spring and not during winter (Napp-Zinn, 1969). Other cues which are also important are water and nutrient availability, so that plants can survive times of drought or nutrient deprivation by flowering quickly and producing seeds before the parent plant dies.
Physiological and genetic studies have suggested a "multifactorial model" to explain how flowering is controlled (Bernier, 1988). This postulates that growth regulators and assimilates act as promoters and inhibitors of floral induction and these are required at a particular developmental stage and at an appropriate concentration for flowering to occur. The regulation of this process is proposed to be under both genetic and environmental control.

Plant species or varieties of the same species can be categorized according to their need for specific environmental conditions to initiate flowering. Those in which floral induction occurs at a predetermined time and proceeds at the same rate irrespective of environmental signals are known as autonomous species. Those which require absolute environmental conditions in order to flower are obligate or absolute species and plants where the transition to flowering is either hastened or delayed by environmental signals, but there is no absolute requirement for these signals, are facultative species (Bernier, 1988). *Arabidopsis thaliana* (*Arabidopsis*) belongs to the final category, with most ecotypes flowering eventually even under adverse conditions, but with environmental cues regulating the timing of the transition (Napp-Zinn, 1985). In most varieties of *Arabidopsis* long photoperiods and vernalization accelerate flowering.

1.1.1 Control of flowering by photoperiod

In the early 1920s Garner and Allard discovered that flowering and other developmental processes were regulated by daylength (Garner and Allard, 1920, 1923). They classified plants according to their flowering response to daylength, or photoperiod as they termed it. Three main categories emerged: short-day plants (SDP), which only flower (obligate species), or are accelerated to flower (facultative species), with fewer than a certain number of hours of light in each 24 h period; long-day plants (LDP) which only flower, or are accelerated to flower, with more than a certain number of hours of light in each 24 h
period, and day-neutral plants (DNP) which flower at the same time, irrespective of the
daylength (autonomous species).

By exposing a variety of different plant species to light and dark cycles of different lengths
it was concluded that SDP and LDP have different requirements for floral induction. For
example, Hamner and Bonner (1938) showed that photoperiodic timekeeping in the SDP
Xanthium is achieved by measuring the absolute duration of darkness. Flowering only
occurred in this obligate species when the dark period exceeded 8.5 h. With sufficiently
long nights, flowering was promoted even when coupled with a long light period. The
importance of the absolute duration of darkness in SDPs is well documented (reviewed in
Thomas and Vince-Prue, 1997), and it was originally thought that the measurement of
nightlength was also critical in determining the flowering response of LDP. However, work
on a number of LDP, for example, Plantago lanceolata (Snyder, 1948) suggested that for
these plants a period of light longer than a critical length was necessary for the induction
of flowering, rather than a period of darkness shorter than a critical length.

For many years it has been recognized that the main site for the perception of photoperiod
is the leaf. Experiments by Knott (1934) with the LDP spinach first demonstrated this.
Exposing only leaves to LDs promoted floral induction at the shoot apex, whereas exposing
only the shoot apex to LDs resulted in plants which remained vegetative. Grafting
experiments with a number of SDP and LDP suggested that leaves can independently
produce a transmissible signal which is able to promote floral induction at the shoot apex
(reviewed in Lang, 1952). This transmissible signal was assumed to be chemical, and
named florigen by Chailakhayan in 1936. The model for the involvement of a specific
floral hormone proposes that in the leaves, a hormone-like molecule is produced in
inductive conditions (LDs for LDP, SDs for SDP, or as a consequence of other endogenous
signals in DNP), and this molecule is transported to the apical meristem to induce flowering
Substances that inhibit flowering have also been proposed, and in this case inductive conditions lead to the removal of this "anti-florigen". However, no single substance which can promote or prevent flowering in all species tested has been identified and the nature of florigen/anti-florigen is still unknown. More recent models (for example, Bernier, 1988) propose that floral induction occurs only when multiple signals are present at the shoot apex.

Grafting experiments with the LDP *Pisum* identified a graft-transmissible mobile floral stimulus and a mobile floral inhibitor that are produced in the leaves. Genes controlling the production of each have been identified from studying mutants which are affected in floral initiation (Weller *et al.*, 1997). The *gigas* (*gi*) mutant, for example, which is late flowering in LDs and SDs, appears to be deficient in a mobile floral stimulus (Beveridge and Murfet, 1996). In grafting experiments, wild type donor plants were able to promote flowering in mutant *gi* shoots, suggesting that a stimulus produced by the wild type plants was able to move across the graft union, and the *gi* mutant could respond normally to this stimulus. The *gi* mutation, therefore, is proposed to block the synthesis of the floral stimulus. The identity of the *Gi* gene, however, and the chemical nature of the floral stimulus are still unknown.

1.2 *Arabidopsis thaliana*

Arabidopsis thaliana, a member of the Cruciferae, or Brassicaceae, was first described by the physician Johannes Thal, in a German book describing the flora of the Hartz Mountains, published in 1577.

"...at the top, tiny white florets bloom and then drop to be followed by small, thin, oblong seed pods....The pods are packed with tiny, reddish seeds. The plant is widely observed on the hillsides at the beginning of spring..."

(Johannes Thal, 1577; transl. Ingrid Walton).
At the time it was known as *Pilosella siliquata minor* but from 1842, in honour of Johannes Thal, it became known as *Arabidopsis thaliana*. The species is distributed mostly in the temperate zones of Europe, West and Central Asia, Japan, North, East and South Africa, Australia and North America, with its centre of distribution generally considered to be Western Europe (Redei, 1969).

In 1907 the haploid chromosome number of *Arabidopsis thaliana* was established as five by Friedrich Laibach (Laibach, 1907). In 1943 he published a paper which described the advantages of using *Arabidopsis thaliana* as an experimental organism (Laibach, 1943), and this paper laid the foundations for the next five decades of research. *Arabidopsis* was not a species of choice for physiological analyses of flowering because of its facultative response to environmental conditions, and because its small size prevented the use of approaches such as grafting and harvesting of large amounts of tissue for physiological analysis. However it has become the preferred model for genetic analysis due to the high level of natural variation in flowering time (Rédei *et al*., 1974), the ease with which mutants can be isolated (Hussein, 1968) and its utility for molecular analysis (Meyerowitz, 1987).

A number of features make *Arabidopsis* a convenient model species for classical and molecular genetics. *Arabidopsis* is self-fertile, and can also be cross-fertilized relatively easily. It has a short generation time of six to eight weeks and a high seed yield, producing up to 10,000 seeds per plant. Its small size and minimal growth requirements mean that large populations can be maintained in greenhouses or sterile tissue culture facilities. Mutagenesis screens can be performed with large numbers of seeds because of the small seed size, and large M₂ populations can be grown in a relatively small area to look for specific mutations. Chemical mutagens, such as ethyl methane sulphonylic acid ester (EMS) in addition to fast neutron, X- and γ-irradiation have been used successfully in mutagenesis experiments (reviewed in Lightner and Caspar, 1998, Feldman *et al*., 1994 and Rédei and
The isolation of a large number of visible mutations allowed the construction of a genetic map of the *Arabidopsis* genome and the production of multiply marked lines on which to map new mutations (Koomneef et al., 1983; Koornneef, 1990). *Arabidopsis* has a number of features that facilitate the cloning of genes like CO, of which nothing is known except the phenotype caused by mutations within the gene. The genome of *Arabidopsis* is considerably smaller than most other higher plants. Current estimates put the size of the haploid genome at approximately 100 Mb (Leutwiler et al., 1984; Arumuganathan and Earle, 1991) present on five small chromosomes, containing relatively little repetitive DNA (Leutwiler et al., 1984). These factors have facilitated a number of gene cloning methods. T-DNA tagging, where foreign DNA is integrated into the genome by *Agrobacterium*-mediated transformation, benefits from the high proportion of the *Arabidopsis* genome that is made up of genes (Bevan et al., 1998; Feldman et al., 1991) and from the ease by which *Arabidopsis* can be transformed (Bechtold et al., 1993). Genomic subtraction, in which the DNA lost in deletion alleles can be isolated (e.g. the *gal-3* allele; Sun et al., 1992) also benefits as the method relies on the hybridization of mutant and wild type DNA, a factor which is affected by the complexity of the genome (Wetmur and Davidson, 1968). However, both these methods rely on the availability of either T-DNA-tagged alleles or known deletion alleles. Consequently, map-based cloning by chromosome walking would be the preferred method in the absence of such alleles. This method is also greatly facilitated in *Arabidopsis* by the small genome size and particularly the relatively small amount of repetitive DNA, which would otherwise interrupt a chromosome walk. Map-based cloning involves fine-mapping the gene of interest to a small region between two RFLP markers and isolating cloned genomic DNA in the region to build a physical map. The DNA isolated can be subcloned into small fragments for complementation of the mutant phenotype by *Agrobacterium*-mediated transformation. In *Arabidopsis* the existence of detailed RFLP and genetic maps (Koornneef et al., 1983;
Chang et al., 1988; Nam et al., 1989), the generation of a number of Arabidopsis genomic Yeast Artificial Chromosome libraries (Ward and Jen, 1990; Grill and Somerville, 1991; Guzman and Ecker, 1988; Ecker, 1990) and the ordering of 20,000 cosmid clones into contigs (Hauge et al., 1991; Hauge and Goodman, 1992) facilitated the first chromosome walks. More recently, map-based cloning has been aided by the generation of YAC and BAC (Bacterial Artificial Chromosome) libraries with larger inserts (Creusot et al., 1995), the availability of many more RFLP markers and the development of PCR markers (Bell and Ecker, 1994; Konieczny and Ausubel, 1993; Reiter et al., 1992) and the creation of YAC contig maps with the aim of producing a complete physical map of the Arabidopsis genome. Physical maps of chromosomes 2 (Zachgo et al., 1996), 4 (Schmidt et al., 1995) and 5 (Schmidt et al., 1997) have been published and these have provided a basis for sequencing the Arabidopsis genome. An international collaboration between Arabidopsis research groups, the Arabidopsis thaliana Genome Research Project, aims to completely sequence the Arabidopsis genome by the year 2004. The analysis of 1.9 Mb of contiguous sequence from chromosome 4 was recently published by the EU Arabidopsis Genome Project (Bevan et al., 1998). Extensive physical maps for all five chromosomes are now available via the Internet (Arabidopsis thaliana Database (AtDB) URL:http://genome-www.stanford.edu/). In addition, the sequence of transcripts is being determined (expressed sequence tags (ESTs) URL:http://www.tigr.org/ Höfte et al., 1993; Newman et al., 1994) and genomic sequence information is becoming available via the internet at a rate of approximately 1 Mb per month (I. Bancroft, personal communication).

In 1992 the first reports of genes isolated from Arabidopsis by map-based cloning were published. The ABI3 gene, involved in the response to the hormone abscisic acid, was mapped to position 23.5 cM on chromosome 3 (Koornneef, 1987) and after further fine mapping was located to a cosmid in an existing contig (Hauge et al., 1991). This cosmid
was used successfully to complement the \textit{abi3} mutant phenotype (Giraudat et al., 1992). To isolate the \textit{fad3} (fatty acid desaturase3) gene, a contig was built over the \textit{fad3} locus by using closely linked RFLP markers as probes against YAC libraries. These YACs were used to isolate a cDNA for a highly expressed mRNA specific to seeds from a \textit{Brassica napus} cDNA library (Arondel \textit{et al.}, 1992) and this was shown to complement the \textit{Arabidopsis fad3} mutant phenotype.

The ability to regenerate whole plants from a number of \textit{Arabidopsis} tissues, and the relatively small amount of space required for the sterile culturing of \textit{Arabidopsis} plants lead to the development of direct DNA uptake and \textit{Agrobacterium tumefaciens}-mediated transformation methods (Damm \textit{et al.}, 1989; Valvekens \textit{et al.}, 1988). These methods have been largely superseded by \textit{in vivo} transformation methods. For example, submerging plants in the desired \textit{Agrobacterium} strain while under vacuum enables transformation of cells that give rise to gametes and enables the selection of transformants among the progeny of vacuum-infiltrated plants (Bechtold \textit{et al.}, 1993). This method facilitates the generation of large numbers of transformants with minimum effort.

1.2.1 Flowering in \textit{Arabidopsis thaliana}

\textit{Arabidopsis} is an annual species in which the vegetative and reproductive developmental phases are temporally separated. It belongs to a group of plants characterized by the formation of a rosette during vegetative development, as a consequence of reiterative leaf formation in the absence of stem elongation. The first pair of leaves, arising from the apical meristem, develop opposite one another in a decussate phyllotaxy. Subsequent leaves are produced 104° apart in a spiral phyllotaxy, forming the rosette. At a time determined by environmental conditions and the genotype of the individual the vegetative shoot apical meristem becomes an inflorescence meristem, and starts to produce flower buds instead of leaves. This transition is immediately followed by the elongation of the internodes between
the last few leaves and between the flowers, giving rise to a stem carrying cauline leaves (to distinguish them from the rosette leaves) and flowers, still in the characteristic spiral phyllotaxy. Subsequently, indeterminate inflorescence meristems develop in the axils of the cauline leaves and some of the rosette leaves, later to develop as co-florescences with a structure similar to the primary inflorescence (main flowering stem). The shoot apical meristem remains indeterminate, continuing to form flowers indefinitely until the plant starts to senesce (reviewed in Madueño et al., 1996).

Arabidopsis flowers are composed of four whorls each consisting of a distinct organ type. There are four sepals in the first whorl. These are the first floral organs to differentiate, and they grow to overlie the developing floral primordium. Subsequently four petals in the second whorl and six stamens in the third whorl develop, and finally two fused carpels arise in the fourth whorl, at the centre of the floral meristem.

The transition from vegetative to reproductive development is marked by the establishment of floral fate in the apical meristem and the suppression of leaf production (Hempel and Feldman, 1994). Genes known as floral meristem identity genes are required for primordia to develop as flowers rather than leaves (Schultz and Haughn, 1993). A number of these have been identified, including *LEAFY (LFY)*, *APETALA1, APETALA2 (AP1, AP2)* and *CAULIFLOWER (CAL)* (Haughn et al., 1995). Mutations in these genes cause the meristems to produce inflorescence-like structures rather than flowers, with the most severe effect seen in *lfy* mutants (Schultz and Haughn, 1991; Weigel et al., 1992). Ectopic expression of the wild type *LFY* or *API* genes from the CaMV 35S promoter converted shoots into flowers, indicating that these genes are sufficient to confer floral identity on the meristem. However, before flowering these transformants underwent a period of vegetative growth, indicating that additional factors are required at the apical meristem for it to be
able to respond to the expression of the floral meristem identity genes and initiate the flowering process (Weigel and Nilsson, 1995; Mandel and Yanofsky, 1995).

In addition to genes which confer floral identity on developing primordia, genes which are required for the maintenance of the vegetative state or of the indeterminacy of the inflorescence meristem have been identified. Mutations in the *TERMINAL FLOWER (TFL)* gene cause the shoot apical meristem to become determinate, converting it into a floral meristem which terminates in a flower (Shannon and Meeks-Wagner, 1991; Alvarez et al., 1992). This is similar to the phenotype caused by ectopic *LFY* expression, and double mutant analysis indicated that *LFY* and *TFL* have antagonistic roles (Shannon and Meeks-Wagner, 1993). Mutations in *EMBRYONIC FLOWER1 and 2 (EMF1, EMF2)* cause the shoot apical meristem to be converted to an inflorescence meristem on germination (Sung et al., 1992). The *EMF* genes, then, appear to negatively regulate the transition from vegetative to reproductive development, and this has led to the suggestion that they encode floral repressors whose activity decreases during development, allowing the switch to floral development to occur (Chen et al., 1997). A model for this process has been suggested, where the shoot apical meristem matures and the floral repressor, the Controller of Phase Switching (COPS), decreases until it is below a critical threshold at which point the Floral Initiation Process (FLIP) is activated (Schultz and Haughn, 1993).

Regulation of the timing of inflorescence and flower development therefore requires the control of the expression and activity of the floral meristem identity genes. The expression of meristem identity genes is regulated by environmental signals, such as daylength (Blasquez et al., 1997) and this is likely to occur via the action of flowering time genes (Simon et al., 1996).
1.2.1.1 Environmental control of flowering in Arabidopsis

Arabidopsis is a facultative long day plant (LDP) which shows no absolute requirement for any specific environment but will eventually flower even in unfavourable conditions (Rédei et al., 1974). However, a number of factors can hasten or delay the transition from vegetative to reproductive growth. Long photoperiods, cold treatment (vernalization) and particular wavelengths of light greatly accelerate the onset of flowering (Martínez-Zapater et al., 1994).

1.2.1.1.1 Photoperiod and light quality

Light plays an important regulatory role in floral induction, although in Arabidopsis it is not essential for flowering. Wild type plants grown in the dark in liquid sucrose media were able to flower at the same time as plants grown in continuous light (Araki and Komeda, 1993a). Under these conditions the late flowering co-1 and gi-2 mutants (Koornneef et al., 1991) flowered as early as wild type, suggesting that the products of the genes are not required for flowering in darkness.

Flowering of Arabidopsis responds to light in two ways; by flowering earlier under long than short photoperiods, and by being influenced by light quality (i.e. exposure to different wavelengths of light). Plants detect light through a number of photoreceptors: the phytochromes, which detect red and far-red light, the cryptochromes, which detect blue and UV-A light and the currently undiscovered UV-B receptors (Chory, 1993). Flowering in Arabidopsis is accelerated by far-red light and blue light, and delayed by red light (Eskins, 1992), suggesting that both phytochrome and cryptochrome are involved in controlling flowering time.

A number of Arabidopsis mutants which were originally identified because they are defective in light perception or signal transduction also show altered flowering time. These mutants are affected in photomorphogenesis, developing an elongated hypocotyl in the
light, a phenotype normally associated with dark grown etiolated plants. Mutant screens in different wavelengths of light (white, blue, far-red) have identified mutations in genes encoding different light receptors or signal transduction components. The hyl, hy2 and hy6 mutants (elongated hypocotyl; Koornneef et al., 1980) are deficient in the synthesis or attachment of the chromophore, which is essential for the function of all phytochromes (Parks and Quail, 1991). These mutants are early flowering in both LDs and SDs. Mutants carrying lesions in the individual structural genes encoding the photoreceptor proteins have also been isolated, and these mutants are more useful when assigning roles to the different phytochrome or cryptochrome species. Mutations in the gene encoding the light-labile phytochrome A (PHYA, or type I phytochrome) cause late flowering in LDs with low fluence rate daylength extensions (Johnson et al., 1994). The mutants also show an elongated hypocotyl in far-red light, suggesting that PHYA plays a role in detecting low light and light with low red:far-red (R:FR) ratios (Whitelam et al., 1993) and promotes flowering in response to these conditions. This is consistent with the observation that a far-red extension to short days can induce flowering (Mozley and Thomas, 1995).

Red light, on the other hand, has been shown to inhibit flowering in Arabidopsis (Eskins, 1992). Mutations in the gene encoding the light-stable phytochrome B (PHYB, type II phytochrome), which is proposed to be responsible for the detection and response to red light (Quail et al., 1995) result in early flowering in both LDs and SDs (Halliday et al., 1994). The inhibition of flowering by red light, therefore, is mediated by PHYB, and possibly other light-stable forms of phytochrome (Halliday et al., 1994). The phenotype of the phyB mutant, hy3, mimicks the shade avoidance response, where plants shaded by neighbouring vegetation flower early and have elongated stems (Reed et al., 1993). In shade, the ratio of R:FR light decreases, because FR light is reflected from leaves and R light is absorbed (Smith et al., 1990). In these conditions, PHYB is in the inactive P, form, removing the inhibition of flowering and allowing the plants to flower. In the open, where
the R:FR ratio is higher, PHYB is in the active P₉ form, repressing the shade avoidance response and inhibiting flowering (Yanofsky et al., 1995).

Photobiological studies have clearly demonstrated that flowering in Arabidopsis is promoted by blue light (Eskins, 1992). Phytochrome can be weakly activated by blue light, in addition to its response to red and far-red light, suggesting that the blue light response could also be mediated through this photoreceptor (Bernier et al., 1993). However, the existence of specific blue light receptors has recently been demonstrated. The hy4 mutant, which is defective in blue light-inhibition of hypocotyl elongation, was identified by Koornneef et al. (1980). The HY4 gene encodes a protein with homology to a microbial flavoprotein that catalyses blue light-dependent reactions (Ahmed and Cashmore, 1993). This gene is now known as CRYPTOCHROME1 (CRY1; Lin et al., 1996). A number of mutants with reduced blue light response have been found to be allelic to hy4 and their flowering time has been analyzed. Although hy4 itself does not show a significantly altered flowering time phenotype, other hy4 alleles isolated in the Columbia ecotype show a variety of responses to daylength, where one has a wild type phenotype in LDs and is early in SDs (hy4-105) and others are delayed under both LDs and SDs (hy4-101, -102, -103) (Zagotta et al., 1996; King and Bagnall, 1996). The late flowering phenotype of hy4 alleles in SDs was corrected to that of wild type by red and far-red night breaks, indicating that cryptochrome is the receptor which is responsible for the blue light-promotion of flowering in Arabidopsis (King and Bagnall, 1996). The hy4 mutations have little effect on flowering time in LDs, suggesting that the CRY1 receptor is responsible for a specific blue light response, promoting flowering in SDs or in response to certain light regimes. That blue light plays an important role in photoperiodic induction of flowering in LDs has recently been demonstrated by the discovery that the FHA gene encodes a second blue light receptor, previously known as CRY2, identified by homology to CRY1 (Lin et al., 1996; Guo et al., 1998). The FHA gene has been proposed to act in a pathway that promotes
flowering in response to LDs, because mutations at this locus delay flowering in LDs but not SDs (Koomneef et al., 1991; section 1.2.1.3.1). The behaviour of the cry2 mutants in a number of different light qualities suggested that CRY2 and PHYB operate antagonistically to regulate flowering time, and that the role in LDs of PHYB is to inhibit flowering, and the role of CRY2 is to repress PHYB function (Guo et al., 1998). The interaction of FHA and other flowering time genes is discussed later.

Arabidopsis is a facultative LDP, flowering eventually in all conditions but accelerated by exposure to long photoperiods. This acceleration is seen most dramatically in early flowering ecotypes, such as Landsberg erecta, which flowers in 2-3 weeks with 6-7 leaves in a 16 h photoperiod, and after 6 weeks with more than 30 leaves in short days of less than 10 h. The ability to respond to LDs, however, depends on the age of the plant. Experiments in which plants were moved from non-inductive SDs into LDs demonstrated that seedlings which are 4 days old or less are not responsive to long days. Seven day old seedlings required 5 long days to promote flowering, while 20 day old plants needed just 1 long day (Mozley and Thomas, 1995; Corbesier et al., 1996). Therefore, as Arabidopsis plants mature they become more responsive to long day induction.

The measurement of daylength is thought to be facilitated by an endogenous circadian clock (Thomas and Vince-Prue, 1997). This is entrained to a period of approximately 24 h, and is reset by signals from light receptors (Millar et al., 1995). A number of processes in plants are controlled by the circadian clock including leaf movements and expression of many genes. In Arabidopsis, for example, the transcription of the light regulated genes chlorophyll A/B binding protein 2 (CAB2; Millar and Kay, 1991) and the gene encoding the small subunit of rubisco (Ribulose Bisphosphate Carboxylase, RBCS) is controlled by the clock. Rhythmic leaf movements and transcription of reporter genes under the control of the promoters of these circadian-regulated genes has provided a means to study the clock.
and the environmental signals which interact with it. These experiments have demonstrated that in *Arabidopsis* the period of the clock, the time taken for one cycle, is shorter in light than in dark, and that this response is mediated by blue light photoreceptors and phytochrome (Millar *et al.*, 1995). A number of mutants which affect the circadian clock and also have an altered flowering time have recently been reported. The most well characterized is the *elf3* mutant (*early flowering*) which shows photoperiod insensitive early flowering and lacks rhythmicity in circadian-regulated processes in continuous light (Hicks *et al.*, 1996a; Zagotta *et al.*, 1996). However, the mutant retains rhythmicity in continuous dark, suggesting that the *ELF3* gene plays a role in the signalling of light to the clock rather than being a component of the clock mechanism (Hicks *et al.*, 1996a). The mutant also has an elongated hypocotyl in blue light which might indicate that blue light, perhaps detected via CRY2, is involved in signalling to the clock and allowing the plant to distinguish between LDs and SDs (Suárez-López and Coupland, 1998). Other mutants showing altered flowering time and disrupted circadian rhythms are the late flowering *lhy* mutant (Coupland, 1997) which is arrhythmic (Schaffer *et al.*, 1998) and the early flowering *det1* and *esd4* mutants which have a short period compared to wild type (Millar *et al.*, 1995; Carre, Murtas, Reeves and Coupland, unpublished results). The *LHY* gene has been proposed to act, like *FHA*, in the long day promotion pathway (Coupland, 1997) and might suggest a role for the circadian clock in that pathway.

1.2.1.1.2 Vernalization

For many plant species a period of cold treatment is absolutely required for, or accelerates, floral induction. The process of exposing a plant to low temperatures in order to induce or accelerate flowering is known as vernalization. Optimum temperatures for induction or acceleration of flowering range between 1° and 7°C, for 1 to 3 months, which is similar to a winter season in many temperate zones (Dennis *et al.*, 1996). Physiological experiments
with celery established that the site of detection of cold treatment is the apical meristem (Curtis and Chang, 1930). However, studies on a number of different tissues with mitotically dividing cells from a range of species suggest that dividing cells in any part of a plant can respond to vernalization (Dennis et al., 1996). For example, in Arabidopsis root explants subjected to a period of cold treatment developed into flowering shoots (Burn et al., 1993a). Arabidopsis has a number of late flowering winter annual ecotypes which respond strongly to vernalization by flowering early, and other ecotypes which are less responsive (Bagnall, 1993).

There are features of the vernalization response that suggest it might occur through an epigenetic mechanism (Dennis et al., 1996). It has been proposed that vernalization causes general DNA demethylation, and that the promotion of flowering is caused by the demethylation of promoters of genes critical for floral induction (Burn et al., 1993a). One of these could be the gene encoding kaurenoic acid hydroxylase which is an important gene in gibberellic acid biosynthesis. Gibberellic acid levels were shown to increase in vernalized radish plants (Suge, 1970) leading to the original proposal that GA mediated the vernalization response. However, more recent work with Arabidopsis mutants, which are insensitive to vernalization but still flower early on application of exogenous GA, indicate that while GA is important for the promotion of flowering, vernalization occurs by a different mechanism (Chandler and Dean, 1994).

A number of late flowering Arabidopsis mutants which can be restored to early flowering by vernalization have been characterized (Koornneef et al., 1991). These mutants are proposed to be defective in the autonomous flowering pathway and are still responsive to environmental stimuli (see later). These mutants formed the basis of a genetic approach to study the vernalization response. Vernalization-insensitive mutants were isolated after mutagenesis of the late flowering, vernalization responsive fca mutant (Chandler et al., 1996). The two mutants isolated, vrn1 and vrn2, are late flowering in all environmental
conditions because of the presence of the *fca* mutation, but cannot be restored to early flowering by vernalization. In the absence of the *fca* mutation the *vrn* mutants do not delay flowering, indicating that they are not classical late flowering mutants but mutants in the vernalization response (Levy and Dean, 1998). The cloning and characterization of *VRN1* and *VRN2* should help in the identification of the processes important in the promotion of flowering by vernalization.

1.2.1.2 Genetic analysis of the control of flowering time

Genetic analysis of the control of flowering time in *Arabidopsis* was facilitated by the availability of natural populations displaying variation in their flowering times, and by the identification of flowering time mutants after mutagenesis. Studying the effect of monogenic mutations at different loci in the same genetic background made it possible to study the interactions between mutations and to define genetic pathways involved in the transition to flowering. However, the analysis of natural variation in flowering time, expressed as differences between ecotypes, revealed loci not initially identified by mutagenesis of only a few ecotypes. This natural variation is clearly important in contributing to the control of flowering time in natural environments.

1.2.1.2.1 Natural variation in flowering time

Extensive variation in flowering time exists among *Arabidopsis* natural populations (ecotypes) (Napp-Zin, 1985). This variation has been studied since the early 1950s by comparing and crossing selected inbred lines and analyzing the segregation of the loci involved (Laibach, 1951). To illustrate the extent of variation found, 32 different ecotypes from a variety of locations in the Northern hemisphere were grown in a number of different daylength environments with and without vernalization, and the effect of these environments on flowering time recorded (Karlsson *et al.*, 1993). Flowering time in long
days ranged from *Landsberg erecta* which flowered with an average of 4.2 leaves to the late flowering TS-2 ecotype from Spain which flowered with around 30 leaves.

Genetic analysis of the progeny of a cross between the late flowering ecotype Stockholm and the early flowering Limberg-5 produced genotypes with very different flowering times caused by single gene differences. Analysis of different segregants established that several genes were responsible for the flowering time variation between the progenitors (Napp-Zinn, 1969). The major effect on flowering time was conferred by the *FRIGIDA (FRI)* locus, dominant alleles of which were responsible for the late flowering of Stockholm. *FRI* was found to be epistatic to the other genes involved, including *KRYOPHILA (KRY)* and *JUVENALIS (JUV)*. *FRI*, which maps to the top arm of chromosome 4, is probably also responsible for the late flowering of a number of other late ecotypes including Piztal and Innsbruck (Bum *et al.*, 1993b). The locus *FLOWERING ALTERED (FLA)*, which was responsible for the late flowering of ecotypes Saint Feliu (SF-2) and Leiden (Le-0) is probably also allelic to *FRI* (Lee *et al.*, 1993; Clarke and Dean, 1994).

The late flowering phenotype conferred by dominant alleles of *FRI* is suppressed in the early flowering *Landsberg erecta* and C24 ecotypes (Lee *et al.*, 1994a; Koornneef *et al.*, 1994). Dominant alleles at a second locus, *FLOWERING LOCUS C (FLC)*, on the top arm of chromosome 5, are required for the late flowering phenotype of *FRI* to be observed. *Landsberg erecta* and C24 have early *FLC* alleles which suppress the late flowering phenotype of *FRI* and mutations such as *Id* (Lee *et al.*, 1994a) and *fld* (Sanda and Amasino, 1996a), which were originally isolated in the Columbia background. *Landsberg erecta* alleles of these two genes were not isolated during extensive mutagenesis experiments to identify late flowering mutants (Koornneef *et al.*, 1991). *FLC* is considered to be a dominant inhibitor of flowering, which is itself inhibited by *LD*, *FLD* and possibly other genes in the autonomous flowering pathway (Aukerman and Amasino, 1996).
Analysis of the very late flowering ecotype, Skye, has identified a third locus responsible for natural flowering time variation. This locus, *AERIAL ROSETTE (ART)* is on chromosome 5. A dominant *ART* allele from Skye, in combination with *FRI*, gives rise to plants with aerial rosettes which develop from axillary meristems that would normally yield inflorescences (Grbic and Bleecker, 1996; Grbic and Gray, 1997).

In addition to these dominant alleles with large effects there appear to be many other natural alleles with smaller effects, which have been identified by Quantitative Trait Locus (QTL) analysis. Twelve QTLs affecting flowering time were found between the Landsberg *erecta* and Columbia ecotypes (Jansen *et al.*, 1995), some of which map close to known flowering time mutations.

1.2.1.2.2 Mutations affecting flowering time

The isolation of induced mutations affecting flowering time of *Arabidopsis* began in the early 1960s (McKelvie, 1962; Rédei, 1962). Most mutagenesis screens were performed using early flowering ecotypes in order to isolate late flowering mutants, which are relatively easy to screen for in standard long day conditions. Recently, however, a number of early flowering mutants have been isolated by screening mutagenized populations in non-inductive short day conditions or in tissue culture.

In addition to mutants which only affect the transition to flowering, there are a number of other mutants which were first identified on the basis of other phenotypes, and subsequently found to also display late or early flowering. Many mutants affect the rate of development of the plant by, for example, retarding growth. These mutants were excluded from the analysis of late flowering mutants by determining the rate of leaf initiation and studying those mutants that form leaves at the same rate as wild type but have more or fewer leaves than wild type at the time of flowering (Koomneef *et al.*, 1991).
1.2.1.2.2.1 Late-flowering mutants

In 1962, two papers which described the identification of late flowering mutants from mutagenesis screens were published. McKelvie (1962) identified 700 mutations at 190 different loci after radiation and chemical mutagenesis of the ecotypes Estland and Limberg. Six of these mutants were late flowering and were named F (Florens), f1, f2, f3, f4 and f5. The F mutant, which was dominant and responded strongly to vernalization, was subsequently found to be allelic to FRI, although it is now unclear whether this was a mutant or a contaminating natural variant at this locus (Koomneef et al., 1994).

Rédei (1962) identified three very late flowering mutants with no other obvious pleiotropic phenotypes, in the early ecotype Columbia. These were named constans, gigantea and luminidependens (co, gi and ld, respectively) and were the first of twelve mutants which were subsequently studied in detail. This thesis is concerned with one of these mutants: constans.

In 1968 Hussein isolated a number of other late flowering mutants, fb, fca, fe, fg, fve and fy from the early ecotype Landsberg erecta. These were located on the genetic linkage map by Koomneef et al. (1983). In 1991 Koomneef et al. described allelism tests with 42 independently isolated mutations causing late flowering, including mutations at the six loci identified by Hussein, and these were found to correspond to 11 loci. In addition, these tests showed that fg and fb, originally isolated by Hussein, were allelic to Redei's co and gi mutations, respectively. None of the 42 mutations were allelic to Redei's ld mutant although subsequent alleles were found in ecotype Wassilewskija (Ws; Lee et al., 1994a). Later it became clear that the late flowering phenotype caused by ld, originally isolated in Columbia, is suppressed by the Landsberg erecta allele at the FLC locus (Lee et al., 1994a; Koomneef et al., 1994).
The twelve genes which correspond to the most studied late flowering mutants are LD, CO, GI, FE, FT, FD, FY, FCA, FHA, FPA, FVE and FWA (Koomneef et al., 1991; Table 1.1). A number of other late flowering mutants have been isolated. For example, in the Columbia background, which contains the dominant FLC allele, the fld mutant was isolated. The fld mutant phenotype, like that of ld, is suppressed in the early Landsberg erecta background (Sanda and Amasino, 1996a).

Many late flowering mutants have been identified on the basis of other phenotypes or because they are late flowering only under certain environmental conditions. Mutants affected in the processes regulating light perception or transduction, for example hy4 and phyA (Ahmad and Cashmore, 1993; Whitelam and Harberd, 1994), or in hormone metabolism, gal and gai (Wilson et al., 1992) can also exhibit late flowering. A mutation that disrupts circadian clock function, lhy, also causes a late flowering phenotype (Simon and Coupland, 1996). Carbohydrate metabolism mutants are often late flowering, as is the case for cam1 (carbohydrate accumulation mutant), which is late flowering under LD conditions, as well as sexl (starch excess) and pgml (phosphoglucomutase) which are both late flowering under SD conditions (Eimert et al., 1995). The late flowering gigantea (gi) mutant (Rédei 1962; Koomneef et al., 1991) was also found to have increased starch levels in the leaves (Araki and Komeda, 1993b; Eimert et al., 1995). vrn1 and vrn2, isolated in an fca background, are late flowering after vernalization treatment, which normally corrects the late flowering phenotype of the fca single mutant (Chandler and Dean, 1994). All late flowering mutants described here, and a number of additional ones which are only late under certain conditions, are summarized in Table 1.1.
<table>
<thead>
<tr>
<th>Genes involved in the control of flowering time</th>
<th>Flowering response of mutant compared to wild type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daylength detection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO (CONSTANS=FG)</td>
<td>Late LD</td>
<td>1</td>
</tr>
<tr>
<td>GI (GIGANTEA=FB)</td>
<td>Late LD</td>
<td>2</td>
</tr>
<tr>
<td>FD</td>
<td>Late LD, SD</td>
<td>2</td>
</tr>
<tr>
<td>FE</td>
<td>Late LD, SD</td>
<td>2</td>
</tr>
<tr>
<td>FHA (=CRY2)</td>
<td>Late LD</td>
<td>3</td>
</tr>
<tr>
<td>FT</td>
<td>Late LD, SD</td>
<td>9</td>
</tr>
<tr>
<td>FWA</td>
<td>Late LD, SD</td>
<td>2</td>
</tr>
<tr>
<td>Endogenous flowering response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ART (AERIAL ROSETTE)</td>
<td>Late LD, SD</td>
<td>4</td>
</tr>
<tr>
<td>FCA</td>
<td>Late LD, SD</td>
<td>5</td>
</tr>
<tr>
<td>FLC (FLOWERING LOCUS C)</td>
<td>Late LD, SD</td>
<td>6</td>
</tr>
<tr>
<td>FLD (FLOWERING LOCUS D)</td>
<td>Late LD, SD</td>
<td>7</td>
</tr>
<tr>
<td>FPA</td>
<td>Late LD, SD</td>
<td>2</td>
</tr>
<tr>
<td>FRI (FRIGIDA=FLA)</td>
<td>Late LD, SD</td>
<td>8</td>
</tr>
<tr>
<td>FVE</td>
<td>Late LD, SD</td>
<td>2</td>
</tr>
<tr>
<td>FY</td>
<td>Late LD, SD</td>
<td>2</td>
</tr>
<tr>
<td>LD (LUMINIDEPENDENS)</td>
<td>Late LD, SD</td>
<td>10</td>
</tr>
<tr>
<td>SIN (SHORT INTEGUMENT)</td>
<td>Late LD, SD</td>
<td>11</td>
</tr>
<tr>
<td>Light detection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1)</td>
<td>Early SD</td>
<td>12</td>
</tr>
<tr>
<td>DET1 (DEETIOLATED 1)</td>
<td>Early SD</td>
<td>13</td>
</tr>
<tr>
<td>ELF3 (EARLY FLOWERING 3)</td>
<td>Early LD, SD</td>
<td>14</td>
</tr>
<tr>
<td>HY1 (LONG HYPOCOTYL 1)</td>
<td>Early LD, SD</td>
<td>15</td>
</tr>
<tr>
<td>HY2 (LONG HYPOCOTYL 2)</td>
<td>Early LD, SD</td>
<td>15</td>
</tr>
<tr>
<td>HY3 (LONG HYPOCOTYL 3 =PHYB)</td>
<td>Early LD, SD</td>
<td>16</td>
</tr>
<tr>
<td>HY4 (LONG HYPOCOTYL 4=CRY1)</td>
<td>Late SD</td>
<td>17</td>
</tr>
<tr>
<td>HY6 (LONG HYPOCOTYL 6)</td>
<td>Early LD, SD</td>
<td>18</td>
</tr>
<tr>
<td>PEF1(PHYTOCHROME SIGNALLING EARLY FLOWERING 1)</td>
<td>Early LD, SD</td>
<td>19</td>
</tr>
<tr>
<td>PEF2 (PHYTOCHROME SIGNALLING EARLY FLOWERING 2)</td>
<td>Early LD, SD</td>
<td>19</td>
</tr>
<tr>
<td>PEF3 (PHYTOCHROME SIGNALLING EARLY FLOWERING 3)</td>
<td>Early LD, SD</td>
<td>19</td>
</tr>
<tr>
<td>PHYA (PHYTOCHROME A)</td>
<td>Late in low fluence day extensions (SD + extension with low fluence light)</td>
<td>18</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>----</td>
</tr>
<tr>
<td>TED1 (SUPPRESSOR OF DET 1)</td>
<td>Late SD</td>
<td>20</td>
</tr>
<tr>
<td>Vernalization detection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRN1 (VERNALIZATION INSENSITIVE 1)</td>
<td>Late LD, SD after vernalization</td>
<td>21</td>
</tr>
<tr>
<td>VRN2 (VERNALIZATION INSENSITIVE 2)</td>
<td>Late LD, SD after vernalization</td>
<td>21</td>
</tr>
<tr>
<td>Hormonal regulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytokinins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMP1 (ALTERED MERISTEM PROGRAM 1)</td>
<td>Early SD</td>
<td>22</td>
</tr>
<tr>
<td>Ethylene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EIN (ETHYLENE INSENSITIVE)</td>
<td>Late LD</td>
<td>23</td>
</tr>
<tr>
<td>ETR1 (ETHYLENE RESPONSIVE 1)</td>
<td>Late LD</td>
<td>23</td>
</tr>
<tr>
<td>Gibberellins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GA1 (GIBBERELLIN REQUIRING 1)</td>
<td>Late SD</td>
<td>24</td>
</tr>
<tr>
<td>GA1 (GIBBERELLIC ACID INSENSITIVE)</td>
<td>Late SD</td>
<td>24</td>
</tr>
<tr>
<td>SPY (SPINDLY)</td>
<td>Early LD</td>
<td>25</td>
</tr>
<tr>
<td>Brassinosteroids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DET2 (DEETIOLATED 2)</td>
<td>Late LD</td>
<td>26</td>
</tr>
<tr>
<td>Carbohydrate metabolism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADG1 (ADP GLUCOSE PYROPHOSPHORYLASE 1)</td>
<td>Late SD</td>
<td>26</td>
</tr>
<tr>
<td>CAM1 (CARBOHYDRATE ACCUMULATION MUTANT 1)</td>
<td>Late LD</td>
<td>27</td>
</tr>
<tr>
<td>PGM (PHOSPHOGLUCOMUTASE)</td>
<td>Late SD</td>
<td>28</td>
</tr>
<tr>
<td>SEX1 (STARCH EXCESS 1)</td>
<td>Late SD</td>
<td>29</td>
</tr>
<tr>
<td>SUN2 (SUCROSE UNCOUPLED 2)</td>
<td>Early LD</td>
<td>30</td>
</tr>
<tr>
<td>Floral repressors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMF1 (EMBRYONIC FLOWER 1)</td>
<td>Early LD, SD</td>
<td>31</td>
</tr>
<tr>
<td>EMF2 (EMBRYONIC FLOWER 2)</td>
<td>Early LD, SD</td>
<td>31</td>
</tr>
<tr>
<td>CLF (CURLY LEAF)</td>
<td>Early LD, SD</td>
<td>32</td>
</tr>
<tr>
<td>TFL1 (TERMINAL FLOWER 1)</td>
<td>Early LD, SD</td>
<td>33</td>
</tr>
<tr>
<td>Other genes that regulate flowering time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBS (EARLY BOLTING IN SHORT DAYS =SPEEDY)</td>
<td>Early LD, SD</td>
<td>34</td>
</tr>
<tr>
<td>EFS (EARLY FLOWERING IN SHORT DAYS)</td>
<td>Early LD, SD</td>
<td>35</td>
</tr>
<tr>
<td>ELF1 (EARLY FLOWERING 1)</td>
<td>Early LD, SD</td>
<td>36</td>
</tr>
<tr>
<td>ELF2 (EARLY FLOWERING 2)</td>
<td>Early LD, SD</td>
<td>36</td>
</tr>
<tr>
<td>ELG (ELONGATED)</td>
<td>Early LD, SD</td>
<td>37</td>
</tr>
<tr>
<td>ESD1 (EARLY IN SHORT DAYS 1)</td>
<td>Early LD, SD</td>
<td>38</td>
</tr>
<tr>
<td>ESD4 (EARLY IN SHORT DAYS 4)</td>
<td>Early LD, SD</td>
<td>38</td>
</tr>
</tbody>
</table>

Ectopic expression of wild type gene causes late flowering

| CCAI | Late LD, SD | 39 |
| LHY (LATE ELONGATED HYPOCOTYL) | Late LD | 40 |

Ectopic expression of wild type gene causes early flowering

AG (AGAMOUS)	Early LD, SD	41
API (APETALA 1)	Early LD, SD	42
FPF1 (FLOWERING PROMOTING FACTOR 1)	Early LD	43
LFY (LEAFY)	Early LD, SD	44

Table 1.1 Genes involved in the control of flowering time in *Arabidopsis thaliana*.
Abbreviations: LD, long days; SD, short days.

References:
1) Putterill *et al.*, 1995
2) Martinez-Zapater *et al.*, 1994
3) Lin *et al.*, 1996
4) Grbic and Bleecker, 1996
5) Macknight *et al.*, 1997
6) Koornneef *et al.*, 1994
7) Sanda and Amasino, 1996b
8) Clark and Dean, 1994
9) Araki *et al.*, 1997
10) Lee *et al.*, 1994b
11) Ray *et al.*, 1996
12) Deng *et al.*, 1992
13) Pepper *et al.*, 1994
14) Zagotta *et al.*, 1996
15) Parks and Quail, 1991
16) Goto *et al.*, 1991
17) Ahmad and Cashmore, 1993
18) Whitelam and Harberd, 1994
19) Ahmad and Cashmore, 1996
20) Pepper and Chory, 1997
21) Chandler *et al.*, 1996
22) Chaudhury *et al.*, 1993
23) Ecker, 1995
25) Jacobsen and Olszewski, 1993
26) Lin *et al.*, 1988
27) Eimert *et al.*, 1995
28) Caspar *et al.*, 1985
29) Caspar *et al.*, 1991
30) Dijkwel *et al.*, 1997
31) Sung *et al.*, 1992
32) Goodrich *et al.*, 1997
33) Shannon and Meeks-Wagner, 1991
34) Hicks *et al.*, 1996b
35) Soppe *et al.*, 1997
36) Zagotta *et al.*, 1992
37) Halliday *et al.*, 1996
38) Simon and Coupland, 1996
39) Wang *et al.*, 1997a and b
40) Schaffer *et al.*, 1998
41) Mizukami and Ma, 1997
42) Mandel and Yanofski, 1995
43) Kania *et al.*, 1997
44) Weigel and Nilsson, 1995
1.2.1.2.2 Early-flowering mutants

The first descriptions of early flowering mutants appeared after those describing late flowering mutants (Sung et al., 1992; Zagotta et al., 1992; Coupland et al., 1993; Yang et al., 1995). Most work so far has focused on early ecotypes, in which earlier flowering mutant phenotypes are less pronounced than late flowering ones, unless grown under certain environmental conditions such as short days.

Many early flowering mutants have additional pleiotropic effects on development, or are compromised in other processes such as light perception and transduction or hormone regulation. Over twenty early flowering mutants have been identified, and these are summarized in Table 1.1. The most dramatic of these, emf1 and emf2 (embryonic flower), appear not to have a vegetative phase of development, but produce only a few cauline leaves before flowering (Sung et al., 1992). Several mutants involved in light perception are also early flowering. These include hyl, 2, 3 and 6 (long hypocotyl, Goto et al., 1991; Reed et al., 1993; Koornneef et al., 1980, 1995; Halliday et al., 1994; Whitelam and Harberd, 1994) and pef1, 2 and 3 (phytochrome-signalling early flowering, Ahmad and Cashmore, 1996). Mutants which affect the circadian rhythm can also be early flowering. The elf3 (early flowering) mutant is arrhythmic in constant light (Hicks et al., 1996a) while the early flowering det1 and cop1 mutants have a shorter rhythm in the dark (Millar et al., 1995). Mutants which disrupt hormone signal transduction pathways, and are early flowering, have been identified. The amp1 (altered meristem program) mutant has elevated levels of cytokinins (Chaudhury et al., 1993), while the spy (spindly) mutant has a phenotype similar to that of wild type when gibberellic acids have been exogenously applied (Jacobsen and Olszewski, 1993). Mutations in genes which regulate the expression of floral meristem identity genes can also lead to early flowering phenotypes. The tfll (terminal flower) mutant flowers early, and causes determinate growth, where inflorescences are replaced by flowers, and the shoot terminates prematurely in the
formation of a terminal flower (Shannon and Meeks-Wagner, 1991). The clf mutant (curly leaf) has a number of phenotypes in addition to early flowering, including leaf curling and the homeotic transformation of floral organs (Goodrich et al., 1997).

In addition to the mutants which have been characterized according to their other mutant phenotypes, and which happen also to be early flowering, there are a number of early flowering mutants where the function of the genes affected has not yet been determined. These include elf1 and 2 (Zagotta et al., 1992) and the daylength-insensitive mutants esd1, esd4 (early in short days, Simon and Coupland, 1996) and ebs (early bolting in short days) (reviewed in Hicks et al., 1996b).

1.2.1.2.3 Models for the genetic control of flowering time

It has recently been proposed that the transition to flowering is the developmental default state in the Arabidopsis shoot apical meristem (Yang et al., 1995). There are two main pieces of evidence to support this hypothesis. First, Arabidopsis can flower in the dark if sucrose is provided, with no environmental stimuli, and nearly all late flowering mutants show wild type flowering time in these conditions (Rédei et al., 1974; Araki and Komeda, 1993a; Madueño et al., 1996). Second, mutants which show almost no vegetative development have been isolated. Mutations in EMF1 and EMF2 (EMBRYONIC FLOWER) result in plants with cotyledons but no rosette leaves and an inflorescence that in weak mutant alleles contains a small number of sessile cauline leaves and a floral structure. Strong alleles produce no leaves and terminate in a carpelloid structure (Sung et al., 1992).

In the emf mutants expression of the meristem identity gene AP1 (APETALAI), which is normally confined to the developing inflorescence, was detected in vegetative tissues, including the cotyledons, hypocotyl and, in weak mutants, the sessile leaves (Chen et al., 1997). The EMF genes are thought to encode a floral repressor, or a promoter of vegetative development, which suppresses the default flowering pathway and allows vegetative
development to occur. The activity of this repressor would then be predicted to decrease throughout plant development allowing the transition to reproductive growth (Chen et al., 1997). The role of the flowering time genes would be to promote or repress this central flowering suppressor (Martínez-Zapater et al., 1994; Weigel and Nilsson, 1995). The emf1 and emf2 mutations are epistatic to co and gi, which delay flowering, suggesting that the CO and GI genes act to repress EMF function, allowing flowering to occur in response to inductive long days, and that in their absence the delay in flowering of the co and gi mutants is caused by increased EMF activity (Yang et al., 1995; Castle and Sung, 1995). The timing of the transition to flowering is controlled by the flowering time genes, at least some of which promote the expression of the floral meristem identity genes (Simon et al., 1996). As previously discussed, a number of these flowering time genes have been identified by mutation. The first to be characterized were mutants which delay flowering (Koornneef et al., 1991). No mutants which completely prevent the transition to flowering have been recovered in Arabidopsis, suggesting that there may be redundancy between flowering time genes. The phenotype of these late flowering mutants, and the phenotype of plants carrying two mutations, allowed the genes involved in promoting flowering to be placed in at least three different genetic pathways (Koornneef et al., 1991, 1998). The combination of two mutations which affect the same genetic pathway did not lead to an enhancement of phenotype: the double mutants flowered as late as the later of the two single mutants. The combination of two mutations which affect different genetic pathways, on the other hand, led to an enhancement of phenotype, with the double mutant flowering much later than either single parent as a consequence of the inactivation of more than one partially redundant pathway (Koornneef et al., 1991; Coupland, 1995).

The first of these pathways is the environmental response pathway, also sometimes referred to as the long day promotion pathway. Mutations in genes involved in this pathway cause
the plant to flower late, but with reduced sensitivity to daylength and vernalization. The second is the autonomous pathway. Mutations in genes involved in this pathway cause plants to flower late but the mutants retain a strong response to daylength and vernalization (Koomneef and Peeters, 1997). The third pathway involves the promotion of flowering through gibberellins. GA mutants flower late primarily in SDs (Wilson et al., 1992). As more flowering time mutants are analyzed particularly early flowering mutants, which may be compromised in floral repression, and vernalization-insensitive mutants, the model becomes more complex and the interactions between the mutations less well understood. However, these three partially redundant promotion pathways, identified by the phenotypic analysis of the twelve "classical" late flowering mutants and those mutations which affect GA responses, still form the basis of the model to explain the transition to flowering (Koomneef et al., 1991, 1998; Figure 1.1).

1.2.1.2.3.1 The environmental response pathway

The transition to flowering in Arabidopsis is promoted by long days and vernalization. Mutations in the genes which are proposed to act in this pathway cause daylength- and vernalization-insensitive late flowering, although they do respond to very long cold treatments. This pathway is also called the long-day promotion pathway, because mutations in this group delay flowering under LDs but not SDs, suggesting that the pathway may promote flowering specifically in response to LDs. The co mutant was found to be in this group, in addition to fd, fe, fha, ft, fwa and gi (Koomneef et al., 1991). However, although these mutants have been grouped together they still display some differences in particular environmental conditions. Under SD conditions, co, gi and fha mutants flower at the same time as wild type plants, whereas ft, fwa, fd, and fe maintain some photoperiodic response, flowering slightly later than wild type plants (Koomneef et al., 1991). Furthermore, providing sucrose to the shoot apex in complete darkness was able to rescue the late
flowering phenotype of all the late flowering mutants except for \textit{ft} and \textit{fwa} suggesting that the genes in this group may be involved in more than one developmental response (Madueño et al., 1996). Double mutant analysis has also revealed redundancy between \textit{FT} and \textit{FWA} and the floral meristem identity gene \textit{LEAFY} (Ruiz-Garcia et al., 1997), and possible overlapping functions for \textit{FT} and \textit{FE} and a gene involved in the autonomous flowering pathway, \textit{FPA} (Koornneef et al., 1998). Figure 1.1 shows the pathways involved in the promotion of flowering and some of the interactions between the genes in these pathways.

\textit{CO}, the subject of this thesis, was the first of the group to be cloned. It was found to encode a protein with similarity to the GATA-1 family of transcription factors (Putterill et al., 1995). The isolation of the gene and its initial characterization is described later in section 1.3.

Three other genes involved in long day promotion of flowering have recently been cloned. These are \textit{FHA} and \textit{FT}, which were originally characterized as mutations by Koornneef et al. (1991), and \textit{LHY (LATE ELONGATED HYPOCOTYL)}, which was recently isolated from a transposon-tagged population (Coupland, 1997; Schaffer et al., 1998).

As described earlier, \textit{FHA} was found to encode a blue light receptor, CRY2 (Guo et al., 1998), suggesting that blue light acts through the long day pathway. The \textit{FT} gene encodes a protein with homology to the meristem identity gene, \textit{TFL1 (TERMINAL FLOWER)} (Araki et al., 1997). The \textit{lhy} mutation, also mentioned earlier, was caused by the overexpression of a \textit{MYB} transcription factor. As well as later flowering in LDs, this caused disrupted circadian clock function (Schaffer et al., 1998).
1.2.1.2.3.2 The autonomous pathway

A pathway which promotes flowering independently of environmental stimuli was defined by another group of late flowering mutants which flower late, but are still responsive to daylength and vernalization. They flower later than wild type in both LDs and SDs, so unlike the mutants in the environmental pathway, they do not confer a day-neutral or close to day-neutral phenotype. The late flowering of these mutants can also be corrected by a period of vernalization. Mutants in this group, which affect the autonomous (or constitutive) pathway, are fca, fpa, ld, fve and fy (Koomneef et al., 1991; Figure 1.1). Another late flowering mutant in this group with no obvious pleiotropic affects is fld (Sanda and Amasino, 1996a). This mutant was isolated in the Columbia background. Like the induced ld mutation, and the naturally occurring FRI allele, which is also proposed to act in the autonomous pathway, fld requires a dominant FLC allele in order to exhibit late flowering (Sanda and Amasino, 1996b).

Two genes, ESD4 and EFS, which repress flowering have been proposed to act in the autonomous pathway. Mutations in these genes cause early flowering, and have been shown to be epistatic to the fve mutation that causes late flowering (Simon and Coupland, 1996; Soppe et al., 1997).

Two genes in the autonomous pathway have been cloned: LD (LUMINIDEPENDENS) and FCA. LD, which was the first flowering time gene to be cloned, was isolated by T-DNA tagging (Lee et al., 1994b). It encodes a putative transcription factor, with two bipartite nuclear localization domains, a glutamine rich domain, which could act as a transcriptional activator, and a possible homeodomain (Aukerman and Amasino, 1996). The FCA gene encodes a protein with two RNA-binding domains and a WW protein interaction domain suggesting that it is involved in post-transcriptional regulation of transcripts. The gene itself is alternatively spliced, giving rise to four different transcripts (Macknight et al., 1997).
The transition to flowering in *Arabidopsis* is promoted by gibberellins, since mutations affecting either gibberellic acid biosynthesis (*gal*) or signal transduction (*gai*) are very late flowering in SDs (Koomneef and van der Veen, 1980; Wilson *et al.*, 1992). In addition, mutations in the *SPINDLY (SPY)* gene, which cause activation of GA-mediated responses in the absence of GA, cause early flowering (Jacobsen and Olszewski, 1993). This suggests that in SDs, the GA hormone is required for flowering. GA may compensate for the lack of the long day promotion pathway in SD non-inductive conditions. This was suggested by the observation that double mutants between *co*, defective in the LD pathway, and *gal* or *gai* flowered later than either parental line, and in LDs resembled SD-grown severe *gal* mutants (Putterill *et al.*, 1995; Figure 1.1).

The proposal that GA acts in a pathway independently of both the autonomous and environmental response pathways came from the observation that exogenous application of GA to late flowering mutants affecting either pathway was able to promote early flowering (Chandler and Dean, 1994). However, a possible interaction between the autonomous pathway and the GA promotion pathway was suggested from the results of a study of the *five* mutant, which appeared to show symptoms of reduced GA levels or action (Martínez-Zapater *et al.*, 1995). In addition, a role for GA in the vernalization response has been proposed, from the finding that the severe *gal*-3 mutant in SDs cannot respond to vernalization (Chandler *et al.*, 1996). Although the interaction between the GAs, the constitutive promotion of flowering and the vernalization response remains unclear, a candidate target gene, *FPF1* (FLOWERING PROMOTING FACTOR), that was proposed to be part of the GA promotion pathway was recently isolated (Kania *et al.*, 1997). Overexpression of this gene in transgenic plants caused early flowering and increased sensitivity to GAs.
Figure 1.1 A diagram to illustrate possible interactions of the pathways that control the transition to flowering in *Arabidopsis*. Adapted from Koornneef *et al.*, 1998.
1.2.1.3 The role of CO in the promotion of flowering

The role of the CO gene in the long day promotion pathway and its relationship with other genes in the same pathway is starting to emerge. The following approaches have been used:

- the construction of transgenic plants ectopically expressing the CO gene,
- introduction of the CO transgene into other flowering time or meristem identity mutants,
- the analysis of expression of putative target genes of CO after induction of CO expression,
- the analysis of levels of CO expression in another mutant affected in the LD promotion pathway.

The levels of the CO mRNA in all tissues and developmental stages of wild type plants are extremely low, but approximately three times higher in LD-grown plants than those grown in SDs (Putterill et al., 1995; Guo et al., 1998; Suárez-López and Coupland, 1998). The very low level of expression under SDs is consistent with the phenotype of the co mutant, which is late flowering in LDs, but flowers at approximately the same time as wild type in SD. The expression analysis led to the suggestion that CO is upregulated in response to LDs, and that transcriptional regulation is a component of the LD pathway. Furthermore, analysis of transgenic plants suggested that increasing the expression of CO under SDs might be sufficient to promote early flowering under these conditions. Transgenic co-2 mutant plants carrying multiple copies of a T-DNA containing CO flowered earlier than wild type in both LDs and SDs (Putterill et al., 1995). To test the effect of CO mRNA levels on flowering time transgenic plants were made that contained a CO gene expressed from the cauliflower mosaic virus (CaMV) 35S promoter. These transgenic plants flowered very early in both LDs and SDs (Simon et al., 1996). However, the 35S:CO plants still showed slight daylength sensitivity, flowering slightly later in SDs than in LDs, and displayed differences in the node at which bolting occurs (Igéno et al., unpublished results).
In both LDs and SDs the transgenic plants made rosette leaves, so are not as early flowering as the most extreme early mutants, such as *emf1* and 2. Very early flowering must require additional factors. Recently, it was observed that introducing the *tfl1* mutation into the 35S:CO background caused earlier flowering than either parental line, suggesting that in the 35S:CO transgenics, *TFL1* is delaying the transition to flowering (Igeo *et al.*, unpublished results).

The 35S:CO transgene was also introduced into an *fca-1* mutant background to test whether increasing the activity of the long day promotion pathway might compensate for the loss of the autonomous pathway. The 35S:CO *fca-1* plants flowered slightly later than 35S:CO, but much earlier than the single *fca-1* mutant, indicating that while overexpressing CO can almost completely compensate for the loss of the autonomous pathway, *FCA* is still required for the very early flowering of 35S:CO plants. This suggests that at some point the pathways interact to promote flowering (Igeo *et al.*, unpublished results).

Inducible CO expression was also achieved by constructing a translational fusion between CO and the rat glucocorticoid receptor, under the control of the CaMV 35S promoter (Simon *et al.*, 1996). This construct (35S:CO:GR) was introduced into the late flowering *co-2* mutant. The resulting protein was inactive in the absence of a steroid ligand, but addition of the hormone dexamethasone restored the activity of the protein and resulted in rapid flowering in both LDs and SDs, suggesting that CO can promote flowering at any time in development (Simon *et al.*, 1996). This system was used to analyze the expression of floral meristem identity genes in response to CO activation.

Mutations in floral meristem identity genes disrupt floral development, leading to the production of shoots where flowers would normally form in wild type plants. As mentioned previously, the most well characterized of these genes are *LEAFY (LFY)*, *APETALAL1*, *APETALAL2 (AP1, AP2)* and *CAULIFLOWER (CAL)* (Haughn *et al.*, 1995). In addition,
mutants with the opposite effect have been characterized; the tfll and tf12 mutants convert shoots to single flowers and terminate the main stem prematurely with a terminal flower (Shannon and Meeks-Wagner, 1991; Hicks et al., 1996b). The relationship between mutants affecting flowering time and those affecting floral meristem identity has been studied genetically by making double mutants and by studying expression levels of these genes in different mutant backgrounds. When co-2 was combined with a weak Ify allele, for example, the phenotype was strongly enhanced (Putterill et al., 1995) suggesting a close relationship between the two genes.

To study the effect of CO expression on a number of floral meristem identity genes the 35S:CO:GR transgenic plants were treated with dexamethasone (dex) to activate CO function, and the expression of LFY, API and TFL1 studied by in situ hybridization in response to this treatment (Simon et al., 1996). LFY and TFL1 transcription was induced within 24 h after application of dex, regardless of whether the plants were grown in LDs or SDs. LFY expression was also induced within this time in plants shifted from SDs to LDs, indicating that LFY can respond as quickly to induced CO expression as it can to inductive LDs. API transcript, on the other hand, was not detected until 72 h after treatment with dexamethasone in LDs, or after shifting plants from SDs to LDs, which is consistent with the genetic data which suggests that API acts after LFY (Weigel and Nilsson, 1995; Mandel and Yanofsky, 1995). Furthermore, after induction of CO activity with dex in SDs, the API transcript was not detectable until 120 h after treatment. This indicated that API is transcribed quicker in response to LDs than in response to CO. These data suggest that CO acts in a pathway that activates LFY and TFL1 transcription in response to LDs, and that an additional LD pathway is required for the activation of API. Whether CO acts directly upon the LFY and TFL1 promoters to activate transcription is as yet unknown.
The \(CO \) transcript was less abundant in the late flowering, daylength-insensitive \(fha \) mutant (Guo et al., 1998). \(FHA \) was shown to encode the blue light receptor cryptochrome 2 suggesting a link between regulation of the long-day promotion pathway by blue light and \(CO \) expression. \(CO \) transcription was also upregulated by ectopic expression of \(FHA \), which also caused early flowering in SDs. This suggested that \(FHA \) acts before \(CO \) in the long day promotion pathway and is required for the increased expression of \(CO \) and earlier flowering in LDs compared to SDs (Guo et al., 1998, Suárez-López and Coupland, 1998).

1.3 Isolation of the \textit{CONSTANS} gene

The \(CO \) gene had previously been genetically mapped to position 16.4 cM on the top arm of chromosome five, approximately 1.6 cM from the \textit{CHALCONE SYNTHASE} gene (\textit{CHS}) (Koomneef et al., 1983). In 1990 a chromosome walk was initiated by Putterill et al. from \textit{CHS} and other RFLP markers which, from the RFLP maps available were predicted to be close to the \(CO \) gene (Chang et al., 1988; Nam et al., 1989). A YAC contig extending over approximately 1700 kb and containing 67 YAC clones was built during the isolation of the gene (Putterill et al., 1993). \(CO \) was located first to a 300 kb region within the YAC contig and subsequently this was narrowed down to a physical distance of approximately 48 kb, covered by three overlapping cosmid clones (Putterill et al., 1995). This was possible because of the presence of the \textit{alb2} mutation 1.6 cM from \(CO \), which allowed the positive selection of plants in which recombination events had occurred on both sides of \(CO \). Plants in which no recombination event had occurred between \textit{alb2} and \textit{co} were homozygous for the lethal \textit{alb2} mutation. The three cosmid clones were introduced into the \textit{co-2} mutant by \textit{Agrobacterium}-mediated root transformation and two of them successfully complemented the mutant phenotype. This further narrowed down the region proposed to contain the \(CO \) gene to approximately 7 kb, defined as the region in which the two cosmids
overlapped. Using subclones from this region a number of cDNA libraries were screened to try to isolate a cDNA for the CO gene. As this was unsuccessful the 7 kb region was sequenced and searched using the GRAIL programme (Uberbacher and Mural, 1991) for putative ORFs (Open Reading Frames). The two longest putative ORFs were found on the same strand separated by only 51bp. The final proof that these two ORFs corresponded to exons of the CO gene came from sequence analysis of the ORFs, amplified in duplicate by PCR from three of the co alleles. All three contained sequence changes which would be predicted to alter the amino acid sequence of the protein. Two of these were published in Putterill et al., 1995. The co-1 mutation is a nine base pair deletion which precisely removes three amino acids, leaving the rest of the protein in frame. The co-2 allele contains a point mutation predicted to cause an arginine to histidine substitution (discussed in detail in Chapter 3, Section 3.2.3).

1.4 The CONSTANS protein has a novel cysteine-rich domain which is predicted to be able to form two zinc fingers

When the CONSTANS gene was first sequenced in 1993, the databases available at the time were searched for proteins with homology to the predicted CONSTANS protein. A FASTA search comparing the CONSTANS protein to sequences in GenBank detected no significant homologies and a PROSITE search failed to detect any motifs within the protein (Putterill et al., 1995). However, analysis of the protein sequence by eye revealed an arrangement of cysteine residues near the amino terminus of the protein ([C-X_2^-C-X_10^-C-X_2^-C]_2 C=cysteine, X=any residue) characteristic of the zinc-binding motifs found in a number of transcription factors.
1.4.1 Zinc finger proteins

The most common function of zinc-binding motifs similar to the one present in CO is to bind DNA, and they are characterized by having a number of cysteine and/or histidine residues which interact with zinc ions to stabilize the structure of a small, autonomously folded protein domain (reviewed in Klug and Schwabe, 1995).

The first "zinc finger" containing protein to be described was the TFIIIA transcription factor isolated from the frog *Xenopus laevis* (Pelham and Brown, 1980). It was found to contain nine repeats of a 30 amino acid motif with conserved cysteine, histidine and hydrophobic residues (\(\Phi-X-C-X_{2.5}-C-X_3-\Phi-X_2-\Phi-X_2-H-X_{2.5}-H\), where \(X\) = any amino acid, \(\Phi\) = a hydrophobic residue, \(C\) = cysteine and \(H\) = histidine, the classical \(C_2H_2\) zinc finger; Miller *et al.*, 1985). Each motif was found to form a discrete DNA-binding domain with four zinc-binding residues in a tetrahedral arrangement around a central zinc ion. Since then this motif and a number of variants have been found to be widespread in eukaryotic DNA binding proteins. At least ten distinct zinc-binding domains have been studied in detail, and in addition, a number of novel putative zinc-binding motifs containing variations on the characteristic spacing of cysteine and/or histidine residues have been identified (reviewed in Klug and Schwabe, 1995 and in Schmiedeskamp and Klevit, 1994). Some of the well-characterized zinc-binding domains and a few novel motifs have been found in plant proteins (Table 1.2).

There are to date at least 36 plant proteins which have been found to contain the classical \(C_2H_2\) TFIIIA-type zinc-finger (Meissner and Michael, 1997; Table 1.2). The majority of these contain either one or two tandem copies of the \(C_2H_2\) motif, which is in contrast to the multiple \(C_2H_2\) zinc fingers found in animal proteins (Jacobs, 1992). Eight members of a one-fingered family (AtZFP) were isolated from *Arabidopsis* (Tague and Goodman, 1995) and the *Arabidopsis SUPERMAN* gene, which is involved in negatively regulating B-function floral organ identity genes, was also found to encode a single-finger protein only
distantly related to the AtZFP family (Sakai et al., 1995). The C$_2$H$_2$ two-fingered plant proteins include the floral organ-specific Petunia EPF-1 and EPF-2 families (Takasuji et al., 1994) and the Wzf1 ZFP from wheat, which binds to a motif in the histone H3 promoter (Sakamoto et al., 1993). From pea petals a C$_2$H$_2$ ZFP cDNA was isolated by PCR using degenerate primers designed to the coding sequence for the Petunia Epfl gene zinc fingers (Michael et al., 1996) and this strategy was also used to isolate five two-fingered and the first example in plants of a three fingered ZFP cDNA from Arabidopsis (Meissner and Michael, 1997).

The human glucocorticoid receptor, the first member of a large family of nuclear hormone receptors, was cloned at around the same time as the identification of the zinc finger motif in TFIIIA (Hollenberg et al., 1985). The DNA binding domain in this family is characterized by a conserved spacing of cysteines, reminiscent of the classical zinc finger (Kumar et al., 1987). Unlike the modular C$_2$H$_2$ fingers, however, the two fingers of the nuclear hormone receptors are folded together to form a single structural domain. There is an example in plants of a protein with homology to a number of nuclear hormone receptors: The gene encoding the ES43 protein was isolated from barley by degenerate PCR, using primers designed to the conserved DNA binding domain of the animal receptors (Speulman and Salamini, 1995).

The C$_2$-H-C$_5$ LIM domain was first identified in three animal proteins: LIN-11 from C. elegans (Freydt et al., 1990), ISL-1 from rat (Karlsson et al., 1990) and MEC-3 from C. elegans (Way and Chalfie, 1988). Since then it has been found in over 90 animal proteins (Dawid et al., 1995), but to date in only three yeast and one plant protein. Each LIM domain consists of two zinc fingers separated by two amino acids and each protein can have one, two or three tandem LIM domains. The pollen-specific PLIM-1 (formerly SF3) from Sunflower has two LIM domains which have recently been implicated in DNA binding (Baltz et al., 1996) although other LIM domains have been proposed to have a role.
in protein-protein interaction (Schmeichel and Beckerle, 1994). The spacing of zinc-binding residues in the LIM domain is similar to that found in the GATA-type zinc fingers (Sánchez-García and Rabbitts, 1994; Table 1.2) except that the zinc binding residues in the GATA-type fingers are all cysteines. In more recent database searches for genes with homology to CONSTANS, the LIM domain of the putative C. elegans transcription factor CeLIM-4, (Accession U72348; Hobart et al., unpublished results) was identified because of the conserved spacing of some of the cysteines and a number of other residues (Chapter 3).

Two other cysteine-rich domains which possibly have a role in protein-protein interactions are the C\textsubscript{3}-H-C\textsubscript{4} RING finger (REALLY INTERESTING NEW GENE; Freemont et al., 1991) and the C\textsubscript{4}-H-C\textsubscript{3} PHD finger (PLANT HOMEODOMAIN; Aasland et al., 1995). The RING finger has been found in nearly 80 diverse proteins from many species (Saurin et al., 1996) and to date four plant genes reportedly contain RING finger-like domains. The most well characterized of these is the Arabidopsis COPl protein, involved in repression of the photomorphogenic pathway in the dark and in a number of light responses (Deng et al., 1992). The two recently isolated Arabidopsis proteins each containing a RING finger are the ATL2 protein, putatively involved in the auxin early response, and the A-RZF protein which appears to have a role in seed development. The former was isolated from a cDNA expression library by screening for clones which were toxic to yeast (Martínez-García et al., 1996) and the latter was identified from a screen for mutants defective in diacyl-glycerol acyltransferase activity (Zou and Taylor, 1997). The fourth example of a gene encoding a putative RING finger protein was found in a salt-induced cDNA in salt-tolerant alfalfa (Winicov, 1993). The PHD finger, as its name suggests, was identified in two plant proteins which also contain the well characterized DNA binding homeodomain. Many other examples of this zinc finger domain have been subsequently found in animal homeodomain proteins (Aasland et al., 1995). The first plant proteins to define this domain
were the Arabidopsis HAT3.1 protein, putatively involved in root development (Schindler et al., 1993) and the maize Zmhox1a protein, which regulates the expression of the Shrunken gene (Bellmann and Werr, 1992). Two homeodomain proteins involved in the transcriptional regulation of pathogen defence-related genes also contain a PHD finger: PRHP from parsley and PRHA from Arabidopsis. The role of the PHD finger in all these proteins is unclear but it could be involved in the stability or specificity of the protein-DNA interactions mediated by the DNA-binding homeodomain (Korfhage et al., 1994).

One cysteine-rich motif which so far has only been found in plant transcription factors is the Dof domain (DNA-binding with one finger). It consists of a C-X$_2$-C-X$_1$-C-X$_2$-C motif predicted to form a single zinc finger and was first identified in the maize MNB1a DNA-binding protein (Yanagisawa, 1995). Like the LIM domain and the GATA motifs (discussed later) it appears to have a role both in DNA binding and in protein-protein interaction through the formation of homo- and heterodimers with other Dof proteins (Yanagisawa, 1997). The gene encoding MNB1a (now called Dof1) is part of a multigene family in maize, with at least 10 members, and cDNAs which appear to encode proteins containing a Dof domain have also been isolated from Arabidopsis, pumpkin and tobacco (Yanagisawa, 1996; Zhang et al., 1995). One of the Arabidopsis cDNAs encodes a Dof domain-containing protein, OBP1, which enhances the binding of the bZIP transcription factor, OBF, to the octopine synthase promoter (Zhang et al., 1995). Another Dof protein, NtBBF, was isolated from tobacco (DePaolis et al., 1996). This protein binds to the promoter of the plant oncogene, rolB and regulates its expression in the meristem.

There are several other examples of novel cysteine-rich motifs which have been found only in plant proteins; the ABF1 and ABF2 proteins from wild oat, which bind to the α-Amy2 promoter, defined a class of plant zinc finger proteins with a variation on the C$_2$H$_2$ motif (Rushton et al., 1995). This motif, in which the spacing between the zinc-binding residues is different from the spacing in the classical TFIIB-like C$_2$H$_2$ zinc fingers, was also found
in a number of homologues from *Arabidopsis, Brassica campestris* and rice and in the DNA-binding protein SPF from sweet potato (Ishiguro and Nakamura, 1994).

One of the first plant zinc finger proteins to be characterized was the 3AF1 DNA binding protein from tobacco, which interacts with a constitutive element within the light-responsive promoter of pea *rbcS-3A* (Lam et al., 1990). The protein contains two homologous stretches of approximately 100 amino acids, with a unique HC2HC arrangement of potential zinc-binding ligands.

The light responsive promoter of pea *rbcS-3A* has been studied extensively and a number of conserved sequences, in addition to the constitutive element bound by 3AF1, have been identified (Lam et al., 1990). These sequences have in common the motif T/A GATA G/A, the so-called GATA motif, which is also present in a number of other plant light-responsive gene promoters (Arguello-Astorga and Herrera-Estrella, 1996). This conserved motif was first identified as the target site for the interaction of a family of DNA binding proteins with the promoters of genes involved in hematopoiesis in vertebrates (Evans and Felsenfeld, 1989). These DNA-binding proteins, known as GATA factors after their DNA target site consensus, have in common a cysteine rich domain, C-X2-C-X1-C-X2-C, which can form a zinc finger (Harrison, 1991). Animal GATA factors often contain two zinc fingers of this type. GATA factors have been found in a wide range of vertebrates, where they regulate the expression of genes involved in the development of red blood cells, the heart and the gut (Simon, 1995). Genes encoding zinc finger proteins with homology to the vertebrate GATA factors have subsequently been found in invertebrates, filamentous fungi, yeast and plants (reviewed in Teakle and Gilmartin, 1998a). The fungal GATA factors, such as AreA from *Aspergillus nidulans* (Kudla et al., 1990) and NIT2 from *Neurospora crassa* (Fu and Marzluf, 1990), which contain a single zinc finger, are typically involved in nitrogen-regulated gene expression. Recently, however, the genes encoding the GATA-like factors WC1 (WHITE COLLAR) and WC2 from *Neurospora crassa* (Ballario et al., 1996; Linden
<table>
<thead>
<tr>
<th>Protein</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFIIIA-like</td>
<td>$\text{CX}2 \text{C X}{12} \text{HX}_3 \text{H}$</td>
</tr>
<tr>
<td></td>
<td>$\text{CX}4 \text{C X}{12} \text{HX}_3 \text{H}$</td>
</tr>
<tr>
<td>Glucocorticoid receptor-like</td>
<td>$\text{CX}2 \text{C X}{13} \text{CX}2 \text{C X}{15} \text{CX}_5 \text{C X}_9 \text{CX}_2 \text{C X}_4 \text{C}$</td>
</tr>
<tr>
<td>RING finger</td>
<td>$\text{CX}2 \text{C X}{12} \text{CXHX}_2 \text{CX}2 \text{C X}{11} \text{CX}_2 \text{C}$</td>
</tr>
<tr>
<td>PHD finger</td>
<td>$[\text{CX}2 \text{C X}{13} \text{CX}_3 \text{C}] \text{X}_4 [\text{HX}2 \text{C X}{18} \text{CX}_2 \text{C}] \text{XC}$</td>
</tr>
<tr>
<td>DOF</td>
<td>$\text{CX}2 \text{C X}{21} \text{CX}_2 \text{C}$</td>
</tr>
<tr>
<td>ABFl/2</td>
<td>$\text{CX}4$-5\text{C X}{22}-23 \text{HXH}$</td>
</tr>
<tr>
<td>3AF1</td>
<td>$\text{HX}2 \text{C X}{14} \text{HX}2 \text{C X}{12} \text{C}$</td>
</tr>
<tr>
<td>LIM</td>
<td>$[\text{CX}2 \text{C X}{17\text{a}} \text{HX}_2 \text{C}] \text{X}_2 [\text{CX}2 \text{C X}{17\text{a}} \text{CX}_2 \text{C}]$</td>
</tr>
<tr>
<td>GATA-1</td>
<td>$[\text{CX}2 \text{C X}{17} \text{CX}2 \text{C}] \text{X}{30} [\text{CX}2 \text{C X}{17} \text{CX}_2 \text{C}]$</td>
</tr>
<tr>
<td>CONSTANS</td>
<td>$[\text{CX}2 \text{C X}{16} \text{CX}2 \text{C}] \text{X}{19} [\text{CX}2 \text{C X}{16} \text{CX}_2 \text{C}]$</td>
</tr>
</tbody>
</table>

Table 1.2 Potential metal-binding residues in zinc-finger-like proteins compared to CONSTANS. The brackets indicate individual zinc fingers. Pairs of potential metal binding ligands in the zinc-binding motifs related to the “classical” TFIIIA zinc finger are shown in bold. Adapted from Sanchez-Garcia and Rabbitts, 1994 and Klug and Schwabe, 1995.

C = cysteine, H = histidine, X = any residue.

TFIIIA (Pelham and Brown, 1980).
Glucocorticoid receptor (Kumar et al., 1987).
RING finger (Lovering et al., 1993).
PHD finger (Schindler et al., 1993).
DOF (Yanagisawa, 1995).
ABFl/2 (Rushton et al., 1995)
3AF1 (Lam et al., 1990)
LIM (Sanchez-Garcia and Rabbitts, 1994).
GATA-1 (Omichinski et al., 1994).
and Macino, 1997) have been shown to be involved in the control of blue light signal transduction, which might suggest that in plants as well as in fungi, the GATA motifs found in some light regulated promoters could be the target sites for GATA-like zinc finger proteins. In plants the first gene encoding a GATA-like single zinc finger protein, Ntl1(nit-2-like1) was isolated from tobacco by cross-hybridization to the \textit{N. crassa nit-2} gene. NTL1 is putatively involved in both nitrogen- and light-regulated gene expression (Daniel-Vedele and Caboche, 1993). Recently, four cDNAs, corresponding to 4 different genes, were isolated from \textit{Arabidopsis} based on their homology to GATA-encoding genes from animals and fungi (Teakle and Gilmartin, 1998a and b). The proteins they encode, GATA-1, -2, -3 and -4, have a single zinc finger of the C-X$_2$-C-X$_{18}$-C-X$_2$-C type characteristic of both the tobacco NTL1 factor and a subset of fungal GATA factors, including WC1 and WC2, implicated in blue light signal transduction.

1.4.1.1 Comparison of the CO protein with other zinc finger proteins

The spacing of some of the cysteine residues in the CONSTANS protein (C-X$_2$-C-X$_{16}$-C-X$_2$-C) is reminiscent of the GATA-1 family of transcription factors (C-X$_2$-C-X$_{17}$-C-X$_2$-C, Trainor \textit{et al.}, 1990; Figure 1.2). The CONSTANS protein contains two such domains separated by 19 amino acids. However, apart from the conserved spacing of cysteine pairs there is little other direct homology to the GATA-1 transcription factor from plants or animals although there is one feature which is reminiscent of GATA-1. When the two proposed zinc fingers from CO are aligned they display considerable homology to each other, with 46% identical and 86% identical or similar amino acids. The homology is particularly apparent at the carboxyl side of each finger (Figure 1.2) where there are a number of basic amino acids and both regions have a net positive charge. These regions in GATA-1 transcription factors are also basic, highly conserved and implicated in DNA binding (Ramain \textit{et al.}, 1993) and the formation of homodimers (Crossley \textit{et al.}, 1995).
A

First zinc finger

<table>
<thead>
<tr>
<th>CDTCSR</th>
<th>NACTVY</th>
<th>CHADSA</th>
<th>YLCMSCD</th>
<th>AQVHSA</th>
<th>NVASRHKR</th>
<th>VRV</th>
</tr>
</thead>
</table>

Second zinc finger

| CESCE | RAPAFL | CEEADDA | SLCDTAC | DSEVHSA | NPLARRH | QRVR |

B

CO

| CDTCSR | NACTVY | CHADSA | YLCMSCD | AQVHSA | NVASRHKR | VRV | ---- | ---- | CESC |
|---------|---------|---------|---------|---------|----------|-----|------|------|

hGATA1

| CVNCGATATPLWRDRTGHCYNACGLYHKMNGQNRPRLRPPKRLIVSKRAGTQCCTNC |

CO

<table>
<thead>
<tr>
<th>ERAPAAFL</th>
<th>CEEADDA</th>
<th>SLCDTAC</th>
<th>DSEVHSA</th>
<th>NPLARRH</th>
<th>QRVRPI</th>
</tr>
</thead>
</table>

hGATA1

| QTTTTTLWRNASGDPVCNACGLYKHLQVRPLTMK DIQTRNKRASKGKKGK |

Figure 1.2 A) Comparison of the amino acid sequences of the two predicted zinc fingers within the CO protein. The four pairs of cysteines predicted to form the zinc fingers are shown in bold. The comparison was done using the FASTA program. Solid lines indicate identical amino acids and the dotted lines indicate amino acids with similar properties.

B) Comparison of the zinc finger region of CO with that of hGATA1 (Ramain et al., 1993) using the FASTA program, as in A. Horizontal lines indicate gaps introduced to maximize alignment.

Adapted from Putterill et al. (1995).
Table 1.2 shows a comparison of the cysteine pairs in the CO protein with the putative metal-binding residues in the nine distinct classes of zinc-finger-like motifs which have been found in plant proteins and which have been described here. The spacing of the cysteine pairs within each proposed finger of the CO protein is similar to both the GATA-1 and the LIM domain spacing, but the lack of additional homology and the presence of extra cysteine and histidine residues close to the cysteine pairs (discussed in Chapter 3) suggests that CO is a member of a GATA-1-related but distinct family of putative zinc-binding proteins.

1.5 Background and summary

From May, 1990, the author was involved in the isolation of the CONSTANS gene under the supervision of Dr. Joanna Putterill and Dr. George Coupland. When the complementation of the co-2 mutant was in progress the author initiated the analysis of the seven co mutants as an independent thesis project under the supervision of Dr. George Coupland.

This thesis describes the phenotypic and molecular analysis of the seven co mutants, the isolation of a new deletion allele and the identification of conserved domains of the protein thought to be important for CO function. The analysis of structural conservation among homologues was extended to include the functional conservation of an orthologue of CO from Brassica napus.
2 Characterization of the phenotypes caused by seven *constans* mutant alleles

2.1 Introduction

The *constans* mutant was first isolated in a screen for "supervital" mutants after X-irradiation (Rédei, 1962; *co-1*). Late-flowering mutants appeared supervital because, compared to wild type, they showed an increase in fresh and dry weight and produced more progeny as a consequence of forming more flowers and seed pods. These changes were shown to be due to the reduced sensitivity of the *co* mutant to day length; it was late flowering compared to its wild type progenitor under long day inductive conditions, and flowered at approximately the same time as wild type under short days (Rédei, 1962; Figure 2.1). An additional six alleles at the *co* locus (designated *co-2* to *co-7*) were subsequently isolated by screening for late-flowering mutants in a population of plants mutagenized with EMS (Koomneef *et al.*, 1991).

This chapter describes the phenotypic characterization of plants homozygous or heterozygous for each of the seven *co* alleles, confirming and extending the analysis first published by Koomneef *et al.* (1991).

2.1.1 Backcrossing *co-1* into Landsberg *erecta*

The *co-1* allele was generated by Rédei (1962) after X-irradiation of seeds provided by Professor Laibach. However, this batch of seeds proved to be heterogeneous, and both the Columbia wild type and, after further irradiation and selection of desirable traits, Landsberg *erecta* were isolated from it (Rédei, 1992). Hence, unlike alleles *co-2* to *co-7*, the *co-1* mutant contained the wild type *ERECTA* gene and although it was originally described as
Figure 2.1 Wild type Landsberg erecta and the co-2 mutant grown in long day (LD) and short day (SD) conditions. The LD grown plants are 28 days old and the SD grown plants are 42 days old.
having been isolated in Columbia (Rédei, 1962; Koornneef et al., 1991), in the region around co it showed Landsberg polymorphisms with the RFLP markers CHS2 (CHALCONE SYNTHASE2), Feinbaum and Ausubel, 1988) and g5962 (Hauge and Goodman, 1992). Mutants for erecta are dwarfed, sturdy and upright with a compact stature and are convenient for genetic crossing and growth under greenhouse conditions (Torii et al., 1996). This is particularly useful when analyzing large, late flowering plants. ERECTA plants carrying the co-1 allele grow extremely tall, have thin stems and the plants tend to fall over and become entangled with neighbouring plants.

The relationship between flowering time (FT) and leaf number (LN) differs in different genetic backgrounds (Hussein, 1968). co-1 mutants in an ERECTA background had a higher LN at the same FT than erecta plants carrying the other alleles (Koomneef et al., 1991; Table 2.1). The inflorescence stalk (bolt) of co-1 mutants also elongated more rapidly than the other mutants making it appear artificially early flowering (Figure 2.2a).

The co-1 mutant was crossed to Landsberg erecta in order to analyze the semidominance of the mutation (see section 2.3), and an F2 population derived from this cross was also used to identify a co-1 plant homozygous for erecta. To confirm that this individual carried the co-1 mutation and was not derived from a seed contaminant, two pairs of PCR primers were designed which could be used to distinguish between co-1 mutant and CO wild type DNA (primers co59 and co60, each used in combination with co49; Figure 2.2b; Chapter 7, Materials and Methods). This was made possible by the presence of a nine base pair deletion in the co-1 allele (Putterill et al., 1995). These primers were used in a PCR experiment using DNA extracted from the proposed co-1/erecta double mutant plus a number of control wild type Ler and co-1 plants (Figure 2.2b). These experiments confirmed that the co-1/erecta plant was homozygous for both mutations.
Figure 2.2a The co-1 mutant in Landsberg with the wild type ERECTA gene (left) compared to co-1 in Landsberg erecta (right). The plants were grown in LDs and are 42 days old.

A

5'-ACTCGCTGATGGCGTCTAGC-3' WT

5'-GGAACTCGCTGATGGCGTG-3' co-1

B

<table>
<thead>
<tr>
<th>LER</th>
<th>co-1</th>
<th>co-1</th>
<th>co-1</th>
<th>co-1</th>
<th>co-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 2.2b Panel A shows the primers designed to distinguish between wild type CO and the co-1 mutant allele. Primer co59 was designed to anneal only to wild type DNA (or DNA from other mutant alleles) and co60 was designed to anneal only to co-1 DNA. The 9 bp deletion in co-1 is shown in blue.

Panel B shows a Southern blot of PCR products of reactions using primers co59 or co60 with primer co49, which would produce a 300 bp product in both cases. The blot was probed with the CO cDNA. Primer co59 only gave a product with wild type DNA, as expected, and primer co60 only gave a product with DNA from a number of co-1 mutants, as expected. The PCR products from DNA extracted from the plants shown in Figure 2.2 are indicated (samples 2 and 3). The candidate erecta/co-1 mutant (sample 3) was shown to contain the co-1 mutation.
Once the genotype of this individual was confirmed, it was self fertilized, the seeds collected and the FT/LN determined alongside the other co mutants (see section 2.2.1). The co-1 allele was backcrossed once to Ler and the individual chosen for phenotypic analysis of flowering time had a similar FT/LN ratio to the other co mutants and had the compact growth characteristic of Landsberg erecta (Figure 2.2a).

2.2 The phenotypes caused by seven co mutant alleles

The adult life cycle of Arabidopsis includes a vegetative phase, when leaves are produced in a spiral phyllotaxy on the flanks of the shoot apical meristem and give rise to a rosette, and a flowering phase when no new leaves are formed but flowers are produced by the primary meristem. During the flowering phase internode elongation also occurs to produce the tall inflorescence stem. Flowering time (FT) is measured either by counting the number of days from sowing to the first appearance of buds in the centre of the rosette or by counting the number of leaves (LN) formed during the vegetative phase (Koomneef et al., 1991). The correlation between flowering time and leaf number has been measured for flowering time mutants and for wild type plants (Koomneef et al., 1991). For many flowering time mutants, including co, the rate of leaf production is the same as for wild type, and the total number of leaves is often the preferred method for measuring differences in flowering time. Measuring the number of days to flowering can be complicated by non-genetic factors such as germination time. In this analysis both methods were used to measure flowering time.

2.2.1 Flowering time in long days

To analyze the changes in flowering time caused by the mutant alleles, twenty seeds of each mutant and of wild type Landsberg erecta controls were first stratified on damp filter paper at 4°C for five days to break dormancy and synchronize germination. The seeds were
then planted in a controlled environment room (CER) with a long-day photoperiod (16 h light, 8 h dark; LDs). All mutant lines had been backcrossed to Landsberg erecta at least twice, in order to reduce the likelihood that any other mutations caused by the initial mutagenesis would still be present. No visible phenotypes apart from late flowering were apparent in any of the mutants before or after backcrossing.

As described previously flowering time was measured as the time in days from sowing to the appearance of the buds in the centre of the rosette. The total number of leaves, divided into rosette and cauline leaves, was also counted after the plants had bolted. The results are summarised in Table 2.1, Figure 2.3 and 2.4. The weakest mutant allele is co-4, which caused mutants to flower after an average of 24.3 days with 11.3 leaves. The strongest is co-3, which caused mutants to flower after 39.9 days with 29.1 leaves (wild type, 18.9 days with 7.5 leaves). These two alleles, at each end of the allelic series, are shown with a wild type plant in Figure 2.5. The severity of the remaining alleles fall between co-4 and co-3 and all differ quantitatively with respect to flowering time and total leaf number.

The results obtained are broadly in agreement with those of Koornneef et al. (1991), and with one exception the order of severity of the alleles was the same. In this experiment, the co-2 allele was found on average to be slightly earlier both in flowering time and total leaf number than the co-6 allele, but their order was reversed in the data of Koornneef et al. (1991). There was also a quantitative difference between the results of Koornneef et al. and the results presented here, probably due to differences in growth conditions. In this experiment the mutants flowered slightly earlier and with fewer leaves than in the experiments of Koornneef et al.

2.2.2 Flowering time in short days

Rédei’s original description of the co-1 mutant indicated that it flowered slightly earlier and with fewer leaves than its wild type progenitor in short days (SDs) (Rédei, 1962).
<table>
<thead>
<tr>
<th>Mutant</th>
<th>Flowering time</th>
<th>Leaf number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Days to flowering</td>
<td>Days to first open flower</td>
</tr>
<tr>
<td>Ler</td>
<td>18.9±0.9</td>
<td>27.3±0.8</td>
</tr>
<tr>
<td>co-4</td>
<td>24.3±0.5</td>
<td>33.5±0.4</td>
</tr>
<tr>
<td>co-5</td>
<td>28.2±0.5</td>
<td>36.4±0.6</td>
</tr>
<tr>
<td>co-2</td>
<td>33.1±0.9</td>
<td>43.6±0.9</td>
</tr>
<tr>
<td>co-1</td>
<td>34.2±0.5</td>
<td>48.7±0.7</td>
</tr>
<tr>
<td>co-3</td>
<td>36.0±0.6</td>
<td>50.0±0.4</td>
</tr>
<tr>
<td>co-7</td>
<td>37.8±0.7</td>
<td>47.5±0.6</td>
</tr>
<tr>
<td>co-1</td>
<td>38.6±0.8</td>
<td>50.3±0.5</td>
</tr>
<tr>
<td>co-3</td>
<td>39.9±0.6</td>
<td>53.4±0.7</td>
</tr>
</tbody>
</table>

Table 2.1 Flowering times and leaf numbers of the seven *co* mutants grown in LDs compared to wild type Landsberg *erecta*. The mutants are listed in order of increasing number of days to flowering.
Figure 2.4 The phenotypes of the seven co mutants, each carrying a different co mutant allele. All plants were grown in LDs and are 42 days old. Wild type Landsberg erecta was not included as it had senesced by this stage. The co-1 mutant (top left) is in Landsberg and the remaining six are in Landsberg erecta.
Figure 2.3 The flowering times, represented as the mean rosette and cauline leaf numbers of the seven co mutants compared to wild type Landsberg erecta in LDs. The mutants are shown in order of severity of phenotype. Standard error bars are shown in black.
Figure 2.5 The *co* mutant plants carrying the weak *co-4* allele (centre) and the strong *co-3* allele (right) compared to wild type Landsberg *erecta* (left). All plants were grown in LDs and are 35 days old.
Subsequently Koornneef et al. (1991) described co as day-neutral; the LD- and SD-grown mutant flowered at the same time as wild type in SDs. Putterill et al. (1995) described co-2 mutants as flowering later than wild type under LDs, and slightly earlier than wild type in SDs, as Rédei suggested.

To verify whether this was an allele specific effect seen only in co-1 and co-2, or a characteristic of all co mutant alleles isolated so far, mutants carrying each of the seven co alleles were grown in a SD controlled environment room (CER; 10 h light, 14 h dark) alongside wild type Landsberg erecta control plants. All of the mutants flowered slightly earlier than wild type and with fewer leaves, although detailed leaf counts were not performed for all alleles. The differences between the alleles in flowering time and leaf number were not apparent in SDs. Figure 2.6 shows the distribution of flowering times within a population of co-2 mutants and wild type Landsberg erecta plants grown in both LDs and SDs.

2.2.3 Other phenotypes

The co mutants growing in long-day inductive conditions resemble short-day grown Arabidopsis plants in their longer vegetative phase. They also exhibit a number of other phenotypes enhanced in, but not restricted to, short-day grown plants.

2.2.3.1 Chimeric flowering shoots

During the vegetative growth phase of Arabidopsis, leaf primordia are produced on the flanks of the apical meristem. In the axis of each leaf a bud forms, which develops into a secondary inflorescence or paraclade (Hempel and Feldman, 1995). The final secondary inflorescence to be initiated, immediately before the first fully formed flower on the primary shoot axis, is sometimes chimeric, being composed of part flower and part inflorescence (Hempel and Feldman, 1995). A secondary inflorescence whose development
Figure 2.6 The flowering times, represented as total leaf number, of wild type Landsberg *erecta* plants and *co-2* mutant plants grown under both LD and SD conditions.
was initiated just prior to the transition from vegetative to reproductive growth can apparently be partially re-specified into a flower. This is thought to be a consequence of the floral stimulus acting directly on the primordium to specify floral identity. In SD non-inductive conditions, the frequency of plants carrying a chimeric shoot increases compared to LDs, possibly due to age-related differences in primordium sensitivity to a floral stimulus (Hempel and Feldman, 1995).

The frequency of chimeric shoots in LD-grown co mutants was also observed to be higher than in wild type under the same inductive conditions. The frequency of individuals with a chimeric shoot was recorded for some of the co alleles (Table 2.2, Figure 2.7). In general, the weakest alleles had the lowest frequency of chimeric shoots (co-4; 5%) and the more severe alleles, which more closely resemble short day grown wild type plants in their flowering time, had a higher frequency (co-3; 45%). Among the long day grown co mutants a gradation of phenotypes was observed, with some chimeric shoots being predominantly inflorescence-like or predominantly flower-like. This was also observed by Hempel and Feldman (1995) in wild type plants. A phenotype often seen in the co mutants was the emergence of a second flower from inside an altered carpel of the first flower-like part of the chimeric shoot. Whether this is also commonly seen among short day grown wild type plants is not known.

2.2.3.2 Altered number of floral organs

The first few flowers produced on the primary inflorescence of wild type plants often formed an increased number of petals and stamens when the plants were grown under SDs. This was also observed in LD-grown co mutants (Figure 2.8). Around 0-5 flowers on each mutant plant were altered, and these usually had between five and eight petals, and from seven to eleven stamens. The frequency of individuals with an altered number of floral organs in at least one flower, was recorded for some of the co mutants. The first ten
<table>
<thead>
<tr>
<th>Mutant</th>
<th>Number of plants with altered flowers</th>
<th>Number of plants with a chimeric inflorescence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>%</td>
</tr>
<tr>
<td>Ler</td>
<td>0/20</td>
<td>0%</td>
</tr>
<tr>
<td>co-4</td>
<td>1/20</td>
<td>5%</td>
</tr>
<tr>
<td>co-5</td>
<td>10/17</td>
<td>58%</td>
</tr>
<tr>
<td>co-2</td>
<td>10/18</td>
<td>56%</td>
</tr>
<tr>
<td>co-6</td>
<td>11/18</td>
<td>61%</td>
</tr>
<tr>
<td>co-1</td>
<td>11/18</td>
<td>61%</td>
</tr>
<tr>
<td>co-7</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td>co-3</td>
<td>nt</td>
<td>nt</td>
</tr>
</tbody>
</table>

Table 2.2 Number of individuals with at least one flower with an altered number of petals and stamens, and the number of individuals with a chimeric inflorescence. All plants were grown in LDs.
Figure 2.7 Examples of chimeric shoots. A) A predominantly flower-like chimeric shoot with an altered gynoecium and a supernumary flower (SF) which also has an altered gynoecium. B) and C) Chimeric shoots that have a predominantly inflorescence-like phenotype. However, the shoots are partly organized as individual flowers. S = sepals, P = petals, ST = stamens. The flower and inflorescence components of C have been dissected apart for clarity. All examples are from co-1 and co-7 mutant plants grown in LDs. The shoots were all located below the lowest flower and above the uppermost secondary inflorescence on the primary shoot axis.
Figure 2.8. Examples of flowers with an altered number of petals and/or stamens. A) A normal flower with four petals and six stamens. B) A flower with five petals and seven stamens. C) A flower with six petals. All flowers are from a o-6-mutant plant grown in LDS.
flowers on the primary inflorescence of each individual were scored for the presence of this phenotype (Table 2.2). One individual in twenty plants homozygous for the weakest allele, *co-4*, exhibited the floral mutant phenotype. The frequency increased with the severity of the allele, and therefore the later the mutants flowered the more severe the floral phenotype. Mutants carrying all *co* alleles showed this phenotype, but it was most apparent in the intermediate alleles *co-5*, *co-2*, *co-6* and *co-1*. The first few flowers of the very late alleles *co-7* and *co-3* in this analysis did not open properly, possibly due to environmental effects, so the number of individuals carrying altered flowers was not recorded for these two alleles. An increase in floral organ number was not observed in any of the LD-grown Landsberg *erecta* control plants (Table 2.2) although this can happen at a low frequency (G. Coupland, personal communication).

2.3 The semi-dominance of the *constans* mutations

Rédei (1962) found the *co-1* mutation to be recessive when grown in continuous light, which were the conditions he used for his long day analyses. However, when this mutant and the six EMS-induced mutants were analyzed by Koornneef *et al.* (1991) in long day conditions of 16 h light, 8 h dark, it became apparent that they were all semi-dominant. The flowering time and leaf number of heterozygotes was intermediate between those of wild type and *co* homozygotes.

In order to confirm the semi-dominance of *co-1*, *co-4* and *co-3* demonstrated by Koornneef *et al.*, (1991) and to extend the analysis to all seven alleles, they were each independently crossed to Landsberg *erecta* and the F₁ progeny sown in LDs, along with the parental wild type and homozygous mutant controls. The flowering time and leaf numbers were scored as previously described (Table 2.3, Figures 2.9 and 2.10). All seven alleles were found to be semi-dominant, with intermediate flowering times and leaf numbers. This was confirmed in the F₂ generation, which produced the expected range of flowering times.
<table>
<thead>
<tr>
<th>Mutant</th>
<th>Days to induction of flowering</th>
<th>Total leaf number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heterozygote</td>
<td>Homozygote</td>
</tr>
<tr>
<td>Ler</td>
<td>-</td>
<td>17.8±0.3</td>
</tr>
<tr>
<td>co-4</td>
<td>21.2±0.3</td>
<td>29.5±0.7</td>
</tr>
<tr>
<td>co-5</td>
<td>24.5±0.6</td>
<td>35.8±0.8</td>
</tr>
<tr>
<td>co-2</td>
<td>28.7±0.5</td>
<td>36.7±0.8</td>
</tr>
<tr>
<td>co-6</td>
<td>24.7±0.5</td>
<td>35.5±0.9</td>
</tr>
<tr>
<td>co-1</td>
<td>27.5±0.6</td>
<td>35.5±0.8</td>
</tr>
<tr>
<td>co-7</td>
<td>22.6±0.4</td>
<td>35.0±1.1</td>
</tr>
<tr>
<td>co-3</td>
<td>30.4±0.7</td>
<td>38.2±0.9</td>
</tr>
</tbody>
</table>

Table 2.3 Flowering times and leaf numbers in LDs of F$_1$ progeny of crosses between each *co* mutant and Landsberg *erecta*, compared to the homozygous parental mutants and Landsberg *erecta*.
Figure 2.9 From the left, a wild type Landsberg *erecta* plant, a *co-4* heterozygote, a *co-4* homozygote, a *co-3* heterozygote, a *co-3* homozygote, a *co-7* heterozygote and a *co-7* homozygote. All plants were grown in LDs and are 28 days old.
Figure 2.10 Bar charts showing the distribution of leaf numbers in the seven co mutant populations compared to the heterozygotes and wild type Landsberg erecta. X and Y axis labels are only shown on one chart for simplicity. The scale is the same for all charts.
Landsberg erecta plants are shown in blue.
The heterozygous co mutants are in red.
The homozygous co mutants are in yellow.
Figure 2.11 Summary of leaf numbers of the seven homozygous co mutants in LDs compared to the heterozygotes and wild type Landsberg erecta. Error bars are not included as they are smaller than the symbols.
Although all seven alleles are semidominant, the severity of the heterozygous phenotype is not directly related to the phenotype of the homozygotes (Figure 2.11). The heterozygotes for the weaker alleles have flowering times nearer to the homozygous mutants than to wild type, while for the stronger alleles the heterozygotes have flowering times closer to wild type than to the homozygous mutants. This is particularly apparent for the severe co-7 allele (Figure 2.9, Figure 2.11) which is almost completely recessive.

2.4 Discussion

The flowering times of mutants carrying each of the seven co alleles (Rédei, 1962; Koornneef et al. 1991) were characterized under LDs and SDs and the alleles ranked in order of severity. The description of phenotype was thought likely to assist in interpreting the molecular analysis of each of the co alleles (Chapter 3). Each of the mutant alleles delayed the onset of flowering in LDs but in SDs flowering occurred at approximately the same time as (but very slightly earlier than) wild type. This had previously led to the CO gene being assigned to the LD promotion pathway (Koornneef et al. 1991), that was proposed to promote flowering specifically in response to long days (described in Chapter 1).

The results presented in this chapter are broadly in agreement with those of Koornneef et al. (1991). The main difference was the parameter used to measure flowering time. Koornneef et al. used the number of days from sowing to the opening of the first flower, while the first appearance of buds in the centre of the rosette was used here. In this analysis the order of severity of the alleles was the same whether total leaf number or flowering time was measured whereas in the Koornneef analysis the order was different. This was probably partly due to environmental effects on the opening of flowers, a point which was discussed in Koornneef et al. (1991), where it was suggested that the total leaf number might be a more accurate method for measurement of flowering time. The non-
genetic effects upon the opening of flowers was also noticed in this analysis; in a number of experiments it was the most variable parameter measured. The order of opening of flowers differed from the order of first appearance of buds and total leaf number, and was also different from that recorded by Koornneef et al., suggesting that as a measure of flowering time it is unreliable.

The mutant alleles delayed flowering to different extents in LDs but all of the mutants flowered at approximately the same time in SDs. The quantitative differences in severity between the alleles suggests that a range of different types of mutation is present at the CO locus, and that both mutations with a weak effect on CO function as well as those with a more detrimental effect can be distinguished from wild type. Rédei (1962) and Koornneef et al (1991) originally isolated ten co alleles: one X-ray induced allele (Redei, 1962; co-1) and nine from an EMS mutagenesis (Koornneef et al., 1991; co-2 to co-7, plus three others which are no longer available). This is a relatively large number compared to some of the other flowering time loci, as would be expected for a gene with a strong effect on flowering time. Multiple alleles were also isolated at the gi and fca loci, and some of these are among the latest flowering time mutants isolated. Mutants with a relatively weak effect on flowering time, such as fd, fy and fe are represented by only one allele, which might suggest that only strong or null alleles were recovered at these loci because leaky mutations are indistinguishable from wild type. Alternatively, if strong or null alleles at these loci are lethal, or have a different phenotype then perhaps only weak alleles were recovered.

The alleles at the gi, fca and fve loci also differ quantitatively from each other. Recently, the FCA gene was cloned and a number of mutant alleles characterized. The strongest, fca-1, (Macknight et al., 1997) is an EMS-induced allele in which an in-frame stop codon was introduced by a point mutation, resulting in the loss of approximately one half of the protein including a conserved glycine-rich region. This allele is assumed to be a null. However, the mutations in fca-3 and fca-4 (both induced by X-irradiation) have also been
characterized; fca-3 contains a point mutation and fca-4 a large inversion. Both of these mutations are predicted to cause premature termination earlier in the protein than the premature termination caused by the fca-1 mutation. In both cases this results in the loss of most or all of one of the two putative RNA-binding domains assumed to be important for FCA function, in addition to the conserved glycine-rich domain at the C-terminus (R. Macknight, unpublished results). However, these two alleles have a much weaker effect on flowering time than fca-1, so in this case it is difficult to correlate the effect of the mutation on the structure of the protein with the observed phenotype. Similarly, the flowering time mutant alleles at the fca, fha and gi loci which were isolated after X-irradiation or fast neutrons, and may therefore contain larger rearrangements, are not among the most severe alleles at the loci. This is also the case for the co-1 allele which was induced by X-rays and is weaker than co-7 and co-3 which were both EMS induced (Koornneef et al., 1991).

Although they differ quantitatively with respect to flowering time, the co alleles cannot easily be grouped into different categories with respect to phenotype, unlike allelic variation at other loci. For instance the cop1 alleles were grouped into three distinct phenotypic classes: weak, strong and lethal (McNellis et al., 1994), or the trp1 alleles which were categorised as either tryptophan auxotrophs or prototrophs, with dramatically different morphologies (Rose et al., 1996). Late flowering is a quantitative phenotype and the phenotypes caused by the co alleles showed considerable overlap. Furthermore, all of the co mutants are viable, eventually flower and are fertile. This may be a consequence of other flowering pathways which operate in the absence of a functional CO gene, or that CO function can be compensated for within the long day pathway. Alternatively it is possible that all alleles isolated so far at the CO locus are leaky and that a null allele would have a more severe effect on flowering.
The *co* alleles are all semi-dominant, with the heterozygotes having flowering times and leaf numbers intermediate between wild type and the homozygous *co* parent. During the complementation of the *co-2* mutant phenotype with cosmids containing the wild type *CO* gene, *co-2* transgenic plants containing one copy of the T-DNA with the wild type *CO* gene showed a flowering time phenotype intermediate between *co-2* mutants and wild type. Transformants carrying two copies of wild type *CO* in the *co-2* mutant background flowered at the same time as wild type (Putterill *et al.*, 1995). This suggested that the intermediate phenotype observed in the *co-2* heterozygote was as a consequence of haplo-insufficiency rather than a gain-of-function mutation altering the *CO* protein and causing it to interfere with the wild type protein function (Park and Horvitz, 1986). That the semi-dominance of the *co* alleles is in part caused by haplo-insufficiency is also consistent with the very low level of expression of the *CO* gene (Putterill *et al.*, 1995). The reduction in abundance of the functional transcript by 50% in a heterozygote might be sufficient to reduce *CO* activity below a threshold necessary for wild type function. At least *co-2* is therefore predicted to be a loss-of-function mutation rather than a dominant gain-of-function mutation. However, the relative severity of the alleles was different in homozygotes and heterozygotes. The phenotype of a heterozygote for a leaky mutation, containing one fully functional copy of the gene and one partly functional copy is expected to have a phenotype closer to wild type than a heterozygote of a stronger or null allele (Park and Horvitz, 1986). This did not hold for all of the *co* mutant alleles; for example *co-7* caused a strong homozygous phenotype but a weak phenotype as a heterozygote (Figure 2.11). It is possible, therefore, that in addition to haplo-insufficiency some of the alleles show a dominant gain-of-function phenotype. The mutant protein may, for example, interfere with wild type protein activity and cause the heterozygote to have a stronger than expected phenotype. The later flowering alleles, such as the severe *co-7*, may encode proteins which have no *CO* activity in the homozygote, but which cannot interfere, either, with *CO*
function in a heterozygote. This might explain the near-recessive phenotype of a co-7 heterozygote.

Other dominant late flowering mutants have been isolated. These include: fwa (Koornneef et al., 1991) which is almost completely dominant; lhy which is caused by the ectopic expression of a gene implicated in the regulation of the circadian clock (Simon and Coupland, 1996) and fhy, which affects the signal transduction pathway of phytochrome A (Johnson et al., 1994). In addition, a number of genes which regulate the flowering time of different ecotypes of Arabidopsis have naturally occurring dominant alleles. These include FLC and FRI, dominant alleles of which control the lateness in a number of very late flowering ecotypes (Koornneef and Peeters, 1997). The semi-dominant gai (gibberellic acid-insensitive) mutation is caused by a dominant gain-of-function mutation. A number of radiation-induced derivative alleles of gai were isolated and found to have a phenotype indistinguishable from wild type (Peng et al., 1997). Sequence analysis of GAI, gai and the new alleles confirmed that the derivative alleles were intragenic suppressors that inactivated the gene.

The combination of phenotypic analysis of the alleles and characterization at the molecular level of the mutations causing these phenotypes might contribute towards an understanding of the functional significance of the different regions within the CO protein and the nature of the semi-dominant phenotype. Chapter 3 describes the identification and characterization of the lesions in the CONSTANS gene in each of the seven alleles and the analysis of domains of the protein thought to be important for CONSTANS function.
3 Molecular characterization of the *constans* alleles

3.1 Introduction

A series of *constans* alleles was characterized with respect to their flowering time phenotype, and the alleles ranked in order of severity (Koornneef *et al.*, 1991; Chapter 2). Once the *CONSTANS* gene had been cloned, it was possible to correlate these phenotypes with alterations in the *CO* nucleotide sequence. Investigating the molecular nature of various mutations in a single gene can provide insights into the function of the wild type gene. For example, individual amino acid residues important for protein function may be identified, and may provide insights into the roles of particular domains. Also mutations which lead to a disruption of transcription may define regions that control gene expression. Furthermore, molecular analysis of an allelic series may also explain how different mutations differ in the severity of their effects upon gene function. Unambiguous null alleles may also be identified and allow the effect of the complete loss of protein function on phenotype to be assessed. For these reasons the nucleotide sequences of all seven *co* mutant alleles were determined.

3.2 Identifying the mutations in the seven *constans* alleles

3.2.1 Southern analysis

Once the *CONSTANS* gene had been located to a 48 kb region covered by three overlapping cosmids the analysis of the alleles at a molecular level was initiated. The first approach in the molecular analysis was to establish whether any of the mutations could be detected by restriction enzyme digestion of plant DNA, Southern blotting and hybridization
to probes containing the CO gene. DNA from wild type and each of the seven co mutants was extracted and digested using a number of restriction enzymes. A total of fourteen enzymes with either 6 base pair recognition sites or 4 base pair recognition sites were used to optimize the detection of large rearrangements, small deletions or point mutations. The DNA was fractionated on duplicate agarose gels, Southern blotted and probed independently with cosmids 129 and 142 (Figure 3.1b). Together these cosmids cover a region of approximately 30 kb and both successfully complemented the co mutant phenotype (Putterill et al., 1995). Examples of the autoradiographs obtained are shown in Figure 3.1a. No obvious DNA rearrangements in any of the alleles were detected by this method. This was not surprising because at least for the six EMS-induced alleles which might be expected to carry point mutations the mutation would have had to occur within the bases encoding a restriction enzyme recognition site. However, the analysis demonstrated that the single radiation-induced allele (co-1) was not a large deletion or rearrangement.

3.2.2 PCR amplification and cloning of the constans alleles

The CO gene was located to a 6.4 kb region where the two cosmids used successfully for complementation, 129 and 142, overlap. This region was sequenced and two ORFs separated by 233 bp were identified (Putterill et al., 1995). Primers flanking the ORFs were designed by Dr. J. Putterill (Figure 3.3) and PCR amplification using wild type DNA yielded a single 1.95 kb fragment which was cleaved by EcoR I into two fragments of 1.09 and 0.86 kb. This was in agreement with nucleotide sequence which identified a single EcoR I site within the proposed 233 bp intron. The PCR was repeated for all seven alleles. Duplicate amplification reactions were performed to identify and discount errors introduced by Taq polymerase. PCR products of the predicted size were amplified from all of the alleles. No changes were detectable at this stage. The 1.95 kb products were blunt ended using T4 DNA polymerase, cloned into the EcoR V site of pBluescript (SK+) and
Figure 3.1 a Southern blot of plant DNA extracted from wild type Landsberg erecta and the seven co mutants, digested with the enzymes indicated and probed using cosmid 129 (see below).

Figure 3.1 b The two cosmids which were used as probes against Southern blots of restriction digested DNA from the seven co mutants and wild type.
transformed into *E. coli* strain DH5α. Ampicillin resistant colonies containing the correct recombinant plasmids were identified by digesting prepared plasmid DNA with *EcoR* I, which yielded a 0.86 or 1.09 kb fragment, depending on the orientation of cloning, and a larger fragment containing the vector.

3.2.3 Sequencing the *constans* alleles

Oligonucleotide primers had previously been designed and used to sequence the 6.4 kb overlap between the complementing cosmids to try to identify the *CO* gene. Sequencing of the alleles was initiated at the 5’ end of each cloned ORF using these primers. As the sequencing progressed more primers were designed and made so that the entire coding sequence for both exons, the intron and the 5’ and 3’ untranslated regions could be analyzed. The first methionine of the CO protein had previously been identified by the presence of an in-frame stop codon three codons upstream of the candidate ATG. The 3’ end of the transcript had also been identified by 3’ rapid amplification of cDNA ends (RACE), and was located 160 bp downstream of the final stop codon. (Putterill *et al.*, 1995). In total, 1750 bp of the *CO* gene were sequenced from each allele, including 250 bp of 5’ and 150 bp of 3’ untranslated sequence (Figure 3.3). Two independent clones for each allele, amplified in different PCR reactions, were sequenced and compared with the ORFs cloned from wild type DNA. The sequencing reactions for a particular primer were arranged on sequencing gels in blocks of Gs, As, Ts and Cs to make identification of mutations easier. Wild type reactions were arranged in a normal GATC ladder so that sequence coverage of the gene could be monitored (Figures 3.2a and b).

Mutations in alleles *co-1, co-2* and *co-3* were identified first. This confirmed that the putative ORFs identified in the 6.4 kb complementing region were part of the *CONSTANS* gene. The mutations in alleles *co-1* and *co-2* were published in Putterill *et al.*, 1995 and Dr. J. Putterill identified the mutations in *co-1, co-2* and *co-3*. The mutations in *co-4, co-5,*
co-6 and co-7 were identified by the author. Autoradiographs of sequencing gels revealing the mutations in these four alleles are shown in Figures 3.2a and b.

Figure 3.3 shows the 1950 bp region amplified by PCR from each cloned CO gene, with the position and nature of the mutations in the alleles identified by sequencing. The sequence of both exons and the single intron were determined for each allele to ensure that only one mutation had occurred in each allele and that these were therefore responsible for the mutant phenotypes. Other sequence changes found during the sequencing are marked. The co alleles are in a Landsberg erecta background but the cosmids used for complementation were from a library made from Columbia DNA (Olszewski et al., 1988), and a number of polymorphisms between the two ecotypes were identified and are marked. Polymorphisms were detected in the untranslated 5’ region of the gene, in the promoter and in the intron, but not in either exon. PCR errors identified in individual clones were recorded but are not shown. Whenever possible clones carrying no PCR errors in the ORF were identified for subsequent experiments (Chapter 5).

3.2.4 The mutations in the seven constans alleles define domains of the protein that are important for CO function

The mutations identified in the seven co alleles were found to be clustered in two regions of the predicted protein sequence. The six EMS alleles each contain a single point mutation, and each of them results in a single amino acid substitution. All mutations are G to A or C to T transitions, which is expected for an alkylating agent such as EMS (Koornneef et al., 1982). The X-ray induced allele, co-1, first identified by Rédei (1962), contains a nine base pair deletion which precisely removes three amino acids. All seven mutations are predicted to be missense mutations within the protein. No obvious null mutations, or mutations affecting regulatory sequences of the CONSTANS gene were
Figure 3.2a The sequencing gel that first identified the mutations in co-4 and co-6. The CONSTANS gene was originally sequenced from cosmids from a library made from the Columbia (Col) ecotype so this was included to identify any polymorphisms between Landsberg erecta and Columbia. The primer used was co33 (Materials and Methods).
Figure 3.2b The sequencing gel that first identified the mutations in co-5 and co-7. The primer used was co54 (Materials and Methods)
Figure 3.3 The CO genomic region amplified by PCR and sequenced from all the co mutants. The primers used for amplification, co41 and co42, are in bold. The two exons are in blue separated by the 233 bp intron in purple. The bases affected in each mutant allele are shown underlined and in red. Each of the single base substitutions in six of the alleles is either a C-T or G-A transition. The nine bases deleted in co-1 are also underlined and in red.

The three polymorphisms detected between Landsberg erecta and Columbia ecotypes are shown in green. In all cases the Columbia sequence is shown. For the two single base changes (one in the 5' untranslated region and one in the intron), at the equivalent position in Landsberg erecta the C is replaced by an A. The seven base pair motif in the promoter (underlined and in green) is repeated five times in Columbia (underlined in black) but only four times in Landsberg erecta.
identifed. Figure 3.4 shows the DNA sequence of CO, the predicted protein sequence and the changes in each of the mutant alleles.

co-1: The co-1 mutant was originally isolated as one of four "supervital" mutants from an X-irradiation screen by Rédei (1962). The mutation is a nine base pair deletion (TTGCTAGAC; bases 287 to 295 - the A residue of the first ATG codon designated as base 1) which precisely removes three amino acids; leucine (at amino acid position 96), alanine 97 and arginine 98 (Figure 3.4). The sequences flanking the deletion reconstruct the C-GC codon of arginine 99. The three deleted amino acids are located in the basic region of the putative DNA binding domain, at the carboxyl side of zinc finger 2. The secondary structure prediction program PHD predict protein (Rost 1996) predicts a short helix in CONSTANS, over a region of six amino acids (PLARRH, Figure 3.5a) including the LAR motif deleted in co-1.

The remaining six co mutants were isolated by EMS mutagenesis and screening for late flowering mutants (Koornneef et al., 1991). Four of these also have mutations which affect the zinc finger domain. All sequence changes are represented in Figure 3.4.

co-2: The co-2 allele carries a mutation which affects the conserved, basic domain on the carboxyl side of zinc finger 1. A G to A transition at position 176 of the DNA sequence substitutes histidine for arginine 59.

co-3: The co-3 allele caused the strongest late flowering phenotype (Koornneef et al., 1991; Chapter 2). A single base change leading to a single amino acid substitution is responsible for this severe phenotype. At DNA sequence position 271 a C to T transition substitutes tyrosine for histidine 91. This histidine is located in the basic domain on the carboxyl side of zinc finger 2.
This allele caused the weakest late flowering phenotype (Koomneef et al. 1991; Chapter 2). The lesion in co-4 was found in zinc finger 2 at DNA position 211, where a G to A transition substitutes threonine for alanine 71. The region from proline 70 to alanine 77, including alanine 71 affected in this allele, is predicted in the wild type CO protein to form a helix. The mutation in co-4 is predicted to shorten this helix and introduce a short stretch of β-sheet (Figure 3.5a).

The co-6 mutation causes a C to T transition at position 110 of the DNA sequence and substitutes valine for alanine 37 within zinc finger 1. The alanine residue affected is located within two predicted beta sheets joined by a short loop. The mutation is predicted to lengthen the second beta sheet and shorten the intervening loop (Figure 3.5a).

Two constans alleles, co-5 and co-7, that were induced with EMS contained mutations that affect a basic domain near the C-terminus of the protein (Figure 3.4). The residues affected in these alleles are found in the most highly conserved part of the basic domain (see section 3.3) and are directly adjacent to one another.

The co-5 mutant is relatively weak, second only to co-4 (Chapter 2). It also contains a point mutation; a C to T transition at position 1016 of the DNA sequence results in the substitution of leucine for proline 339. The secondary structure prediction program "PHD predict protein" predicted two alpha helices separated by a short loop in this basic domain (discussed later). The co-5 mutation is predicted to shorten the intervening loop or turn (figure 3.5b).

The co-7 mutant is the second strongest, after co-3 (Chapter 2). At position 1019 a G to A transition substitutes glutamine for arginine 340. Again, like the co-5 mutation, the effect of the substitution in co-7 on the predicted secondary structure is to shorten the loop between two alpha helices.
Figure 3.4 The DNA sequence of the CO ORF and the predicted amino acid sequence of the protein. The amino acids shown in bold are those within the predicted zinc finger region. The sequence changes in the seven mutant alleles are shown in red. For the point mutations the mutant sequence is shown above the wild type DNA sequence and the predicted amino acid substitution is shown below the wild type amino acid sequence. The nine base pair deletion in \textit{co-1} and the three amino acids predicted to be deleted are also shown in red.
<table>
<thead>
<tr>
<th></th>
<th>Wild type Zinc Finger 1</th>
<th>CDTCRSNACTVYCHADSAYLSCDAQVHSANRVASRHKVRV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Predicted structure</td>
<td>..EEE.........EEEEEE...EEEEEEΕ...EEE</td>
</tr>
<tr>
<td></td>
<td>Probability</td>
<td>7336678935865323226653431221141267532474576</td>
</tr>
<tr>
<td></td>
<td>Mutant Zinc Finger 1</td>
<td>CDTCRSNACTVYCHADSAVLYSCDAQVHSANRVASRHKVRV</td>
</tr>
<tr>
<td></td>
<td>Predicted structure</td>
<td>..EEE...EEEEEEΕ.EEE...EEE...EEE</td>
</tr>
<tr>
<td></td>
<td>Probability</td>
<td>83356792797423139998741112251035204784487</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Wild type Zinc Finger 2</th>
<th>CESCERAPAFLCEADDASLCTACDSEVHSANPLARRHQRVP I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Predicted structure</td>
<td>E.............HHHHHHHHH..HHH....................HHHHH.....E</td>
</tr>
<tr>
<td></td>
<td>Probability</td>
<td>3142121799986535311124665322575634786378772</td>
</tr>
<tr>
<td></td>
<td>Mutant Zinc Finger 2</td>
<td>CESCERAPTAFLCEADDASLCTACDSEVYSANPRHQRVP I</td>
</tr>
<tr>
<td></td>
<td>Predicted structure</td>
<td>EE.............HHHHHEE.........................E</td>
</tr>
<tr>
<td></td>
<td>Probability</td>
<td>6311366443232014533233455311142997583215</td>
</tr>
</tbody>
</table>

Figure 3.5a The predicted protein sequence of CONSTANS zinc finger 1 (Panel A) and zinc finger 2 (Panel B) with the prediction of secondary structure and the calculated probability of a secondary structure being formed underneath. The prediction is from the PHD predict protein program (Rost, 1996). For each zinc finger, both the wild type protein sequence and a mutant protein sequence incorporating the predicted changes in all the mutant alleles is shown, with the residues affected by the mutations in red. The wild type sequence was rerun through the program after the mutant sequences to check for variation between runs.

H = predicted helix
E = predicted β sheet (extended)
. (period) = predicted loop, turn or other.
Wild type C-terminal basic domain

<table>
<thead>
<tr>
<th>Predicted structure</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSPMDREARVLRYREKRKTFRKFEKTKIRYASRKAYAEIRPVRNGRAKREIEAEQGFNTMLMYNTGYGIVPSF</td>
<td>479327999999876541567888999999996212043145789899973884489972597455489</td>
</tr>
</tbody>
</table>

Mutant C-terminal basic domain

<table>
<thead>
<tr>
<th>Predicted structure</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSPMDREARVLRYREKRKTFRKFEKTKIRYASRKAYAEIRLQVRNGRAKREIEAEQGFNTMLMYNTGYGIVPSF</td>
<td>479327999999866415678889999999999833530147788999973884489972597455489</td>
</tr>
</tbody>
</table>

Figure 3.5b The predicted protein sequence of CONSTANS C-terminal basic domain with the prediction of secondary structure and the calculated probability of a secondary structure being formed underneath. The prediction is from the PHD predict protein program (Rost, 1996). The wild type protein sequence and a mutant protein sequence incorporating the predicted changes in the two mutant alleles is shown, with the residues affected by the mutations in red.

H = predicted helix

E = predicted β sheet (extended)

. (period) = predicted loop, turn or other.
The clustering of the mutations into two regions; co-1, co-2, co-3, co-4 and co-6 affecting the putative zinc fingers and co-5 and co-7 affecting a C-terminal highly positively charged domain (summarised in Table 3.1) and the conservation of these regions in a number of homologues (discussed in section 3.3) suggests that they define domains of the protein that are important for CONSTANS function.

The protein has a number of other domains characteristic of transcription factors that may be important for function. Two of these are addressed in detail in the discussion (section 3.4) but are mentioned here as they appear in several figures. The C-terminal basic domain includes a stretch of amino acids, from arginine 306 to lysine 321, that could serve as a nuclear localization signal. This region was not affected by either of the mutations in alleles co-5 and co-7 (Figure 3.6). In addition, there are five regions which potentially could serve as transcriptional activation domains, although the most likely candidate is an acidic domain which extends from glutamic acid 124 to glutamic acid 150. This region contains 11 acidic residues out of 27 and has a net negative charge of -6 (Figure 3.6). Another feature of acidic activation domains is their ability to form alpha helices, as demonstrated for the yeast transcription factor GAL4 (reviewed in Ptashne, 1988, Mitchell et al., 1989). Using the PHD predict protein program, a helix was predicted in CO from residues 146 to 156, a short region which overlaps with the proposed activation domain.

3.2.5 Analysis of expression of co mutant alleles

In wild type Arabidopsis the CONSTANS mRNA is present at levels undetectable by conventional Northern analysis and RT-PCR was therefore used to analyze CO expression (Putterill et al., 1995). Using this method a transcript indistinguishable from that of wild type was detected in the co-2 mutant (J. Putterill, R. Simon, unpublished results), so a similar approach was taken with the remaining alleles. Total RNA was extracted from
<table>
<thead>
<tr>
<th>Allele</th>
<th>Mutation</th>
<th>Domain affected</th>
<th>Total leaf number</th>
</tr>
</thead>
<tbody>
<tr>
<td>co-4</td>
<td>alanine to threonine</td>
<td>Zinc fingers</td>
<td>11.3</td>
</tr>
<tr>
<td>co-5</td>
<td>proline to leucine</td>
<td>C-terminal basic</td>
<td>14.4</td>
</tr>
<tr>
<td>co-2</td>
<td>arginine to histidine</td>
<td>Zinc fingers</td>
<td>19.4</td>
</tr>
<tr>
<td>co-6</td>
<td>alanine to valine</td>
<td>Zinc fingers</td>
<td>23.7</td>
</tr>
<tr>
<td>co-1</td>
<td>in-frame deletion of leucine, alanine, arginine</td>
<td>Zinc fingers</td>
<td>25.6</td>
</tr>
<tr>
<td>co-7</td>
<td>arginine to glutamine</td>
<td>C-terminal basic</td>
<td>28.5</td>
</tr>
<tr>
<td>co-3</td>
<td>histidine to tyrosine</td>
<td>Zinc fingers</td>
<td>29.1</td>
</tr>
</tbody>
</table>

Table 3.1 The mutations in the seven co alleles, the domains of the CO protein they affect and the mean flowering times of the co mutants represented as total leaf numbers.
Figure 3.6 The CO amino acid sequence with a number of features marked. The N-terminal putative DNA binding domain is in **bold** with the cysteine pairs of the two zinc fingers in red. The residues affected in the alleles are in purple, with the amino acid predicted to replace the wild type amino acid below the sequence where applicable and the three residues deleted from co-1 underlined. The conserved C-terminal basic domain is in **bold** with the putative nuclear localization signal underlined in **black**. Acidic residues are in green with the most highly negatively charged cluster, which could be involved in transcriptional activation, underlined in green.
duplicate samples of 10 day old wild type and mutant seedlings. At this stage the first two leaves were expanding and the CO mRNA was readily detectable by RT-PCR in wild type plants (R. Simon, unpublished results). RT-PCR was performed using primers co49 and Oli9 (Chapter 7, Materials and Methods) which amplify a fragment at the 5’ end of the CO cDNA. Oli9 was designed by R. Simon to exon sequence at either side of the single intron and therefore to specifically amplify only CO cDNA and not contaminating genomic DNA (Figure 3.7b) The products of the PCR reactions were fractionated on an agarose gel, Southern blotted and probed with a CO-specific probe. The results of this RT-PCR experiment are not quantitative. However, in all cases a hybridising fragment of the expected size for a wild type transcript was amplified from all seven of the previously isolated mutant alleles and the wild type controls (Figure 3.7a). No hybridizing fragment was detected in a control sample lacking cDNA. Allele co-8, was included in this experiment (Chapter 4). As the co-8 allele contains a deletion at the 5’ end of the gene which removes one of the primer annealing sites, this served as a negative control. Alleles co-1 to co-7 all contained a transcript that was detectable by RT-PCR.

3.3 Homology to other genes

Sequencing of the region around the CONSTANS gene identified a closely related homologue, CONSTANS-LIKE 1 (COL1, GenBank accession numbers Y10555/Y10556), which was found 3.6 kb proximal to CO and transcribed in the same direction (Putterill et al., 1997). The predicted proteins are 67% identical overall, but over an 86 amino acid region corresponding to the putative zinc fingers are 86% identical. At the C-terminus of the protein the basic domain is also conserved between the two proteins, with 87% identity over a region of 47 amino acids (Figure 3.8). The high conservation of these two regions suggested that these regions were important for protein function and that CO and COL1 might have related functions.
Figure 3.7a Southern blot of RT-PCR products from wild type Landsberg *erecta* and the *co* mutants. RNA was extracted from three duplicate batches of plant material for each mutant or wild type, cDNA prepared from each and PCR performed using *CO*-specific primers *co*49 and *oli*9. The Southern blot was probed with the *CO* cDNA. A no-cDNA PCR control was loaded into a single lane on the right. The faint band present in sample 3 in mutant *co*-8 is assumed to be PCR contamination. This mutant, which has a deletion which removes primer *co*49 (Chapter 4) is the negative control.

Figure 3.7b The PCR primers used to amplify the fragment, shown in 3.7a, from cDNA prepared from RNA extracted from each of the *co* mutants. *oli*9 (Materials and Methods) was designed to exon sequence on either side of the intron in order to amplify only cDNA and not contaminating genomic DNA.
Arabidopsis genomic library screens using the CONSTANS gene as a probe show that a number of CONSTANS-like genes exist (M. Igeño, unpublished results). The gene CONSTANS-LIKE 2 (COL2, accession numbers L81119/L81120) was isolated in this way (Ledger et al., 1996). This homologue is 68% identical to the CONSTANS protein, with 84% and 90% identity over the zinc fingers and the C-terminal basic domain, respectively (Figure 3.8). The function of COL1 and COL2, and whether or not they are involved in the regulation of flowering is not yet known.

Subsequently other CO homologues have been reported. These are discussed below and Figures 3.9, 3.10 and 3.11, and Tables 3.2 and 3.3 summarise some of the available data. The recently isolated CO orthologues from Brassica napus have not been included. These proteins are so highly conserved that it was felt that they would not contribute significantly to this analysis. Chapter 6 describes in detail the characterization of the B. napus orthologues and their conservation of function.

Recently, a cDNA which was able to complement the salt-sensitive phenotype of yeast calcineurin mutants was isolated from Arabidopsis (Lippuner et al. 1996). This was shown to be homologous to CONSTANS over the zinc finger domain, with 39% identity. There is a small basic domain at the carboxyl terminus of the protein but little other homology.

The predicted CONSTANS protein sequence was compared to sequences in the GenBank databases using the BLAST programs (Altschul et al., 1990). The first searches found no significant homologies (Putterill et al., 1995). However, recent searches have detected at least 30 homologues identified in DNA sequencing programmes of several species. Using the TBLASTN comparison to the GenBank databases, in addition to the published proteins described above, three homologues from the Arabidopsis genomic sequencing programme were identified. Z97338 is on the annotated fragment ATFCA3, chromosome 4, in the ESSA 1 region (European Scientists Sequencing Arabidopsis, Bevan et al., 1998). It is homologous to CO over the zinc finger domain with 44% identity. AC002332 was found
Figure 3.8 Prettybox comparison of the predicted CONSTANS protein with CONSTANS-LIKE1 (Col1, Putterill et al., 1997) and CONSTANS-LIKE2 (Col2, Ledger et al., 1996).
using TBLASTX against all sequences released during July 1997. It is located on the non-annotated BAC, AC002332, which is located near marker ve015 at map position 63.3 on chromosome 2. It is also homologous to CO over the zinc fingers, with 37% identity. Recently a BLAST search was performed using only the basic carboxyl domain of the CO protein. Regions homologous to this domain were found near to, and in the same orientation as, both of the sequenced genes described above. These domains are assumed to be part of the same two CO homologues and have been included in the analysis of homology. The third homologue identified, AC000104, was found on BAC F19P19 at the top of chromosome 1 using the basic, C-terminal domain in the BLAST search. The homology detected by the BLASTP comparison extends over a 22 amino acid region, containing the residues affected in alleles co-5 and co-7, with 14 identical and a further 2 similar amino acids (73%). The homologue also contains a putative nuclear localization signal in a position similar to that found in CO but this was not detected by the BLASTP comparison. More recent searches have revealed homology to the CO zinc fingers at the N-terminus of the predicted amino acid sequence of this gene. However, this has not been included in the homologue sequence comparison as the region of homology is small and the annotation of this BAC was incomplete at the time of writing. AC000104 is interesting because it is the only homologue which appears to contain both the putative nuclear localization domain and the more highly conserved domain separated by a spacer of 13 amino acids. In CO these two domains are directly adjacent to each other. This is further evidence that the C-terminal basic region can be subdivided into two distinct domains which may have different functions.

The BLASTP search of all available databases found some less well conserved proteins from other species which have not been included in the main sequence comparison but have been compared independently to CO (Figure 3.10) The conservation between CO and these proteins seems to be confined to the conserved cysteines and histidines in the zinc fingers,
in addition to a small number of the most highly conserved hydrophobic residues also in this domain. It is possible that these proteins could have a role in binding zinc through these domains but are only very distantly related to CO. The proteins included the GTP-binding protein ARD1 from humans (Mishima et al., 1993; Vitale et al., 1998) and the equivalent ARD1-like protein from Rat, and the putative transcription factor CeLIM-4 from Caenorhabditis elegans (Accession U72348, Hobert et al., unpublished results).

Using the TBLASTX search against the GenBank Expressed Sequence Tag (EST) database using either the whole CO genomic sequence, or the basic C-terminal domain, a total of 56 ESTs with homology to CO in the correct frame were detected. One EST (T76837) did not show homology to either the zinc finger region or the basic C-terminal domain but to the middle of the protein. Comparison using GAP (GCG) to the known homologues suggested that T76837 was a partial clone derived from the COLI gene. Comparison of the predicted protein sequence of the remaining 55 ESTs to each other and to the known CO homologues allowed them to be classified into 27 groups, 16 with homology to the zinc fingers and 11 with homology to the basic domain. Each group is thought to represent a unique gene, although the poor quality of some EST sequences sometimes made their classification difficult. The groups are shown in Tables 3.2 and 3.3. Two ESTs (N38572 and H36917) derived from the previously described CO homologue, STO (Lippuner et al., 1996) were found. These two ESTs were also detected when STO itself was used in a database search (Lippuner et al., 1996). No CO ESTs were detected, but this is not unexpected as CO is expressed at a very low level.

At the N-terminus of the protein in the zinc finger region the Arabidopsis ESTs probably represent nine genes. Seven of these were compared over the zinc fingers using the Pileup and Prettybox programs (GCG) to CO and the five known genes homologous in this region (Figure 3.9; Table 3.2). The two remaining ESTs (N65760 and R30042) which are also possibly unique were not included because of very poor sequence data. The rice ESTs
Figure 3.9 Prettybox comparison of the predicted protein sequence of the CO zinc fingers with a number of homologues in the GenBank database.

For a summary of the nature and origin of the homologues see Table 3.2 overleaf.

A spacer of between 9 and 18 amino acids between the two zinc fingers in six of the homologues (STO and five of the Rice ESTs) is not included in the lineup.

* These homologues had very incomplete sequence for zinc finger 2 but this is not included in the lineup.

* These homologues had sequence information for only one zinc finger so these single fingers have been lined up with both zinc finger 1 and 2 of CO.

* The amino acids affected by the mutations in the co alleles.
<table>
<thead>
<tr>
<th>Origin</th>
<th>Representative gene/EST</th>
<th>ESTs probably derived from the same gene</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloned by chromosome walking</td>
<td>CONSTANS</td>
<td>None</td>
<td>Arabidopsis thaliana</td>
</tr>
<tr>
<td>Maps 3 kb from CO</td>
<td>CONSTANS-LIKE1</td>
<td>T76837</td>
<td>Arabidopsis thaliana</td>
</tr>
<tr>
<td>Genomic library</td>
<td>CONSTANS-LIKE2</td>
<td>None</td>
<td>Arabidopsis thaliana</td>
</tr>
<tr>
<td>cDNA conferred salt tolerance to yeast</td>
<td>SALT TOLERANCE (STO)</td>
<td>N38572, H36917</td>
<td>Arabidopsis thaliana</td>
</tr>
<tr>
<td>Sequenced and annotated BAC</td>
<td>Z97338</td>
<td>None</td>
<td>Arabidopsis thaliana</td>
</tr>
<tr>
<td></td>
<td>AC002332</td>
<td>None</td>
<td>Arabidopsis thaliana</td>
</tr>
<tr>
<td>EST</td>
<td>N96038</td>
<td>H76905</td>
<td>Arabidopsis thaliana</td>
</tr>
<tr>
<td></td>
<td>N96950</td>
<td>Z34081</td>
<td>Arabidopsis thaliana</td>
</tr>
<tr>
<td></td>
<td>T04394</td>
<td>T04563, T46626</td>
<td>Arabidopsis thaliana</td>
</tr>
<tr>
<td></td>
<td>T04667</td>
<td>None</td>
<td>Arabidopsis thaliana</td>
</tr>
<tr>
<td></td>
<td>T13953</td>
<td>None</td>
<td>Arabidopsis thaliana</td>
</tr>
<tr>
<td></td>
<td>T44486</td>
<td>H37351, H7329, H37479, T44465, T45830, T21196, N65050, T2131, T44868, T45557, N37164</td>
<td>Arabidopsis thaliana</td>
</tr>
<tr>
<td></td>
<td>T75904</td>
<td>None</td>
<td>Arabidopsis thaliana</td>
</tr>
<tr>
<td></td>
<td>C19632</td>
<td>None</td>
<td>Rice</td>
</tr>
<tr>
<td></td>
<td>C23555</td>
<td>None</td>
<td>Rice</td>
</tr>
<tr>
<td></td>
<td>D21957</td>
<td>None</td>
<td>Rice</td>
</tr>
<tr>
<td></td>
<td>D24180</td>
<td>None</td>
<td>Rice</td>
</tr>
<tr>
<td></td>
<td>D24247</td>
<td>None</td>
<td>Rice</td>
</tr>
<tr>
<td></td>
<td>D25007</td>
<td>None</td>
<td>Rice</td>
</tr>
<tr>
<td></td>
<td>D25039</td>
<td>None</td>
<td>Rice</td>
</tr>
<tr>
<td></td>
<td>D41222</td>
<td>None</td>
<td>Rice</td>
</tr>
<tr>
<td></td>
<td>D47287</td>
<td>D25007</td>
<td>Rice</td>
</tr>
</tbody>
</table>

Table 3.2 The CO homologues with similarity over the zinc fingers. Each group, represented by a single member in the comparison in Figure 3.9, is thought to represent a unique gene. The ESTs and genomic homologues identified during the Arabidopsis sequencing programme are identified by their GenBank accession numbers.
<table>
<thead>
<tr>
<th></th>
<th>Cozf1</th>
<th>Gtp1</th>
<th>Celim</th>
<th>Consensus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CDTCRSACT</td>
<td>VYCHADSL</td>
<td>CMSCDAQVHS</td>
<td>AHRV</td>
</tr>
<tr>
<td></td>
<td>VYCTVCATHL</td>
<td>CSECSQVTHS</td>
<td>TKTLA</td>
<td>KHRRL</td>
</tr>
<tr>
<td></td>
<td>KCFYKDTFV</td>
<td>CKGCYFRTH.</td>
<td>............</td>
<td>.........</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Cozf2</th>
<th>Gtp1</th>
<th>Celim</th>
<th>Consensus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CESCRAAPA</td>
<td>FLCEADASL</td>
<td>CTACDSEVHS</td>
<td>ARLNRRHQR</td>
</tr>
<tr>
<td></td>
<td>VYCTVCATHL</td>
<td>CSECSQVTHS</td>
<td>TKTLA</td>
<td>KHRRL</td>
</tr>
<tr>
<td></td>
<td>KCFYKDTFV</td>
<td>CKGCYFRTH.</td>
<td>............</td>
<td>.........</td>
</tr>
<tr>
<td></td>
<td>C - - - LA</td>
<td>C - - - C</td>
<td>- - - THS</td>
<td>- LA - H - R</td>
</tr>
</tbody>
</table>

Figure 3.10 Prettybox comparison of the predicted protein sequence of the CONSTANS zinc fingers with two proteins in the Swissprot database. CONSTANS zinc finger 1 (Cozf1) and zinc finger 2 (Cozf2) are compared independently with the two proteins.

Gtp1 *Homo sapiens* GTP-binding protein ARD1 (Mishima et al., 1993).

Celim *Caenorhabditis elegans* putative transcription factor CeLIM-4 (Hobert et al., unpublished results, Accession U72348)
detected also probably represent nine unique genes and these are included in the sequence comparison. The predicted protein sequences of all of the ESTs were edited to remove poor sequence particularly at either end of the sequenced region. Where only one zinc finger is present in a homologue it is unclear whether this represents a subgroup of CO homologues that contain a single finger or whether this is due to insufficient sequence data. In some cases it was difficult to establish whether the partial sequence was derived from zinc finger 1 or zinc finger 2, because of the high degree of similarity between the CO fingers. These ESTs have been compared to each zinc finger independently.

The high number of related genes indicates that CO is one representative of a substantial gene family in Arabidopsis. The 14 new members identified by the methods described here represent only a part of the family which might contain many more genes that have not yet been identified. ESTs were not detected for CO or 3 of the 5 known genes homologous over the zinc fingers. The identification of 9 CO homologues that probably represent different genes in rice indicates that this gene family is not restricted to Arabidopsis. Eight unique Arabidopsis ESTs were identified with homology to the basic domain at the C-terminus. These were compared to CO and the 5 known genes which are homologous in this domain using Pileup and Prettybox as before (Figure 3.11). In addition a rice EST (D46441), a maize EST (T12686) and a pine EST (H75099) were also identified. All homologues have the very highly conserved basic domain, defined in CO by the region between isoleucine 326 and lysine 347, but the preceding NLS is missing in three out of the 11 ESTs, including the pine homologue. The lack of reliable and extensive sequence data may account for this observation, but it is possible that like homologue AC000104, this domain may exist in some genes in a different part of the protein. The two other homologues identified from the Arabidopsis genomic sequencing programme, Z97338 and AC002332, probably have potential NLSs in regions upstream of their very highly conserved basic domains. However, in the case of AC002332 it was not detected in any
Figure 3.11 Prettybox comparison of the predicted protein sequence of the CO C-terminal basic domain with a number of homologues in the GenBank database. For a summary of the nature and origin of each homologue see Table 3.3 overleaf.

* The residues affected by the mutations in the co alleles. The putative nuclear localization signal is overlined.
Table 3.3 The CO homologues with similarity over the basic, C-terminal domain. Each group, represented by a single member in the comparison in figure 3.11, is thought to represent a unique gene. The ESTs and genomic homologues identified during the Arabidopsis sequencing programme are identified by their GenBank accession numbers.
BLAST search and does not appear to be in a region resembling an ORF. Neither have been included in the analysis at this point because of the incomplete annotation of the BACs at the time of writing.

In addition to the two subdomains of this basic region there is some conservation between homologues at the very C-terminus of the protein. CO, COL1 and COL2 have a short acidic stretch to the carboxyl side of the basic domain and a completely conserved hydrophobic motif of 8 amino acids at the end of the protein (GYGIVPSF). There is partial conservation of the hydrophobic motif in EST N38693 (GFGVVPSF), although again there is insufficient reliable sequence in this region for many of the ESTs.

A summary of the important residues and structural domains of the CO protein, identified from the molecular analysis of the mutations in the seven alleles and the conservation between homologues, is shown in Figure 3.12.

3.4 Discussion

The seven constans alleles were characterized at the molecular level and the mutations identified. All are predicted to be missense mutations which affect a single amino acid except for the X-ray-induced allele co-1, where a deletion precisely removes three amino acids leaving the remainder of the protein unaffected. The mutations were found to be clustered in two highly conserved parts of the CO protein which are assumed to define important functional domains.

As described in the introduction, the CONSTANS protein shares some structural similarities but little sequence homology with the DNA binding domain of the GATA-1 family of transcription factors. Near the amino terminus of the CO protein are two potential zinc finger modules of the C2C2 type that are separated by 19 amino acids. Comparison of the
Figure 3.12 A summary of some of the structural features of the CO protein thought to be important for its function. The predicted amino acid substitutions in six of the mutant alleles and the predicted deletion of three amino acids in co-1 are shown.
two potential fingers, and the regions to the carboxyl side of each, show significant homology, with 46% identity and 86% similarity (Putterill et al., 1995). The most conserved regions are found at the carboxyl side of each finger. These regions contain a number of basic amino acids which, as well as the conserved spacing of cysteines, is another structural feature of the DNA binding domain common to the GATA-1 transcription factors (Ramain et al., 1993).

Five of the seven alleles contain mutations which affect the potential DNA binding domain. Three of the mutations affect the basic domains on the carboxyl side of each of the two zinc fingers; *co-2* adjacent to zinc finger 1, *co-1* and *co-3* adjacent to zinc finger 2.

The three amino acids deleted from *co-1* are highly conserved. In five out of eleven unique homologues the motif is completely conserved and differs by one or two amino acids in the other six. The first leucine deleted from *co-1* is conserved in all eleven homologues which have this domain. Many CO homologues also have this, or a very similar motif, in the equivalent position adjacent to zinc finger 1.

The histidine residue which is affected in the *co-3* mutant is extremely conserved in related genes, being present in 14 out of 14 homologues. At an equivalent position at the carboxyl side of zinc finger 2 there is also a histidine conserved in all 22 homologues. The position of histidines 48 and 91 in relation to the conserved cysteine pairs, the conservation of these histidines among even distantly related homologues and the severity of the *co-3* mutant may suggest an even more fundamental role in the zinc binding structure. Alternative structures for the zinc binding domain are discussed later.

The three dimensional solution structure of the DNA binding domain of the chicken erythroid transcription factor, cGATA-1, was determined using multidimensional heteronuclear magnetic resonance spectroscopy (Omichinski et al., 1993). In cGATA-1 a 59 amino acid region comprising the carboxyl zinc finger and its basic tail has been defined
as the minimal DNA binding unit. The analysis revealed an alpha helix involved in interaction with DNA in the major groove, encompassing the second cysteine pair and seven additional amino acids to the carboxyl side of the zinc finger. A smaller alpha helix which interacts with DNA in the minor groove lies at the beginning of the long basic tail. The predicted alpha helix in CO, affected by the deletion in \textit{co-1}, was found in the conserved region on the carboxyl side of zinc finger 2, and might suggest a role for this region in interaction with DNA.

In addition to its role in DNA binding, this region of GATA-1 is also implicated in protein-protein interactions, mediating the self-association of the protein or interaction with other members of the GATA family (Crossley \textit{et al.}, 1995). If the equivalent region in CO also has multiple roles, the mutations in \textit{co-1} and \textit{co-3} may each affect a different protein function.

Figure 3.13 shows a model for the structure of the zinc finger region of CO, based on the \textit{C}_2\textit{C}_2 type zinc fingers of the GATA transcription factors. The structure of the zinc finger region of cGATA-1 and the functions of subdomains and individual residues within the zinc fingers are included for comparison.

The mutation in \textit{co-2} affects basic domain 1, between the two zinc fingers. The arginine residue which is substituted by a histidine in \textit{co-2} is conserved in all 20 homologues for which sequence information at this position is available. The arginine residue lies close to zinc finger 2, four amino acids from the first cysteine pair. In cGATA-1 this region is important for maintaining the structural integrity of the zinc binding region (Omichinski \textit{et al.}, 1993). There is also a conserved arginine in an equivalent position in basic domain 2. Unlike cGATA-1, (Yang and Evans, 1992) the two basic domains to the carboxyl side of each zinc finger share a considerable amount of homology (Putterill \textit{et al.} 1995). This may implicate the zinc finger 1 basic domain, affected in \textit{co-2}, in interaction with DNA in
Figure 3.13 A) Sequence of the CONSTANS zinc finger region with secondary structure predicted by the PHD predict protein program (Rost, 1996). The region has been represented as two zinc fingers of the CX2C type, based on the DNA binding domain of the GATA-1 transcription factors. The amino acids affected by the mutations in the co alleles are in red. B) Sequence of cGATA-1 (chicken). The secondary structure, the identity of the zinc-binding residues and the role of other residues in stability or interaction with DNA was resolved by NMR spectroscopy (Omichinski et al., 1993a).
a similar manner to that proposed for the zinc finger 2 basic domain. Alternatively, this region may be involved in transactivation. At the equivalent region in the transcription factor c-GATA-3, substituting alanine residues for three basic residues (KRR) resulted in a protein that could not activate transcription, although DNA binding was not affected (Smith et al., 1995).

The remaining two co alleles affect residues in the loop of each of the two zinc fingers. The weakest mutant, co-4, has an amino acid substitution in zinc finger 2. The alanine residue affected is the least conserved of all amino acids affected in the alleles, being present in 12 out of 19 homologues. A mutation at this position seems to be more tolerated than mutations at positions affected in the other alleles, suggesting that this residue is less important for structure or function of this domain. However, the nature of the mutation is also likely to be important; a change to the weakly related threonine (Taylor, 1986) may not disrupt the function of the protein as radically as a change to a very different amino acid. This is further demonstrated by the presence of a threonine at this position in the CO homologue Z97338.

The mutation in co-6 also affects an alanine residue but in zinc finger 1. This alanine residue, however, is highly conserved, being present in 18 out of 19 homologues. The mutation affects two predicted β sheets (β-hairpin) which are also a structural feature of the finger region of the DNA binding domain of cGATA-1. It is possible, therefore, that the region affected in co-6 is important for maintaining the structure of the N-terminal zinc finger.

If CO is related functionally to the GATA-1 transcription factors it is likely that the two fingers have distinct roles. The analysis of a series of mutations generated in the zinc finger domain of c-GATA-1 demonstrated that the C-terminal zinc finger and adjacent basic tail was sufficient to bind specifically to the GATA motif in DNA. The N-terminal zinc finger
was found to play a role in DNA binding by stabilizing the DNA-protein complex (Yang and Evans, 1992). Recently, a role for the N-terminal finger of GATA transcription factors in protein-protein interaction has been proposed (Reviewed in Mackay and Crossley, 1998). A two-hybrid screen with GATA-1 identified FRIEND OF GATA (FOG), a Krüppel-like protein with nine zinc fingers. Finger 6 of FOG specifically interacts with the N-terminal finger of GATA-1 (Tsang et al., 1997). A number of other proteins are known to interact with the finger region of GATA proteins, for example, the Krüppel-like transcription factors Sp1 and EKLF, which can interact with either finger 1 or finger 2 (Merika and Orkin, 1995) and the LIM-domain protein Lmo2/RBTN2 (Osada et al., 1995) which forms a complex with GATA-1.

Experiments are currently underway to ascertain whether the wild type CO protein is involved in binding DNA and to identify target sequences. A two-hybrid screen to identify proteins that might interact with the CO zinc fingers is also in progress. Similar analysis of the mutant proteins may help towards understanding the role of the zinc finger domain and the effect of the mutations upon its structure and function.

Several alternative structures for the potential zinc binding motif in the sunflower gene SF3 were originally proposed in view of the presence of a number of potential zinc binding ligands (Baltz et al., 1992). The conservation of the spacing of some of these residues classified this protein as a member of the LIM family of cysteine-rich zinc binding proteins (Sanchez-Garcia and Rabbitts, 1994). This suggested which potential ligands might be involved in zinc binding: C-X$_2$C-X$_{17}$H-X$_2$C-X$_{23}$C/G-X$_{17}$C-X$_2$H, with a cysteine or glycine residue (in bold) present in the third pair of ligands in finger 1 and finger 2, respectively.

Analysis of the CONSTANS protein sequence, in particular the conservation of residues in the putative zinc binding region, suggest alternate configurations particularly in light of
the extra conserved cysteine and histidine residues close to the conserved cysteine pairs. As already discussed, the cysteine pairs have a similar spacing to those found in the GATA-1 family but in CO there are extra well conserved potential zinc ligands. Each finger has the spacing C-X_2-C-X_5-C-X_7-C-X_2-C-X_4-H-X_8-H and all these residues are conserved in all closely related CO homologues found so far. The most severe mutant, co-3, has a point mutation which affects the highly conserved histidine in zinc finger 2. It is possible that the histidines in each zinc finger could form a mixed second pair of ligands with a cysteine, and the conserved unpaired cysteine between the cysteine pairs could also be involved in zinc binding which would suggest a cluster arrangement rather than a classical C_2C_2 finger. However, this arrangement of conserved cysteines and histidines is not reminiscent of any known zinc binding motif. Using a site-directed mutagenesis approach it may be possible to target specific residues in the zinc fingers and ascertain which of these are ligands directly involved in zinc binding.

In addition to the putative DNA binding domain there is another highly conserved region at the C-terminus of the CO protein. The domain starts with a leucine residue at position 301 and runs to the end of the protein (phenylalanine 373). Within this region there are small islands of higher conservation. This domain does not have strong similarity to those of previously described proteins, except for the CO homologues, but it has a number of features which could suggest functions. Mutant alleles co-5 and co-7 affect residues within this region.

The weak co-5 mutant phenotype is caused by the substitution of a leucine for a proline. This residue is less well conserved in CO homologues than the residues affected in the stronger alleles. The proline residue affected is conserved in 10 out of 15 homologues. At this position, in four of the remaining homologues a basic amino acid (arginine or lycine) is substituted for proline indicating the importance of the presence of positively charged
residues in this domain. The homologue Z97338, like co-5, contains a leucine at this position. This is similar to the case of allele co-4 (alanine to threonine substitution) where the same homologue contained a threonine at the position affected by co-4. This suggests that the substitutions in these two weak alleles can be tolerated at this position in closely related genes, and therefore presumably do not greatly affect the function of these conserved domains.

The substitution of glutamine for arginine 340 causes a severe late-flowering phenotype in the co-7 mutant. This residue is highly conserved, being present in 16 out of 16 homologues. The net positive charge of this region, and its strong conservation, suggests that a reduction in this charge, for instance by the introduction of the non-charged glutamine, may have a deleterious effect on the structure or function of the domain.

The most striking feature of this C-terminal domain is the preponderance of basic amino acids, giving the entire region a net charge of +9. The most conserved stretch of 44 amino acids from aspartic acid 305 to arginine 348 has a net charge of +13. When the CO amino acid sequence was compared to the secondary structure prediction program "PHD predict protein" (Rost 1996) the basic domain was predicted to form two alpha helices from residues 306 (arginine) to 341 (valine) and residues 344 (Arginine) to 354 (Glutamic acid). The amino acid substitutions in both co-5 and co-7 are predicted to reduce the number of residues in the short loop or turn between the two alpha helices. If the orientation of particular residues in this structure is important, for example in interacting with another molecule, the disruption to the angle of a helix may be sufficient to destabilize the interaction.

The association of both charged clusters and regions able to form alpha helices with functional domains of transcription factors is well documented (Brendel and Karlin 1989, reviewed in Ptashne, 1988 and for plant transcription factors Meshi and Iwabuchi, 1995).
Basic domains are often associated with DNA binding domains, where the positively charged amino acid side-chains interact with the negatively charged phosphate backbone of DNA. In the basic-region leucine-zipper (bZIP) family and the basic-region helix-loop-helix (bHLH) family the basic domain forms an alpha helix which interacts with DNA in the major groove (Glover and Harrison, 1995; Ma et al., 1994). A basic domain is also involved in the interaction with DNA in the MADS-box family (Bruhn et al., 1994). The association with the zinc fingers in the GATA family of transcription factors of a basic domain involved in the interaction with DNA in both the major and minor grooves has already been discussed.

A more transient protein-DNA interaction is proposed for a basic, highly conserved domain found in the maize VP1 transcription factor (Hill et al., 1996). A 40 amino acid peptide containing the basic domain BR2 from VP1 is able to enhance the binding of the wheat bZIP transcription factor EmBP-1 to the Em promoter in vitro. The BR2 domain has the potential to form an alpha helix, with possible DNA binding properties. However, a stable VP1-DNA complex is not detected in gel-shift experiments, and it is proposed that the interaction of the basic domain of VP1 is transient, possibly inducing a change in DNA conformation, and allowing other transcription factors to bind to their target sites. If this region of CO is involved in DNA binding then together with the zinc fingers CO might be predicted to contain two DNA binding regions. Transcription factors with more than one putative DNA binding domain do exist; for example, the twin autonomous domains of the rice protein GT-2 (Dehesh et al., 1992); the presence of both a homeodomain and zinc finger-motifs in a Drosophila protein, (Fortini et al., 1991). However, whether the CO protein is involved at all in DNA binding, through the zinc fingers or any other domain, has yet to be determined.

In certain transcriptional repressors basic motifs are thought to act as the repressor domain; for example, the E. coli-encoded sequence SSB24, which can act as a potent
repressor of transcription in yeast when fused to the DNA binding domain of GAL4 (Saha et al., 1993). However, as CO can activate transcription in the same yeast system (M. Costa, unpublished results) it seems unlikely that it has a role in repression.

Alternatively, the C-terminal domain of CO might act to activate transcription. The formation of an alpha helix is thought to be important in acidic activation domains (Franken et al., 1994) where the solvent-exposed residues are predominantly negatively charged and are thought to provide a surface for the interaction with another protein in the transcriptional machinery. Although this region of CO is positively charged, a genetic screen in yeast has identified potential transcriptional activating sequences from tobacco, which are characterized by a net positive charge (Estruch et al., 1994). One of these was found to be homologous to the BBC-1 human protein, a member of a conserved family of basic hydrophilic proteins which contain potential NLSs in a region with a preponderance of basic amino acids (Sáez-Vásquez et al., 1993).

The prediction that this domain may form an alpha helix could implicate it in the interaction with another protein not necessarily directly involved with transcriptional activation. It is possible, for example, that CO could bind DNA as a hetero- or homodimer, and this domain could mediate or stabilize the interaction with its partner.

One possible role for at least part of this basic domain could be nuclear localization. If CONSTANS is a DNA binding protein it must be localized to the nucleus. Most nuclear proteins carry a nuclear localization signal (NLS) which directs the protein through the nuclear pore into the nucleus (Garcia-Bustos et al., 1991; Raikel, 1992). A Prosite search with the CONSTANS protein sequence did not detect any potential NLS motifs (Putterill et al., 1995). Recently, however, CONSTANS and CONSTANS-LIKE 1 orthologues from Brassica napus have been isolated and sequenced (Robert et al., 1998; Chapter 6). The Brassica napus orthologue of CONSTANS-LIKE 1 (COL1 Putterill et al., 1997) has three conservative amino acid changes in a basic motif compared to CO, and this is detected by
Prosite as a potential bipartite NLS (L. Robert, unpublished results). A bipartite NLS consists of two basic amino acids, a spacer region with more than four amino acids (but typically ten) and a basic cluster in which three out of five residues must be basic. This type of NLS was first defined in the *Xenopus* nuclear protein, nucleoplasmin (KRPAATKKAGQAKKKK, with the residues important for nuclear targeting in bold; Robbins *et al.*, 1991). The potential *COL1* *B. napus* orthologue NLS is RKARVMRYREKKKTRK. In CONSTANS, the equivalent sequence reads REARVLRYREKRKTRK. In the first domain, only one residue is basic, and this divergence from the consensus, along with the two other differences probably prevented the Prosite program from detecting the NLS in CO. However, this region may still represent a functional NLS. Preliminary results indicate that the CO protein is localized to the nucleus (M. Costa, unpublished results).

The role of the remainder of this domain, including the region affected in the alleles, could be further investigated by fusing serial deletions of the CO protein to the DNA binding domain of the GAL4 transcription factor, in a yeast two-hybrid system. This may reveal proteins which interact with CO, possibly through the conserved basic domain.

If CONSTANS plays a role in the regulation of transcription it might contain a transcriptional activation or repression domain. Three main activation domains characterized by different sequence motifs have been reported (reviewed by Mitchell and Tjian, 1989) and although they do not appear to have a strong consensus sequence they have recognisable characteristics. The CONSTANS protein contains five regions with similarity to transcriptional activation domains; two acidic domains and three glutamine-rich domains. However, the latter are between 9 and 14 residues long and therefore are much shorter than published examples such as the 143 amino acid glutamine-rich domain B of the mammalian transcription factor Sp1 (Courey and Tjian, 1988). The CO protein can activate transcription of reporter genes in yeast, when fused to the DNA binding domain of GAL4 (M. Costa,
unpublished results). It is more common for activation by a foreign transcription factor in a yeast system to occur through an acidic activation domain rather than a glutamine-rich or proline-rich activator (Schwechheimer et al., 1998). This may suggest that CO contains an acidic domain that can activate transcription. The most convincing candidate is the acidic domain which extends approximately from glutamic acid 124 to glutamic acid 150. Experiments are currently underway to establish whether this acidic region, or other domains are responsible for activation.

Zinc finger transcription factors often exist as families of related genes. In the human genome, the TFIII family of zinc binding transcription factors, characterized by the classic C_{2}H_{2} zinc fingers, reportedly contains up to 1000 members (Bellefroid et al., 1990). Recently, nine members of a diverse family of Arabidopsis C_{2}H_{2} zinc finger proteins were isolated using degenerate PCR primers designed to highly conserved regions in the petunia EPF1 zinc finger gene (Meissner and Michael, 1997). A similar approach was used to isolate eight Arabidopsis single fingered C_{2}H_{2} genes, thought to represent the majority of a subfamily containing up to 10 members (Tague and Goodman, 1995). Since the CO gene was first identified, evidence of an extensive family of related zinc finger proteins in Arabidopsis has been growing (Putterill et al., 1997; Ledger et al., 1996; Lippuner et al., 1996). Recent Blast comparisons to the GenBank databases (Altschul et al., 1990) have isolated probably fourteen unique CO homologues from Arabidopsis, which have greatly contributed to the analysis of the conserved amino acids affected in the mutant alleles. In addition, probably nine rice homologues, and one each from maize and pine have been identified (all from EST programmes). Most CO homologues identified from genomic sequence appear to contain both the zinc fingers and the conserved C-terminal domain, and it will be interesting to determine how many ESTs, all of which are incomplete, also have both domains and, where sequence information is very limited, whether all have two zinc
fingers. In addition to ESTs, a growing number of homologues are being identified in the genomic sequencing programme, for example, Z97338 on chromosome 4, identified during the sequencing of the ESSA 1 region (European Scientists Sequencing Arabidopsis). It will be intriguing to see if any of these mapped homologues correspond to known mutant loci, or flowering time QTLs and whether their patterns of expression might suggest a role in reproductive development.

The molecular analysis of multiple mutations in the CO gene identified a number of amino acid residues which are important for the function or stability of domains of the protein. A similar analysis of multiple mutant alleles of the COPI gene (CONSTITUTIVE PHOTOMORPHOGENIC 1) also identified important domains, but the range of mutations found was in striking contrast to that found at the CO locus. The molecular analysis of seventeen recessive cop1 mutants demonstrated some of the functional implications of the three recognizable structural domains of the COPI protein, and identified several null mutations (McNellis et al., 1994). Six of the adult-lethal mutants did not accumulate any detectable COPI protein. The remaining four lethal mutants to be analyzed were compromised in either the Gp-protein homology domain or the adjacent C-terminal domain. Only one of these contains a single amino acid substitution; cop1-9 has a highly conserved glycine residue in the Gp-domain substituted by a glutamic acid. The remaining lethal mutants, and the less strongly compromised mutants contain introduced stop codons, either by amino acid substitution or frameshift mutations, or small in-frame deletions or insertions. Interestingly, there were no mutations detected in any alleles in the N-terminal zinc fingers or the adjacent coiled coil region, although the weakest mutant, cop1-4 contains an in-frame stop codon which results in a truncated protein containing only these two domains. McNellis and colleagues give several explanations for the lack of mutations in the zinc fingers; for example, mutations at the N-terminus of a protein which still retain
a functional C-terminus may be expected to occur at a low frequency because of the
likelihood of introducing frameshifts or stop codons early in the protein. The mutants were
identified in a screen for recessive constitutive morphogenesis mutants and mutations in the
zinc fingers might cause a dominant lethal phenotype. Alternatively they might have a
completely different phenotype not detected in their screen.

The contrast between the cop1 and the constans allelic series is striking - six of the seven
co mutations are single amino acid substitutions, all seven are assumed to be missense
mutations affecting structure or function of discrete domains. Five of the mutations affect
the N-terminal zinc fingers and do not compromise the remaining C-terminal part of the
protein. No mutations introducing stop codons or frameshifts were detected. It is possible
that as described for the cop1 mutants, particular mutations of the CO gene, in this case
nonsense mutations, would lead to an entirely different phenotype that would not be
detected in a screen for late flowering mutants. It would be interesting to know whether the
lack of any obvious null mutations at the co locus is coincidental and partly caused by the
predominance of EMS-induced alleles, or whether a co null has a unique phenotype which
has so far escaped detection. Chapter 4 describes the screening for, and the identification
and characterization of co-8, a potential null mutant identified after gamma-irradiation.
4 Isolation and characterization of co-8

4.1 Introduction

The seven co mutations described in Chapter 3 all caused in-frame changes and none were unambiguous null alleles. In part this may have been a consequence of six of the mutations having been induced with EMS, which usually causes single base changes (Koomneef et al., 1982), however none of the mutations caused premature termination of the CO protein. Furthermore, co-1, which was induced with X-rays, was an in-frame deletion of three amino acids. This raised the possibility that all of these alleles retained some CO function, and that perhaps a null allele would cause a more severe effect on flowering time or a different phenotype. All seven co alleles were identified in an M₂ screen for late flowering mutants; therefore, if a null allele caused a different phenotype it would not have been selected. It is also possible that the co alleles identified so far are dominant because the mutant proteins antagonize the function of the product of a related gene, and that a null allele would cause a wild type phenotype because other genes can compensate for the loss of CO function. In contrast, plants homozygous for a co null allele may have a more severe phenotype than those already available, for example never flowering or causing lethality. The semi-dominant gai (gibberellic acid insensitive) mutation of Arabidopsis confers a dwarf phenotype resembling that of mutants defective in gibberellin biosynthesis (Peng and Harberd, 1993). The gai allele was found to be a dominant gain-of-function allele which encodes an altered protein. Derivative alleles of gai, which were found to be null alleles, conferred a phenotype indistinguishable from wild type. It was proposed that in the complete absence of a GAI protein a closely related gene such as the highly homologous GRS (GAI-related sequence) could substitute for its function (Peng et al., 1997). Functional
redundancy has also been proposed for components of the *Arabidopsis* ethylene signal transduction pathway. The alleles isolated at the *ETRI* (ethylene responsive 1) locus, *etr1-1* to -4, are all dominant gain-of-function alleles which encode altered proteins. All four are single amino acid substitutions. Again, a closely related gene, *ERS* (ethylene response sensor), is thought to encode overlapping functions which may explain why null alleles with an altered ethylene response have not been isolated for either gene (Bleecker *et al.*, 1988; Chang *et al.*, 1993; Hua *et al.*, 1995).

As well as providing an interesting new allele to study, a null allele of *CO* would be a useful tool for further genetic and molecular analysis. Mutated copies of the *CO* protein could be introduced into plants that completely lacked *CO* activity and the effect of the introduced *CO* proteins could be studied. An allele which does not produce a *CO* transcript would be useful as a negative control in the analysis of *CO* expression by RT-PCR or in situ hybridization. The genetic analysis of the relationships between mutations in the same or different flowering pathways would also be simplified by the availability of definite null alleles rather than possible "leaky" or dominant gain-of-function alleles.

At Nottingham University a method for the isolation of deficiencies (deletions) in the *Arabidopsis* genome was developed (Vizir *et al.*, 1994). These experiments were envisaged to provide overlapping deletions or other rearrangements that would enable the integration of physical and genetic maps and the isolation of genes by chromosome walking or genomic subtraction. The technique involved mutagenizing wild type Landsberg *erecta* pollen with gamma-irradiation and using the irradiated pollen to fertilize a line homozygous for a series of recessive mutations which have readily identifiable visible phenotypes (Figure 4.1). If the mutagenized pollen carried a new mutation at one of the loci mutated in the marker line, the phenotype would be visible in the *M₁* generation. If these *M₁* plants
were then self-fertilized and the next generation screened, all M₂ plants would show the mutant phenotype while the other recessive mutations not affected by the mutagenesis should segregate in a 3:1 wild type:mutant ratio. The material generated from such a screen might provide a useful source of new co alleles. One of the marker lines used by Vizir and co-workers was the chromosome 5 marker line lu co-1 msl ttg (lu: centre of the rosette is yellow green, map position 10 cM; co-1: late flowering, map position 13 cM; msl: male sterile, map position 23 cM; ttg: yellow seeds and no trichomes, map position 28 cM; NASC240; Figure 4.1). As the co-1 allele is semidominant, the M₁ plants from a cross to wild type Landsberg erecta will have a flowering time phenotype intermediate between wild type and a co homozygote. Identifying new mutations at the CO locus is therefore not as straightforward as identifying new mutations at one of the other loci carrying recessive mutations.

To aid Vizir and co-workers in the identification of individuals carrying new co mutations M₂ seeds derived by self-fertilization from late flowering M₁ plants were sent from Nottingham to the Coupland laboratory. The progeny of 26 late flowering M₁ plants potentially carrying new co alleles, from the gamma-irradiation screen were kindly supplied by Dr. Igor Vizir.

4.2 Screening for new co alleles in an M₂ population made from gamma-irradiated pollen

To identify new alleles at the CO locus approximately 20 seeds from each of the 26 self-fertilized M₁ plants were sown in the greenhouse to screen for lines in which all of the M₂ progeny were late flowering. Lines which were late flowering in the M₁ generation because of the dominant effect of co-1 or of mutations in other flowering time genes or because of environmental effects should segregate early flowering wild type plants in the M₂. Twenty of the M₂ populations contained early flowering plants (Table 4.1), so work with these lines
Figure 4.1 The strategy for generating new co alleles by gamma-irradiation of wild type pollen. This was then crossed to a line carrying a number of phenotypic markers and potential late flowering individuals identified in the M1 generation. Seeds from these individuals were provided to the author by Igor Vizir. The genotypes of interest identified in each generation are outlined.
was discontinued. The remaining six lines produced only late flowering progeny. These lines were called co-Dfa2, co-Dfa3, co-Dfa8, co-Dfa9, co-Dfa10 and co-Dfa15 (Table 4.2).

The segregation of lu was also recorded in the M_2 generation. An increased frequency of lu homozygotes in the M_2 above the expected 25% would indicate reduced transmission of the irradiated parental chromosome (Vizir et al., 1994). Five of the six lines: co-Dfa2, co-Dfa3, co-Dfa9, co-Dfa10 and co-Dfa15, showed a distortion in favour of lu, which suggests that the new mutant chromosome was poorly transmitted, or in the homozygous state was lethal.

In order to confirm the late flowering phenotype in the M_3 generation and to identify plants homozygous for the new alleles from each of the six lines, five green M_2 plants which were either wild type or heterozygous for $LUTESCENS$, were self-fertilized and M_3 seeds collected. The M_2 plants from lines co-Dfa3 and co-Dfa9 were all found to be sterile so work with these was discontinued. The remaining four lines were analyzed in the M_3 generation (Table 4.2). Line co-Dfa15 segregated early flowering plants in the M_3 generation so work with this line was also discontinued. For the remaining three lines, co-Dfa2, co-Dfa8 and co-Dfa10 all plants from the five families screened in the M_3 generation were late flowering. However, for two lines, co-Dfa2 and co-Dfa8, no $LUTESCENS$ homozygotes (100% green M_3 families) were identified, suggesting that perhaps homozygotes of the new co alleles in these lines were difficult to recover.

4.2.1 Identification of a new allele, co-8

A potential co deletion homozygote was identified for line co-Dfa10. M_3 family E325 (Table 4.2) contained only green, fertile, late flowering plants with a normal distribution of trichomes, suggesting that the parental M_2 plant was homozygous for $LUTESCENS$, TTG and MSI and a new co allele. This new allele was named $co-8$.

- **83**
Table 4.1 The screen for lines which do not segregate early flowering plants in the M₂ generation and which therefore may carry a new co allele. Each line was derived from a selfed M₁ putative late flowering individual, identified by Igor Vizir and sent to the author for analysis.
<table>
<thead>
<tr>
<th>Name</th>
<th>M₂ phenotypes</th>
<th>M₃ from selfed M₂ green plants (wild type LUTESCENS homozygotes or heterozygotes)</th>
<th>Family</th>
<th>All late?</th>
<th>LU /lu</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>co-Dfa-2</td>
<td>All late</td>
<td></td>
<td>E312</td>
<td>Yes</td>
<td>3.1:1</td>
<td>No LU homozygotes so no homozygotes for a new co allele</td>
</tr>
<tr>
<td></td>
<td>LU /lu 1.86:1</td>
<td></td>
<td>E313</td>
<td>"</td>
<td>2:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E314</td>
<td>"</td>
<td>2.3:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E315</td>
<td>"</td>
<td>2.6:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E316</td>
<td>"</td>
<td>2:1</td>
<td></td>
</tr>
<tr>
<td>co-Dfa-3</td>
<td>All late</td>
<td></td>
<td>E317</td>
<td>Yes</td>
<td>2.6:1</td>
<td>No LU homozygotes so no homozygotes for a new co allele</td>
</tr>
<tr>
<td></td>
<td>LU /lu 0.1:1</td>
<td></td>
<td>E318</td>
<td>"</td>
<td>1.9:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>but STERILE</td>
<td></td>
<td>E319</td>
<td>"</td>
<td>2.3:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>so discontinued</td>
<td></td>
<td>E320</td>
<td>"</td>
<td>2.6:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E321</td>
<td>"</td>
<td>7:1</td>
<td></td>
</tr>
<tr>
<td>co-Dfa-8</td>
<td>All late</td>
<td></td>
<td>E322</td>
<td>Yes nt</td>
<td></td>
<td>Poor germination</td>
</tr>
<tr>
<td></td>
<td>LU /lu 9:1</td>
<td></td>
<td>E323</td>
<td>"</td>
<td>4:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E324</td>
<td>"</td>
<td>6:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E325</td>
<td>"</td>
<td>1:0</td>
<td>Homozygous for a new co allele?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E326</td>
<td>"</td>
<td>4.3:1</td>
<td></td>
</tr>
<tr>
<td>co-Dfa-9</td>
<td>All late</td>
<td></td>
<td>E327</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LU /lu 0.7:1</td>
<td></td>
<td>E328</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>but STERILE</td>
<td></td>
<td></td>
<td>segregated EARLIES so discontinued</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>so discontinued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>co-Dfa-10</td>
<td>All late</td>
<td></td>
<td>E329</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LU /lu 0.45:1</td>
<td></td>
<td>E330</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E331</td>
<td>segregated EARLIES so discontinued</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E332</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>co-Dfa-15</td>
<td>All late</td>
<td></td>
<td>E333</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LU /lu 1.6:1</td>
<td></td>
<td>E334</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E335</td>
<td>segregated EARLIES so discontinued</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E336</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2 The analysis in the M₃ generation of the six late flowering lines picked from the M₂ screen and the identification of a line homozygous for wild type LUTESCENS and therefore potentially homozygous for a new co allele.
4.3 Characterization of co-8

To characterize co-8, seeds for further genetic analysis, and plant tissue for DNA extraction were harvested from several individuals in family E325 and the parental M₂ plant. One individual, E325-25, was backcrossed to wild type Landsberg erecta to characterize the heterozygote and to segregate co-8 from the mutagenized background. The genetic analysis of co-8 is described in section 4.3.2.

4.3.1 Molecular characterization of co-8

When co-8 was identified detailed restriction maps of the region around the CONSTANS gene were available and the gene had been cloned and sequenced. It was therefore possible to characterize the co-8 allele at the molecular level.

4.3.1.1 Analysis of co-8 by Southern hybridization

The rearrangement in co-8 was first analyzed by Southern hybridization. DNA extracted from a number of co-8 M₃ and M₂ individuals, wild type, co-1 and the two additional potential co deletion alleles co-Dfa3 and co-Dfa8, was digested with Hind III. After fractionation and Southern blotting the filter was probed sequentially with a number of restriction fragments derived from the region around the CO gene. A 2.3 kb EcoRI-PstI fragment encompassing most of the first CO exon and the promoter region first revealed a rearrangement in co-8, and the result of this hybridization is shown in Figure 4.2. Two main observations were made from this preliminary experiment. The first observation was that the hybridization pattern in the individuals carrying a co-8 allele must be the result of an insertion or inversion at the CO locus because of the presence of two additional hybridizing fragments that were larger than those present in wild type and which could not result from a deletion alone. The second was that an individual from the presumed homozygous M₃ family and its M₂ parent contained a wild type hybridization pattern in
Figure 4.2a Southern blot of plant DNA digested with Hind III and probed with the 2.3 kb EcoR I-Pst I fragment shown below. DNA was extracted from the leaves of individual plants (E325 M₂ and M₃ and E326 M₂ individuals) which were then allowed to self-fertilize. Plant E325-25 (red) was chosen for further genetic analysis.

DNA from a population of co-Dfa-10 seedlings grown from the original seed batch sent from Nottingham was included to verify that the co-8 mutation was found in this line. DNA from populations of co-Dfa-2 and -8 seedlings was also included but no mutations in the CO gene in these two lines were identified by Southern analysis.

The arrow indicates a hybridizing fragment from a CO homologue.

Figure 4.2b Restriction map of the CO genomic region with the fragment used to probe the blot above, and the expected wild type Hind III hybridizing fragments indicated.
addition to a co-8 rearrangement. This demonstrated that *lutescens*, *ttg* and *ms1* had been lost from this family, perhaps by a double recombination event on either side of co-1, but that the co-1 allele, which gives a wild type restriction and hybridization pattern, was still present.

The Southern analysis did, however, identify three M₃ individuals which appear to only have a co-8 hybridization pattern (E325-20, E325-24 and E325-25) and which are assumed to be homozygous for the new allele. DNA from one of these, E325-25, was used in further Southern analysis.

No rearrangements were detected in lines co-Dfa2 or co-Dfa8, with any of the probes used, including the two cosmids 129 and 142 which cover 30 kb around CO (data not shown).

If these lines contained large deletions it is possible that the irradiated chromosomes were not transmitted through the gametes and were lost, so the lines are homozygous for co-1 and have lost the flanking markers by recombination. Alternatively the deletions could be very small and therefore only detectable by sequencing the CO gene. The molecular analysis of these lines was discontinued.

Using DNA from the chosen co-8 homozygote, a heterozygote and controls as before, the Southern analysis was repeated with more restriction enzyme digestions and more probes in the region. This allowed the region affected by the rearrangement at the CO locus to be defined, and a deletion identified. Figure 4.3a shows a Southern blot probed with a 950 bp *Hind* III - *Bgl* II fragment 5' of the CO ORF (Figure 4.3b). This fragment is completely deleted in co-8. For simplicity, DNA on either side of the deletion will be referred to as the CO ORF side and the CO promoter side. The size of the restriction fragments detected in co-8 in Figure 4.2a were not consistent with co-8 being caused by a simple deletion, so it seemed likely that an insertion or inversion had occurred between the two breakpoints of the deletion.
Figure 4.3a Southern blot of plant DNA digested with the restriction enzymes indicated and probed with the 950 bp probe shown below. In co-8 (in red) this fragment is completely deleted, as the fourth track in each group contains no hybridizing fragment. This blot was reprobed with fragments directly adjacent to the probe used here and fragments not present in wild type were detected in co-8, which were not consistent with a simple deletion. Additional Southern blots are not shown as they only confirmed the result already shown in Figure 4.2. The deletion does not extend much beyond this 950 bp region as flanking fragments hybridized to co-8 DNA.

Figure 4.3b Restriction map covering approximately 5 kb in the CO region. The fragment used to probe the Southern blot above, which is completely deleted in co-8, is indicated, as are the wild type restriction fragments detected by the probe.
Further Southern analysis did not yield any more information about the nature of the rearrangement so it was decided that a cosmid library from the homozygous co-8 line should be constructed and the DNA introduced at the deletion breakpoints cloned.

4.3.1.2 Construction of a co-8 cosmid library

Genomic DNA extracted from a population of co-8 plants was partially digested with Sau 3A and ligated into the compatible BamH I site of the cosmid vector 04541. This was packaged into λ-phage which was then used to infect XL1-Blue MR cells. The library was titred and estimated to contain approximately ten haploid genome equivalents.

4.3.1.2.1 Screening the library

The library was amplified and screened simultaneously with two wild type restriction fragments of 1.65 kb and 0.9 kb, one from each side of the deletion in co-8 (Figure 4.4). After screening 100,000 colonies in two separate experiments seven cosmids were identified but these represented only two unique cosmids, c163 and c164, isolated three and four times, respectively. At the third round of colony purification, probes from each side of the deletion were used separately and it was found that both cosmids were derived from the CO promoter side. Subsequent screening of the library with probes from the CO ORF side detected no cosmids.

4.3.1.2.2 Characterization of co-8 cosmid clones by restriction mapping, Southern hybridization and subcloning

Cosmids 163 and 164 were restriction mapped and probed with wild type genomic probes to identify restriction fragments which contained the junction on the CO promoter side between DNA flanking the rearrangement and DNA introduced at the deletion breakpoint (summarised in Figure 4.4). As well as a number of recognizable wild type restriction
Figure 4.4 The strategy used to isolate DNA adjacent to the CO promoter in co-8. Fragments a and b were used as probes against a cosmid library made from co-8 DNA. Probe a (promoter side) detected two cosmids, 163 and 164. Probe b (ORF side) detected no cosmids. Cosmids 163 and 164 are both approximately 17 kb and overlap for most of their length. The restriction map of the cosmids is shown for only 10 kb, including approximately 2 kb on the CO promoter side of the deletion (in blue) and approximately 8 kb of novel DNA introduced by the co-8 rearrangement (in dark red). The approximate position of the junction is indicated by an arrow. Large EcoR I and Hind III fragments not present in wild type but which hybridized to probe a must contain the junction and were subcloned for sequencing and mapping.
fragments, these probes identified in both cosmids a 7 kb EcoR I fragment, designated 183, and a 9 kb Hind III fragment, 184, that are present in co-8 genomic DNA but not in wild type. These were predicted to contain a junction between the CO promoter and a breakpoint in the co-8 rearrangement. Genomic clones containing the CO ORF did not hybridize to these or any of the other cosmid fragments, indicating that the cosmids did not span the rearrangement. To facilitate further analysis the two restriction fragments, 183 and 184, containing the junction between the CO promoter and the novel DNA present in co-8 were subcloned from c163 into pBluescript.

4.3.1.3 Isolation of the DNA flanking the CO ORF in co-8 by IPCR

The CO promoter side of the co-8 rearrangement had been successfully cloned. Cosmids representing the other end of the rearrangement were not detected in the library so an IPCR approach was used to isolate the co-8 DNA flanking the CO ORF. Southern analysis had shown that at least 950 bp of CO promoter was deleted but the extent of the deletion in co-8 into the ORF was unknown. A series of PCR experiments using one primer at the 3’ end of the ORF and a number of primers towards the 5’ end (shown later in Figure 4.7) revealed that at least 300 bp of the first exon was deleted and that the deleted region included the zinc fingers. This allowed suitable primers to be chosen for Inverse PCR. Figure 4.5 illustrates the IPCR strategy that was used. A Southern blot of co-8 DNA, digested with a number of restriction enzymes which cut within a suitable distance of the chosen 3’ PCR primer was probed with a CO clone (data not shown). This revealed that BstY I cleaved within the rearrangement approximately 150 bp from the breakpoint adjacent to the CO ORF. No other enzymes tested produced fragments of a suitable size to be recircularized and amplified by PCR.

To isolate this DNA fragment, co-8 genomic DNA was digested with BstY I, self-ligated and used as a template for PCR with primers co25 and co52 (Chapter 7, Materials and
Plant DNA from the \textit{co-8} mutant digested with \textit{Bst YI} and self-ligated

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure4.5}
\caption{Schematic diagram to illustrate how the DNA adjacent to the \textit{CO ORF} in \textit{co-8} was cloned by Inverse PCR. The diagram is not to scale.}
\end{figure}
Methods) The correct sized PCR fragment, approximately 350 bp, estimated from the Southern blot and the position of the primers, was obtained. After blunt end cloning into pBluescript the PCR product was verified by restriction mapping and sequenced using T3 and T7 primers.

4.3.1.4 The deletion at the CO locus in co-8

The deletion of at least 950 bp 5' of the CO ORF in co-8 was first detected by Southern analysis of plant genomic DNA. A 950 bp Hind III - Bgl II restriction fragment failed to hybridize to DNA extracted from a co-8 homozygote, indicating that the DNA had been deleted and not reinserted elsewhere. Cloning and sequencing the DNA containing each deletion breakpoint allowed the extent of the deletion to be defined. At the CO promoter end a suitable primer, co17, lay 125 bp upstream of the deleted Bgl II site. Using the cosmid subclone p183 as a template, this sequencing primer identified the deletion breakpoint at a position 45 bp upstream of the Bgl II site, 1065 bp upstream of the CO ATG (Figure 4.6).

At the CO ORF side, the 350bp IPCR clone, p12, was completely sequenced using T3 and T7 primers. The cloned border fragment included 173 bp of novel co-8 DNA between the deletion breakpoint and the Bst YI site used for recircularising the IPCR product (Figure 4.5). The breakpoint at this side was 304 bp downstream of the CO ATG. Therefore 1369 bp were deleted at the CO locus in co-8, and this was comprised of 1065 bp extending upstream from the ATG and 304 bp of the first exon (Figure 4.6).

4.3.1.5 Confirmation of the rearrangement in co-8 by PCR

To verify that the rearrangement in co-8 was not a simple 1.3 kb deletion, PCR reactions were performed using primers that annealed around and within the deleted region and genomic DNA from wild type and co-8 mutant plants. Amplified fragments were
TCCTGAAAAT TCCATACAAAG TGTCGTTTGT ATTAGATTAC TTCCACAGGT
TGAGATCCTAA TAAAGCTACA ATAAAATAGTA TAGAGTATCA TCATAAACC
AAATTACAGA GATGTCACAA CACTCATGAG TCATTGTTTG TAACTACTTA
CTATAATGTT TACCAAGTCG AAATTTCTAC ATACTATATA TGATAAAATCT
AATTATTGCT CATGTTGACT CCAAATGCCC TTOTAAGTTT TAACTGTGTC
gtcaggttaaa TTCTAATTGT TAGTCTCAAG ACTACTTGCC GGATTTCGAT
ttgatctctaga AAAATCCACC GTCTCTATGT TTTTCTAGTC ACTTTTCCGA
TATGATTCTC ATTACCATGA CTTATGAAAC CAGATTAAAC ATATAAACAC
ttttcatcag AAAATCCTTCC GAAAGTTTCA ATGGCAAATC TTTCTAAATG
atgcagatgc ATTCAAAATAT AATGGAACAA CAACATACAC ATATTCAAG
GGTTGTCTAA CTTTGTATA GGTAGTCAAC CCAATAAGGT TGGTGATGTC
tctgacactc GAAGCCTTAC TCAGGAGAGAT ACCTGAACAG TAATCAACAG
gttcaggagtc AATATTCACA ACTTAAACT TTGTATAAGG CAAAGAGAT
AAACGCAATC TAGCTTTACT TAAATATAAA TGCATATGAA AATAGTAAAA
GGTGATACGA AAAAATAGTA ACAATTGCCC TGCACACCA TGGCATTATC
GGGACCACTT CCTCTTGGAG ATCTCAGTAT GGCAGTGTCG AAAACCTTAA
CAACTTGTGA ACGGGCTCCA AGCAGAAGGT GCATAGGAGG AGATGTAC
ACTCTACACT TTACACTTCTA CACTTTACAC AATGGCCTTC CCAAAGGCTC
AACATACTTG AAGAGGATCC AAAAATAGTA AGAGGCACCT AACGCTGTGC
CAGTGTAGG CACTCAGGAT TGATCTTCC CCTCTACTTA TTCTTCCACA
CCAGATATAAA GCTT TATTAG CCTCTTCTTT CCTAGATACAG CTCCCAACC
ATCAAACCTTA CTACATCTGA GTTATT ATGT TGAAACAAGA GAGTAACGAC
ATAGGTAGTG GAGAGAACAA CAGGCGAGC CCTGTGACA CATGCGCGTC
AAACGCCTGC ACCGTATTT GCAGTCGACA TCCTGCTTAC TTGTCACTGA
GCTGTGTATGC TCAAGTTCAC TGTCGCAAAT GCAGTGCTTC CCGCCATAAA
CGTTCTCAGG TCTCGCGAGTC ATGTGACGCT GTCGCGCTGC TTGTTTTGTG
TGAGGCGAGT GATGCTCTTCT TATGCAAGGC CGTGATTTCA GAGTTCATT
CTGCACACCC ACTTGTCTAGA CGCCTACAGC GAGTTCAAAT TCTACCAATT
TCTGGAAACT CTTTCAGCCTC CATGACCACT ACTCACCCAC AAAGCGGAAA

Figure 4.6 The sequence of the DNA which has been deleted from the CO locus in the co-8 allele. The extent of the 1.369 kb deletion is shown in blue. The beginning of the CO ORF is underlined, with the ATG start codon in bold. The restriction sites used to make the 950 bp Bgl II - Hind III probe, which first detected the co-8 deletion, are shown in purple.
transferred to a filter and probed with a fragment encompassing the CO gene, as shown in Figure 4.7. Only primer pairs which lie within the undeleted part of the CO ORF enabled amplification of a fragment from co-8. Amplification with primers where one of the pair annealed to the CO promoter within DNA which, by Southern analysis is still present in co-8 did not produce amplified fragments. If the rearrangement in co-8 was a simple deletion then it would be predicted that primers designed to DNA on either side of the deletion would produce fragments smaller than those amplified from wild type DNA. The CO promoter must either have been displaced too far from the CO ORF by an insertion so that the intervening fragment was too large to amplify, or displaced by an inversion.

To distinguish between these possibilities the sequence of the DNA introduced next to the deletion breakpoints in co-8 was used to design new primers for PCR (Figure 4.8). If the rearrangement consisted of an inversion between two breakpoints, one at the CO locus and one elsewhere on the same chromosome, then two primers designed to co-8 DNA, one adjacent to the CO ORF and one adjacent to the CO promoter, would be in the same orientation but at opposite ends of the rearrangement. This primer pair would be predicted to be pointing towards one another in wild type and in a PCR reaction should amplify fragment a from wild type DNA (Figure 4.9). On the other hand, if the rearrangement consisted of an insertion into CO then the primers would be in the opposite orientation and pointing away from each other in both co-8 and wild type and would not be expected to amplify a fragment in a PCR reaction.

Using the primers described, a fragment was amplified from wild type DNA but not from co-8 which strongly suggested that an inversion had occurred. The fragment amplified from wild type DNA, however, was larger than predicted. From the sequence data and the position of the PCR primers the predicted size was 284 bp. The actual size of the amplified fragment was 1.6 kb. This indicated that an approximately 1.3 kb deletion had occurred at this second breakpoint, in addition to the 1.3 kb deletion within CO, and the intervening
Figure 4.7 Panel A shows a Southern blot of PCR products using the primers indicated and DNA extracted from either wild type or the co-8 mutant. The blot was probed with the CO cDNA.

Panel B shows the position of the primers on the wild type CO genomic region. The CO exons are in blue. No PCR products were amplified from co-8 DNA using primers co41, co20 or co62 (red) as expected, as these anneal to DNA which is deleted in co-8. However, if the rearrangement in co-8 was a simple deletion, PCR products smaller than those from wild type would be predicted to be amplified from co-8 DNA using primers co17 and co21. No PCR products were amplified from co-8 using these primers, indicating that the rearrangement is more complicated.
Figure 4.8 DNA sequence of the junctions in the co-8 allele. The junctions are marked by vertical arrows. The DNA flanking the junctions is red and the DNA introduced at the junctions by the rearrangement is in black. Panel A shows the junction at the CO promoter side, and panel B shows the junction on the CO ORF side. The primers designed from the sequence introduced at each junction are in blue. These were used to determine whether the rearrangement in co-8 is likely to be a deletion and insertion, or a deletion and inversion (Figure 4.9).
Figure 4.9 The PCR strategy used to establish whether an inversion or insertion had occurred in \textit{co-8}. For clarity, the deletion in \textit{co-8} is not shown and the diagram is not to scale.

Panel A shows the predicted outcome of a PCR reaction with wild type DNA using these primers, if \textit{co-8} contained an inversion. The DNA predicted to be inverted is shown in purple.

Panel B shows that no PCR product would be produced using wild type DNA if \textit{co-8} contained an insertion. The proposed insertion is shown in red.

Panel C shows that a fragment was amplified from wild type DNA but not the \textit{co-8} control samples. This fragment was cloned and sequenced and found to contain recognizable sequence (primers co74 and co75 and sequence up to and including the breakpoints in \textit{co-8}) as predicted in Figure 4.8. The Southern blot was probed with the fragment indicated in Panels A and B.
DNA had been inverted. The 1.6 kb wild type fragment containing the DNA deleted at the second breakpoint in co-8 was blunt ended and ligated into pBluescript for sequencing.

4.3.1.6 Determining the chromosomal location of the second breakpoint in co-8

The availability of anchored YAC contigs generated during the Arabidopsis physical mapping programme has provided a means to map DNA clones of interest onto the Arabidopsis chromosomes. If the DNA adjacent to the CO deletion in co-8 was represented on a physically mapped YAC or BAC this would eradicate the need for more complicated mapping procedures.

The CIC YAC library (Creusot et al., 1995), consisting of 1152 clones with an average insert size of 420 kb, is estimated to cover at least 92% of the Arabidopsis genome. Many of these have now been mapped. Two duplicate filters each containing two copies of the entire CIC YAC library, processed for colony hybridisation were kindly provided by Dr. Melanie Stammers. These were probed with the 9 kb Hind III cosmid subclone, p184, containing CO promoter DNA and the co-8 junction. Six YACs were detected, all represented twice on each filter, in a recognisable pattern as would be expected for the CIC filter grid. Four of the YACs (CIC8H6, CIC3F11, CIC8E12 and CIC8H5) contained the CO gene and confirmed that at least part of the cosmid subclone used was derived from this region. On the physical map these YACs map to position 33.2 on chromosome 5. The remaining two YACs, CIC9E2 and CIC9F3, mapped to position cM 115.2 on the bottom arm of chromosome 5, and contain markers mi69, mi70, mi418 and m558A (Schmidt et al., 1997; Figure 4.10). The hybridization result was confirmed by demonstrating that the same probe hybridized to the two YACs when they were digested with restriction enzymes and Southern blotted, but not to YACs derived from a different region of the genome that were used as negative controls (Figure 4.11). The YAC Southern blot was reprobed using
Figure 4.10 Genetic map positions of the YAC contigs at the CO locus and the contig at the second breakpoint in co-8. The markers were located onto YACs and mapped using recombinant inbred lines by Schmidt et al. (1997). The genetic distance between these two contigs is approximately 82 cM, a physical distance of approximately 16.4 Mb.
Figure 4.11 Southern blot of YAC DNA digested with EcoR I and BamH I. The blot was probed sequentially with the two border fragments from either side of the rearrangement in co-8, as indicated. The CO YACs are in blue. The YACs which map 82 cM from CO, where the second breakpoint in co-8 lies, are in red. The negative controls are in black.
the cloned fragment from the CO ORF end of the rearrangement. This probe also hybridized to the four YACs which contained CO, and the two which contained the second breakpoint in co-8.

4.3.1.7 Analysis of RNA produced by the co-8 allele

A fragment containing 1.1 kb of upstream sequence and the CO ORFs was sufficient to complement the co-2 mutation and restore wild type flowering time (Kate Dixon, unpublished results). The 1.1 kb region presumably contains all or most of the promoter required for CO expression, and is almost completely deleted in co-8. To test whether no CO mRNA was present in co-8 plants, RT-PCR was used (Figure 4.12). No transcript was amplified from co-8 cDNA when one of the PCR primers annealed within the deleted region. Wild type cDNA yielded a transcript of the expected size, which hybridized to a CO probe. However, when PCR primers were used that annealed to part of the CO ORF that is retained in co-8, a hybridizing product of the expected size was amplified from both co-8 and wild type cDNA. Therefore, although the promoter is deleted in co-8, the remaining portion of the CO ORF is still transcribed.

4.3.1.8 Sequence analysis of the co-8 rearrangement

The deletion in co-8 removed the DNA encoding the first 102 amino acids of the CO protein. This region includes both zinc fingers and part of the basic, conserved domain to the carboxyl side of the zinc fingers (Figure 4.13a). The deletion breakpoint and the sequence introduced by the inversion created an in-frame stop codon that immediately preceded the first amino acid codon that was retained (Figure 4.13b). The 5' portion of the novel transcript produced by co-8 was not sequenced. However, the presence of an in-frame stop codon immediately prior to the remaining ORF suggested that even if the transcript is translated, a fusion protein containing a novel sequence fused to the carboxyl end of CO
Figure 4.12a Southern blots of RT-PCR products probed with the CO cDNA, where amplification was with CO primers or with the APETALA2 cDNA, where amplification was with the AP2 primers. Duplicate samples (Ler and co-8) were derived from independent RNA preps and reverse transcription reactions.

![Southern blot diagram](image)

Figure 4.12b The RT-PCR strategy for analyzing CO expression in the co-8 allele. Primers b and c were designed to exon sequence on either side of the intron to prevent amplification of contaminating DNA. Details of primers can be found in Materials and Methods. Primer a = co53, Primer b = oli9, Primer c = oli5, Primer d = co50.
is unlikely to be made. There are seven internal methionine codons in the remaining undeleted CO ORF sequence but whether co-8 generates a truncated CO protein whose translation is initiated from one of these is not known.

The sequence introduced adjacent to both deletion breakpoints in CO was determined and as described previously, PCR primers were designed to this sequence and used to amplify 1.6 kb of wild type DNA from the lower arm of chromosome 5 that was disrupted by the rearrangement. The 1.3 kb "deletion" was sequenced and analyzed to determine whether a second gene as well as CO was disrupted in co-8. No obvious ORFs were found. Databases were searched for homology to the sequence but no significant homologies were detected. The CIC YACs and BACs from this region have not yet been sequenced. (Arabidopsis thaliana DataBase (AArDB)). Two ESTs have been placed on CIC9E2 and CIC9F3, but the sequence available for both does not correspond to the sequence obtained from the second breakpoint.

4.3.1.9 A summary of the rearrangement in the co-8 allele

At the CO locus a 1.369 kb deletion removed 304 bp from the 5' end of the first CO exon plus approximately 1 kb of the 5' untranslated and promoter sequence. On the bottom arm of chromosome 5 a second deletion occurred that removed approximately 1.3 kb, but whether this disrupted another gene is not known. The intervening 82 cM, a physical distance of approximately 16.4 Mb, was inverted. Although the CO promoter was deleted, a CO transcript was still formed presumably because the DNA brought adjacent to the CO ORF by the inversion contained promoter sequences. Whether this truncated transcript could be translated is not known. The co-8 rearrangement is summarised in Figure 4.14.
Figure 4.13a The CO amino acid sequence showing in red the amino acids which are predicted to be deleted from the ORF in co-8. The amino acids for which coding sequence still remains in co-8 are shown in blue. The putative DNA binding domain, for which the coding sequence is almost completely deleted, is in bold and is underlined.

Figure 4.13b The predicted amino acid sequence of the DNA brought adjacent to CO in the co-8 allele. The CO amino acids for which coding sequence is still present in co-8 are shown in blue. The novel sequence brought adjacent to the remainder of CO is in red. There is an in-frame stop codon directly adjacent to the undeleted part of CO suggesting that, even if a stable transcript is made in the co-8 mutant, it is unlikely that a novel fusion protein will be made.
Figure 4.14 The chromosomal rearrangement in co-8. The diagram is not to scale.
4.3.2 Phenotypic characterization of co-8 mutants

A plant homozygous for co-8, E325-25, was identified by Southern analysis. This plant was self-fertilized and the seeds collected for phenotypic analysis. One or two flowers from this individual were also fertilized with pollen from a wild type Landsberg erecta plant to examine the phenotype of co-8 heterozygotes.

4.3.2.1 Flowering time

The co-8 allele was first identified in the M$_1$ of a cross of mutagenized wild type pollen to a co-1 homozygote. It was selected as a potential new co allele because the M$_1$ plant was later flowering than its co-1 heterozygous siblings. Plants homozygous for the co-8 allele were identified in the M$_3$ generation and were grown in a controlled environment cabinet in a long day photoperiod (LD - 16 h light, 8 h dark) to measure their flowering time. All eight co mutants and a wild type control were sown at the same time, and in the same controlled environment cabinet so that their flowering times could be directly compared. The data for the seven previously isolated mutants were presented in Chapter 3.

Although the co-8 allele contained a deletion that removed both zinc fingers and is unlikely to retain any CO function, other co alleles caused later flowering than co-8 (Figures 4.15 and 4.16; Table 4.3). The other "intermediate" mutants, co-2, co-6 and co-1, showed very similar flowering times and their relative strength varied depending on environmental conditions. In this analysis the co-8 phenotype was intermediate between co-2 and co-6. It was induced to flower after 32.1 days with a total leaf number of 22.5. The wild type Landsberg erecta control was induced after 18.9 days with a total leaf number of 7.5 (Table 4.3).
<table>
<thead>
<tr>
<th>Mutant</th>
<th>Flowering time</th>
<th>Leaf number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Days to flowering</td>
<td>Days to first open flower</td>
</tr>
<tr>
<td>Ler</td>
<td>18.9±0.9</td>
<td>27.3±0.8</td>
</tr>
<tr>
<td>co-4</td>
<td>24.3±0.5</td>
<td>33.5±0.4</td>
</tr>
<tr>
<td>co-5</td>
<td>28.2±0.5</td>
<td>36.4±0.6</td>
</tr>
<tr>
<td>co-8</td>
<td>32.1±0.5</td>
<td>43.2±0.5</td>
</tr>
<tr>
<td>co-2</td>
<td>33.1±0.9</td>
<td>43.6±0.9</td>
</tr>
<tr>
<td>co-6</td>
<td>34.2±0.5</td>
<td>48.7±0.7</td>
</tr>
<tr>
<td>co-1 Landsberg erecta</td>
<td>36.0±0.6</td>
<td>50.0±0.4</td>
</tr>
<tr>
<td>co-7</td>
<td>37.8±0.7</td>
<td>47.5±0.6</td>
</tr>
<tr>
<td>co-1 Landsberg</td>
<td>38.6±0.8</td>
<td>50.3±0.5</td>
</tr>
<tr>
<td>co-3</td>
<td>39.9±0.6</td>
<td>53.4±0.7</td>
</tr>
</tbody>
</table>

Table 4.3 Flowering times and leaf numbers of the eight **co** mutants grown in LDs compared to wild type Landsberg *erecta*. The mutants are listed in order of increasing number of days to flowering. The new **co-8** mutant is highlighted in purple.
Figure 4.15 The *co* mutants grown in LDs, as in Figure 2.4. The new *co*-8 mutant has been added (bottom right). All plants are 42 days old.
Figure 4.16 The total leaf number of the eight co mutants compared to wild type Landsberg erecta in LDs. The leaves are divided into rosette and cauline. Standard error bars are in black.
4.3.2.2 Other phenotypes

Although \textit{co-8} plants are similar to mutants homozygous for the other \textit{co} alleles they have a number of additional characteristics which may or may not be caused by the mutation at the \textit{CO} locus. The \textit{co-8} mutant has, compared to the other \textit{co} mutants, a higher leaf number at the same flowering time (Figure 4.17). It also bolts more rapidly than other \textit{co} mutants with similar flowering times (Figure 4.15). A difference in development of plants homozygous for different \textit{co} alleles was observed previously (Koomneef et al., 1991). For example, \textit{co-6} was intermediate in flowering time and leaf number but, in contrast to \textit{co-8}, was delayed in the growth of the bolt and in the opening of its flowers. These effects may be allele-specific.

The first few flowers of a \textit{co-8} plant often open prematurely, before the bolt has started to expand and the petals of these flowers do not completely expand.

Although in \textit{co-8} the ratio of rosette to cauline leaves, and therefore the number of secondary inflorescences, is comparable with the other mutants, the number of cauline leaves (and hence the number of tertiary inflorescences) on the secondary inflorescences seems to be higher although this aspect of the phenotype has not been quantified.

Finally, the cauline leaves of \textit{co-8} often curl upwards and inwards while the plant is first bolting, partly obscuring the primary inflorescence.

Further rounds of backcrossing may remove some of the phenotypes if they are caused by mutations other than \textit{co-8}. Alternatively, introducing a construct containing only the wild type \textit{CO} gene into \textit{co-8}, either by transformation or by crossing \textit{co-8} with a transgenic line, will demonstrate whether all of the \textit{co-8} phenotypes can be complemented by \textit{CO}.

94
Figure 4.17 Days to flowering plotted against total leaf number for each *co* mutant and wild type grown in LDs. The *co-8* mutant has a higher leaf number than *co-2* but is induced to flower earlier. Standard error bars are in black.
4.3.2.3 *co-8* is semidominant

To determine whether, like the other *co* alleles, *co-8* is semidominant, F$_1$ seeds from a backcross to wild type Landsberg *erecta* were collected and sown in LD conditions. The flowering time of the F$_1$ plants was measured and compared with that of wild type and *co-8* homozygous plants (Figures 4.18 and 4.19). The *co-8* heterozygotes were intermediate in phenotype between *co-8* homozygotes and wild type plants with respect to flowering time and leaf number. They produced a flower bud after an average of 29.4 days and 16.2 leaves. Although *co-8* is one of the least severe mutants, the heterozygote flowers later and with more leaves than plants heterozygous for the other *co* alleles (Figure 4.19).

4.4 Discussion

A method for the isolation of deficiencies in the *Arabidopsis* genome was developed at Nottingham University (Vizir *et al.*, 1994). Gamma-irradiated wild type Landsberg *erecta* pollen was used to cross fertilize marker lines carrying a number of recessive mutations. This allowed the identification in the M$_1$ generation of new alleles at these loci on the irradiated chromosome. One of the marker lines carried the *co-1* allele. Late flowering M$_1$ plants from the cross of this line to irradiated pollen, were initially selected by Dr. Igor Vizir. Five of the twenty six M$_2$ populations analyzed did not segregate early flowering plants in either the M$_2$ or the M$_3$ generation and were therefore assumed to carry new *co* alleles. Two of these were completely sterile so work with them was discontinued. Previously, 45% of plants carrying mutations induced in a similar experiment were sterile and could not be maintained (Vizir *et al.*, 1994). The remaining three late flowering lines were screened by Southern analysis and a line renamed *co-8* was identified which carried a deletion at the *CO* locus. Southern analysis of the other two lines did not reveal any rearrangement. Possibly the γ-irradiation-induced alleles had been lost from these lines, perhaps because the deficiencies were large and not transmitted through the gametes.
Figure 4.18 The co-8 mutant (right) compared to a co-8 heterozygote (centre) and wild type Landsberg erecta (left). All plants were grown in LDs and are 28 days old.
Figure 4.19 Summary of total leaf numbers of the co mutants grown in LDs, compared to the heterozygotes and wild type Landsberg erecta. co-8 has been added to the series. The error bars are not included as they are smaller than the symbols.
Detailed molecular analysis of *co-8* revealed that as well as a deletion of 1.3 kb which removed the *CO* promoter and the coding sequence for the zinc finger domain, there was a second deletion at map position 115.2 cM on the lower arm of chromosome 5 and the intervening 82 cM, corresponding to a physical distance of 16.4 Mb was inverted. A transcript including the remaining 3’ end of the *CO* gene was expressed in *co-8*. However, the presence of an in-frame stop codon directly proximal to the portion of the *CO ORF* retained in *co-8* suggested that it was unlikely that a novel protein encoded by the retained portion of the *CO ORF* and part of the inverted DNA was made. Whether the remaining 3’ end of the coding sequence was translated and still retained CO activity was not known, but the presence of a truncated CO protein in *co-8* could be tested for with an antibody.

A similar mutagenesis screen was used to find new *clavata1* alleles (Clark et al., 1993). X-irradiated Columbia wild type pollen was used in a cross with *clvl-1 pi-1* double mutants in Landsberg *erecta*, and phenotypically *clvl* plants selected in the M1 generation. Five *clvl* plants were identified, self-fertilized and analyzed in the next generation by Southern hybridization using RFLPs which mapped near to *clvl*. Three of the new alleles were homozygous for Landsberg *erecta* RFLPs indicating that the X-ray induced Columbia allele had been lost, possibly as a result of a large deletion that was unable to transmit through the gametes. One of the remaining new *clvl* alleles was sequenced and found to contain an extra A within the coding sequence which resulted in a frameshift mutation (Clark et al., 1997).

Gamma-irradiation was used in other mutagenesis screens in *Arabidopsis* to isolate alleles at a particular locus of interest. Mutations in the nitrate reductase structural gene, *NIA2*, result in a chlorate resistant phenotype (Wilkinson and Crawford, 1991). New chlorate resistant mutants were generated by \(\gamma \)-irradiation of *Arabidopsis* seeds and mutants
identified in the M₂ generation. Three mutants contained deletions of more than 5 kb at the NIA2 locus and these completely removed the gene.

The rearrangement in co-8 is reminiscent of the rearrangements induced by ionizing radiation in two Arabidopsis genes which encode enzymes in the flavanoid biosynthesis pathway. Like co-8, the mutations not only affect the loci of interest but sites some distance away on the same chromosome. Mutations affecting the flavonoid biosynthetic pathway have been extensively studied in a number of plant species including maize, petunia and Antirrhinum (Stafford, 1990). They are non-lethal and have easily scorable phenotypes such as flower and seed colour. Eleven loci affecting this pathway have been isolated from Arabidopsis (Dellaert, 1980; Koornneef, 1990). They have a reduced amount or a complete absence of pigments in their seed coat and hence are named transparent testa or tt. The genes corresponding to two of the tt mutants, tt3 and tt5, were cloned and the nature of the mutations at these loci determined (Shirley et al., 1992). A tt5 allele (40.443), generated by fast-neutron irradiation consisted of a 1.5 kb inversion within the CHALCONE FLAVANONE ISOMERASE (CHI) gene. A 272 bp fragment derived from a location 38 cM proximal to tt5 (a physical distance of approximately 7600 kb) was translocated to one end of the inversion. A tt3 allele (M218) was generated by X-irradiation and compromised three genes. Molecular characterization identified two deletions and an inversion, similar to the rearrangement in co-8. At the tt3 end of the inversion a 7.5 kb deletion completely removed the DIHYDROFLAVANOL 4-REDUCTASE (DFR) gene and an adjacent gene. A second deletion of 52 bp, 2.8 cM distal to DFR lay in the middle of a third gene. The intervening 2.8 cM was inverted, a physical distance of approximately 560 kb.

The rearrangements in co-8, tt3-M218 and tt5-40.443 all involved four double strand breaks on the same chromosome and the subsequent aberrant rejoining of the ends to produce either two deletions and an inversion or a translocation and an inversion. The mutations in
\textit{rr}5-40.443, which was generated by fast neutrons, were more restricted and less deleterious. Only one gene was affected and no deletion occurred. The \textit{co-8} and \textit{h3-M218} alleles, both of which contained deletions were produced by \textgamma-irradiation and X-irradiation, respectively. These two types of radiation produced sparse ionizations compared to the dense ionizations of fast neutrons (Hawkins, 1979). This was proposed to account for the differences in mutant spectra (different types of mutations) observed using different radiation sources (Dellaert, 1980).

The fact that the two sites affected in these three alleles were on the same chromosome perhaps reflects the position in the nucleus of the broken ends when the DNA repair mechanisms were operating. Although the region affected by the mutations in \textit{co-8} was extensive, molecular analysis showed that the two deletions were small, and may only compromise \textit{CO}. This might explain why \textit{co-8} was recovered, while the other candidate \textit{co} alleles, which might have carried larger deficiencies, were lost due to lack of transmissibility.

In the segregating \textit{M\textsubscript{2}} generation, a distortion in favour of the recessive \textit{lutescens} phenotype, carried on the non-irradiated parental chromosome, was observed in the \textit{co-8} line. The ratio of $LU:lu$ was 1:1.6 instead of the normal Mendelian segregation of a recessive phenotype of 3:1 (61.5\% phenotypically \textit{lutescens} plants instead of 25\%). This suggested that a deficiency was present on the irradiated chromosome linked to the \textit{LUTESCENS} locus (Vizir et al., 1994) \textit{LU} is located approximately 5.3 cM distal to \textit{CO} (Putterill et al., 1995). Semisterility of the \textit{M\textsubscript{1}} heterozygous plant was also observed. This may have been due to the loss of the irradiated parental chromosome from some gametes. The large pericentric inversion in \textit{co-8} may also reduce the viability of gametes. Recombination within this region will sometimes result in duplication and deletion of parts of the chromosome (Redei, 1992) leading to inviability of the gametes carrying these rearrangements. To confirm genetically that \textit{co-8} contains an inversion a line homozygous
for co-8 is currently being crossed to a line carrying a number of phenotypic markers on chromosome 5 (Igor Vizir, unpublished results). The presence of a pericentric inversion should repress recombination between these markers (Rédei, 1992). Crossovers between markers closely linked to the inversion breakpoints will be disrupted while crossovers within the inverted segment will produce inviable gametes due to duplication and deficiency.

The region 82 cM from the CO locus that was deleted in co-8 was isolated and sequenced. It is not known whether it disrupts a second gene. If it does, this mutation, and consequently any phenotypic effect it has, cannot be separated from the co-8 phenotype by backcrossing. Complementation by crossing co-8 with a plant carrying the wild type CO gene on a T-DNA would distinguish between phenotypes caused by the mutation at the CO locus, and additional phenotypes caused by the co-8 rearrangement.

The co-8 allele has already proved useful during the analysis of CO expression by in situ hybridization. Primers which would specifically amplify the region of the CO transcript deleted from co-8 were designed, and the resulting PCR product cloned and used to make an RNA probe. This was used against sectioned co-8 meristems, as a negative control for expression, and against wild type meristems to monitor CO expression (R. Simon, unpublished results).

Primarily, the analysis of co-8 has demonstrated that in the probable absence of any CO activity, Arabidopsis plants can still flower. In a co null allele, other flowering pathways, such as the autonomous flowering pathway which promotes flowering independently of environmental stimuli, may be able to compensate for the lack of CO. No mutants in Arabidopsis have been isolated that completely abolish flowering, which suggests that several pathways operate in parallel to promote flowering and all are partially redundant (Koomneef et al., 1998; Chapter 1).
The *co-8* heterozygote is both later with respect to days to flowering and leaf number than the heterozygotes of all the other alleles, although this has not yet been verified in the F₂ generation. If *co-8* retains no CO function, then the earlier flowering of heterozygotes of the other *co* mutants could be due to the other mutant proteins retaining some CO function. However, the *co-8* homozygote has an intermediate phenotype, flowering earlier than five of the other *co* homozygotes. That *co-8* is not the most severe mutant might suggest that the proteins produced by the other *co* mutant alleles may antagonize the function of another gene whose ability to promote flowering is observed in *co* homozygotes. For example *co-7* may have a weak heterozygous phenotype because the mutant allele retains activity and a strong homozygous phenotype because the mutant protein strongly antagonizes the function of a second gene whose activity is most important in *co* homozygotes.

Alternatively, *co-8* may still retain some CO activity if the remaining C-terminus of the protein is translated. This may be exerting a dominant effect in the presence of a wild type copy of CO in the heterozygote. The dominant effect could be due to the truncated *co-8* protein titrating wild type CO into a non-functional dimer, or a completely new function of the truncated protein. Once an antibody specific for the CO protein is available, this could be used to determine whether any truncated CO protein is present in *co-8*. As mentioned in Chapter 3, experiments are currently underway to determine the function of the important domains of CO. Once the wild type functions of these domains have been analyzed it may be possible to examine how the functions are compromised in the mutant alleles. This may indicate whether the mutant alleles might be loss of function alleles or dominant gain of function alleles.

To examine the nature of the *co-8* mutation a reverse-complementation approach could be taken. A genomic fragment containing the *co-8* allele could be introduced by transformation into wild type plants. This would necessitate re-screening the library made from *co-8* DNA to identify a cosmid containing the remainder of the CO ORF and sufficient upstream
sequence to drive its expression. If *co-8* is a null allele, then introduction of this allele into a background containing two copies of the wild type *CO* gene should not affect flowering time. If, on the other hand, *co-8* is a dominant gain of function allele, then it might be expected to interfere with wild type CO function and delay flowering.

The observation that either *co-8* itself or some of the other alleles could be exerting a dominant effect on flowering, and the analysis in the previous chapter of the discrete functional domains of the CO protein suggested that expression of modified CO proteins might repress flowering. To further gain an insight into the role of CO, the data obtained from the analysis of the *co* alleles was used to design modified CO proteins which, when introduced by transformation into wild type *Arabidopsis thaliana*, might be expected to delay flowering.
5 Overexpression of modified CONSTANS proteins

5.1 Introduction

The CONSTANS protein has a number of structural features characteristic of zinc binding transcription factors. Although these functions have not yet been demonstrated, the CO protein was proposed to have domains required for DNA binding, transcriptional activation, nuclear localization and protein-protein interaction. In other proteins, the arrangement of the different functions of the protein into discrete domains has made it possible to design inhibitory proteins which retain one or more of the protein’s functions but are compromised in one of the others. These "dominant negative" proteins may be used to identify the function of a gene by inhibiting the wild type gene product (reviewed in Herskowitz, 1987). An example in Arabidopsis was described by McNellis et al. (1996) for the CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) protein. This protein contains a RING finger zinc binding domain, a coiled-coil domain and a WD-40 repeat domain (von Arnim and Deng, 1993). Ectopic expression in transgenic Arabidopsis of a derivative encoding only the N-terminal RING finger zinc-binding and coiled-coil domains caused a dominant negative phenotype resembling the loss-of-function cop1 mutants (McNellis et al., 1996). Overexpression of the wild type CO protein in transgenic Arabidopsis plants dramatically accelerates the transition to flowering in both long and short days (Simon et al., 1996; Igeño et al., unpublished results). The creation of an inhibitory CO protein which interfered with normal wild type CO function might delay flowering of transgenic plants.
5.2 Description of the modified CONSTANS proteins

When the co alleles were sequenced it was found that the two most severe alleles, co-3 and co-7, contained missense mutations that each affected one of the two very highly conserved domains of the CO protein (Chapter 3, Figure 3.6). If each of these mutations destroys the function of one domain, but leaves the remainder of the protein intact, their overexpression might cause a dominant negative effect. Both alleles are more severe than the putative null allele, co-8, (Chapter 4) so it is possible that the phenotype of these late alleles is caused by dominant inhibition of flowering rather than a simple loss of function.

The co-3 mutation is within the zinc finger region. If this protein cannot bind DNA, but can still interact with other proteins necessary for CO function, possibly through the conserved basic domain at the C-terminus (Chapter 3, Figure 3.11), then excess co-3 protein might sequester all the available CO-interacting protein into a non-functional complex. The endogenous CO protein would therefore not be able to function and transgenic plants overexpressing co-3 would flower late.

The co-7 allele, on the other hand, encodes a normal DNA binding domain, but carries a point mutation affecting the conserved C-terminal basic domain. This domain may have a role in protein-protein interactions. If this mutant protein was overexpressed in a wild type plant the excess co-7 protein may occupy the available DNA binding sites but fail to interact with other factors important for CO function. This might therefore inhibit the function of the wild type protein and cause late flowering.

Similar effects to those discussed above for co-3 and co-7 may be achieved by completely removing domains of the protein. For example, removing the C-terminus of the protein, leaving only the N-terminus that includes the two zinc fingers and the conserved tail thought to be important for DNA binding might produce a truncated protein that binds DNA but does not interact with other proteins. This would be particularly useful if co-7, which is slightly less severe than co-3, retains some ability to promote flowering.
The three constructs overexpressing co-3, co-7 and the truncated protein were designed so that the strong Cauliflower Mosaic Virus 35S promoter (35S) was fused to the co-7 or co-3 ORFs, or to the coding region for the zinc fingers (ZF) only (Figure 5.1). Their construction is described below.

5.3 Plasmid construction

The CO gene was amplified by PCR in duplicate reactions from all of the alleles. A fragment derived from each amplification was blunt ended and cloned into the EcoRV site of pBluescript (SK+) and sequenced (Chapter 3). Clones which contained no PCR errors introduced by Taq polymerase were identified for co-3 and co-7 and used in the plasmid constructions. The construct containing the CaMV 35S promoter in front of the wild type CO gene in the binary vector SLJ1711 (Jones et al., 1992) was kindly provided by Maribel Igeño.

5.3.1 35S:co-7

To clone the co-7 allele, primers co41 and co42 were used to amplify a 1.95 kb genomic fragment (Chapter 3) containing both exons, the single intron, 250 bp of 5' sequence and 350 bp of 3' sequence including the CO polyadenylation signal. After sequencing clones derived from separate PCR reactions a clone which did not contain any PCR errors - p479 - was identified. This was cloned in the correct orientation in the EcoRV site such that it could be used to replace the wild type CO genomic region in the existing binary vector-based plasmid p505 (Igeño et al., unpublished results; Figure 5.1). A Hind III - BamH I digestion of p505 excised a 1.79 kb fragment which could be replaced with the equivalent co-7 genomic fragment from p479. However, an extra unexpected Hind III site was found in the binary vector SLJ1711, so an alternative strategy was used. The 35S promoter, originally derived from construct pJIT62 (Guerineau et al., 1991), was removed from p505.
using *Cla* I and *Hind* III. The p479 *co-7* clone was digested using *Cla* I, which cuts in the polylinker at the 5’ end of the gene, and *Hind* III, which cuts 70bp upstream of the *CO* ATG, a site which has been used to create several transcriptional fusions between *CO* and foreign promoters. The gel-purified 35S promoter fragment was then ligated to the gel purified construct *Cla* I - *Hind* III fragment of p479 to make p35S:*co-7* (Figure 5.1). To move the entire 35S:*co-7* fusion into the SLJ1711 binary vector, both p35S:*co-7* and pSLJ1711 were digested with *Cla* I and *Bam* HI and the 35S:*co-7* containing fragment ligated to the binary vector.

5.3.2 **35S:*co-3***

The cloning strategy to make the 35S:*co-3* construct was essentially the same as the one described for the 35S:*co-7* construct, except that by chance both *co-3* PCR fragments were only cloned in pBluescript in the orientation that was inappropriate for the cloning strategy described for *co-7*. Therefore the orientation of the *co-3* genomic region was changed before cloning into the binary vector. This was done by first cloning the 35S promoter *Cla* I - *Hind* III fragment into *Cla* I - *Hind* III digested pBluescript (SK+) to make p35S. The *co-3* genomic clone, p470, was digested with *Hind* III, which cuts in the polylinker at the 3’ end of the gene as well as 70bp upstream of the ATG, as described previously, yielding a 1.7 kb fragment. This was gel-purified and ligated to *Hind* III digested p35S. The orientation of the *co-3* *Hind* III fragment was determined by restriction mapping. The resulting p35S:*co-3* clone (Figure 5.1) was digested with *Cla* I and *Bam* HI and the 35S:*co-3* fragment ligated to pSLJ1711 as previously described.
5.3.3 35S:ZF (Zinc Fingers)

To make a construct containing only the sequence coding for the putative DNA binding domain of CO, a PCR primer was designed to CO sequence 3' of the zinc fingers. When used with an existing PCR primer that annealed 5' of the CO ATG, the 5' end of the CO gene, including sequence encoding both zinc fingers, as well as DNA encoding the highly conserved region to the carboxyl side of the second finger and an additional 17 amino acids was amplified. The primer 3' of the zinc finger region also had an in-frame stop codon engineered near its 5' end, and three additional bases to ensure that the stop codon was not destroyed during blunt-end cloning (Figure 5.2). This primer, co65 (Chapter 7, Materials and Methods) was used with primer co41 to amplify a 630 bp fragment in duplicate PCR reactions using DNA extracted from wild type Landsberg erecta plants. Fragments derived from duplicate reactions were blunt-end cloned into the EcoRV site of pBluescript and their orientation determined by restriction mapping. Clones containing the insert in the correct orientation, such that the ClaI site in the polylinker was at the 5' end of the gene, as before, were sequenced to check for PCR errors, and to verify that the introduced stop codon was in frame with the rest of the CO sequence. The ClaI - HindIII fragment containing the 35S promoter was inserted into the HindIII site upstream of the ATG, as previously described. As the truncated version of the CO gene in this construct did not contain any of its 3' untranslated sequence, the 35S termination and polyadenylation sequences, from vector pJIT62, were isolated as a 720bp SmaI - EcoRV fragment. This was inserted at the 3' end of the truncated gene into the SmaI site and its orientation determined by restriction mapping. The resulting construct, p35S:ZF (Figure 5.1), was digested with ClaI and BamHI and the 35S:ZF:polyA fragment ligated to SLJ1711 as previously described.
Figure 5.1a Restriction maps of the constructs designed to express modified CO proteins. All constructs were created in pBluescript before the completed constructs were moved into the binary vector SLJ1711 (Jones et al., 1992).

Figure 5.1b Restriction maps of the two constructs that provided the 35S promoter (p505) and 35S termination and polyadenylation signal (pJIT62).
Figure 5.2 The sequence of the DNA fragment amplified to create the 35S:ZF construct. The primers used are shown in bold. Primer co65 was designed to introduce an in-frame stop codon (TGA). The ORF sequence is shown in both strands, with the amino acid sequence underneath. The putative DNA binding domain is underlined. The HindIII site used to introduce the 35S promoter in front of the ORF is in a box.
5.4 Introduction of the constructs into *Arabidopsis thaliana*

The three constructs were transferred to *Agrobacterium tumefaciens* strain C58C1 pGV2260 (Zambryski *et al.*, 1983; Deblaere *et al.*, 1985) by tri-parental mating. The integrity of the plasmids in the *Agrobacterium* transconjugants was verified by restriction digestion and Southern analysis, and they were introduced into wild type *Arabidopsis thaliana* ecotype Landsberg *erecta* by root transformation or vacuum infiltration.

Transformations with constructs 35S:co-7, 35S:co-3 and 35S:ZF gave 38, 18 and 19 independent transformants, respectively. The T1 seeds from the primary transformants (T1) were sown on GM containing kanamycin and the ratio of kanamycin resistant:sensitive seedlings recorded to confirm that the T1 plants were transformed and to ascertain the number of loci at which the T-DNA had inserted (Table 5.1).

Transformations using constructs 35S:co-3, 35S:ZF, and the *Brassica napus* Bn101 construct, described in Chapter 6, were performed simultaneously, and yielded a surprisingly high number of families containing no kanamycin resistant plants. These were presumably derived from T1 plants that were not transformed and this problem was not encountered in any other experiment. It was assumed to reflect the age or condition of the root material used for this experiment or a problem with a particular batch of hormones or antibiotics. There was not sufficient time to repeat these transformations.

For 35S:co-3, 4/18 T1 plants and for 35S:ZF, 5/19 T1 plants gave kanamycin resistant progeny. In contrast only one out of 38 transformants for the 35S:co-7 construct did not produce kanamycin resistant progeny. The kanamycin resistant T2 plants were transferred to the greenhouse once they had produced a few leaves, self fertilized and the T3 seeds collected from each T2 plant to determine its genotype with respect to the T-DNA. The T3 families were also used for flowering time experiments.
<table>
<thead>
<tr>
<th>Construct</th>
<th>Transformant</th>
<th>Kmr::Km<sup>s</sup> segregation in T<sub>2</sub></th>
<th>T3 family</th>
<th>Kmr::Km<sup>s</sup> segregation in T<sub>3</sub></th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>35S::co-3</td>
<td>Tn101</td>
<td>3.0:1</td>
<td>Tn101-2</td>
<td>5.2:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tn101-4</td>
<td>1:0</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>Tn104</td>
<td>2.6:1</td>
<td>Tn104-4</td>
<td>2.8:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tn104-5</td>
<td>1:0</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>Tn112</td>
<td>3.0:1</td>
<td>Tn112-3</td>
<td>3.0:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tn112-4</td>
<td>1:0</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>Tn114</td>
<td>3.0:1</td>
<td>Tn114-2</td>
<td>4.0:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tn114-4</td>
<td>1:0</td>
<td>Hom</td>
</tr>
<tr>
<td>35S::co-7</td>
<td>Tn33a</td>
<td>2.6:1</td>
<td>Tn33a-3</td>
<td>2.9:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tn33a-1</td>
<td>1:0</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>Tn43</td>
<td>3.2:1</td>
<td>Tn43-10</td>
<td>3.8:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tn43-1</td>
<td>1:0</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>Tn75a</td>
<td>3.5:1</td>
<td>Tn75a-5</td>
<td>3.3:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tn75a-1</td>
<td>1:0</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>TnG209</td>
<td>3.3:1</td>
<td>TnG209-11</td>
<td>4.5:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TnG209-8</td>
<td>1:0</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>TnG210</td>
<td>1.9:1</td>
<td>TnG210-18</td>
<td>2.8:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TnG210-7</td>
<td>1:0</td>
<td>Hom</td>
</tr>
<tr>
<td>35S::ZF</td>
<td>Tn204</td>
<td>1.3:1</td>
<td>Tn204-3</td>
<td>11:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tn204-2</td>
<td>1:0</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>Tn206</td>
<td>34:1</td>
<td>Tn206-1</td>
<td>47:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tn206-2</td>
<td>1:0</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>Tn211</td>
<td>1.0:1</td>
<td>Tn211-2</td>
<td>2.9:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tn211-4</td>
<td>1:0</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>Tn213</td>
<td>50:1</td>
<td>Tn213-4</td>
<td>106:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tn213-2</td>
<td>1:0</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>Tn215</td>
<td>24:1</td>
<td>Tn215-2</td>
<td>3.0:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tn215-1</td>
<td>1:0</td>
<td>Hom</td>
</tr>
</tbody>
</table>

Table 5.1 The kanamycin segregation analysis of the transformants in the T₂ and T₃ generations. Only two T₃ families are shown from the five analyzed for each transformant: a representative family heterozygous for the T-DNA/s and the homozygous family chosen for further flowering time analysis.
5.5 Identification of homozygous families carrying the T-DNA at a single locus

Approximately 100-150 T\textsubscript{3} seeds from five T\textsubscript{2} families for each transformant were sown on media containing 50mg/L kanamycin, and after 1-2 weeks, the ratio of resistant:sensitive seedlings was recorded (Table 5.1). Where possible, transformants thought to carry the T-DNA at a single locus were identified because they produced T\textsubscript{2} and two thirds of T\textsubscript{3} families segregating kanamycin resistance:sensitivity in a 3:1 ratio. From these transformants, T\textsubscript{3} families showing 100% kanamycin resistance, and therefore homozygous for the T-DNA, were identified and analyzed further to ascertain whether the construct they contained delayed the onset of flowering.

5.6 Phenotypic analysis of the transformants under long and short days

Apart from flowering time which is discussed in detail below, a phenotype seen frequently among T\textsubscript{3} families was an increase in the number of petals of the first or second fully opened flower on the primary inflorescence, as described for the co mutants (Chapter 2, Figure 2.8). The phenotype was observed among plants carrying all three constructs but not in all independent transformants. For the 35S:co-7, 35S:co-3 and 35S:ZF constructs, grown in long days, 1/5, 2/4 and 5/5 transformants, respectively, showed the phenotype in 5 - 20% of individuals. The phenotype was not observed in any of the long day-grown Landsberg erecta control plants.

To analyze the flowering time phenotypes, 20 seeds from homozygous T\textsubscript{3} families of five of the thirty seven 35S:co-7 transformants, the four 35S:co-3 and the five 35S:ZF transformants were grown in LD conditions beside Landsberg erecta plants. Flowering time was scored as the number of days from sowing until the first appearance of buds in the centre of the rosette, and total leaf number, counted after the plants had bolted.

Although it was evident that none of the constructs had a dramatic effect on flowering time, a small number of transformants did appear to show either slightly delayed or accelerated
flowering (Table 5.2). To establish whether these observations were statistically significant, the flowering time and leaf number data were subjected to one-way analysis of Variance, (ANOVA, Minitab Statistical Software PC version release 8, Minitab Inc. 1991) to ask if the flowering time/leaf number of plants carrying each construct was significantly different from the untransformed control.

For both flowering time (days to induction) and leaf number of the individual transformants compared to untransformed Landsberg erecta, the analysis of variance indicated that highly significant differences were present (P<0.001). For a pairwise comparison of each transformant, or each construct, to Landsberg erecta, the significance level was therefore set at 0.001 (0.1%) to look for highly significant differences. The output from ANOVA is detailed in the Appendix.

5.6.1 35S:co-7

When the mean flowering times of the five independent 35S:co-7 transformant populations were subjected to a one way analysis of variance only one was significantly earlier than Landsberg erecta at the 0.1% level. Transformant G209 was induced in LDs to flower after 14.2 days from germination while Landsberg erecta was induced after 20.1 days (Table 5.2). When the mean flowering times for all transformants carrying this construct were pooled there was no significant difference at the 0.1% level between this value and the mean flowering time for the Landsberg erecta population. However, similar comparisons between 35S:co-7 and 35S:co-3 demonstrated that 35S:co-7 transformants had significantly fewer leaves than 35S:co-3 transformants, at the 0.1% level, which confirmed the initial observations that 35S:co-7 slightly accelerates flowering and 35S:co-3 slightly delays flowering.

The observation that 35S:co-7 accelerates flowering was reconfirmed when these transformants were grown in short day conditions where CO is limiting. In short day
conditions the CO transcript is less abundant than in long days (Putterill et al., 1995). Early flowering under short days can be caused by overexpressing CO behind the strong 35S promoter (Igeño et al., unpublished results) or by introducing multiple copies of the wild type CO gene (Putterill et al., 1995). To establish whether the 35S:co-7 construct was able to accelerate flowering the transformants were grown in SDs along with Landsberg erecta controls, and flowering time and leaf number recorded as before. All transformants flowered earlier and with fewer leaves than the control plants (Table 5.2; Figure 5.3). Three out of five transformants flowered significantly earlier than wild type and all five transformants flowered with significantly fewer leaves than wild type, at the 0.1% level (Appendix). The relative flowering times of the 35S:co-7 transformants were the same under LDs and SDs when they were compared to each other or to wild type. For example, G209, the earliest in long days, was also the earliest in short days, being induced to flower after 34.3 days with 16.5 leaves. The Landsberg erecta control flowered after 60.3 days with 48.9 leaves (Table 5.2; Figure 5.3).

The acceleration caused by the 35S:co-7 construct in both long and short days is not as dramatic as the effect of expressing the wild type CO gene from the 35S promoter (Igeño et al., unpublished results). 35S:CO transformants are induced to flower in long days after an average of 13.6 days from germination with 5 leaves and in short days after 15.7 days with 4.8 leaves. However there are other similarities between 35S:co-7 and 35S:CO. For example, an increase in determinacy with premature termination of the shoot in a pistil and, in the more extreme 35S:co-7 transformants, a reduction in height and flower number. The terminal pistil phenotype occurred most frequently among progeny of transformant G209, the earliest flowering family, but also among progeny of transformant G210, which was the latest flowering transformant carrying this construct.
5.6.2 35S:co-3

The transformants carrying the 35S:co-3 construct again showed variation in both their flowering times and total leaf number and some transformants were not significantly different to wild type. When the flowering time, measured in days from sowing to first visible buds, for the four transformants and wild type were subjected to a one way analysis of Variance (ANOVA), TN114 was significantly earlier than wild type, and TN101 was significantly later, at the 0.1% level. The remaining two were not significantly different to wild type. However, analysis of total leaf number at flowering indicated that no transformants flowered with fewer leaves, and again TN101 stood out as being slightly delayed in that it had significantly more leaves (9.8) than wild type (7.2) at the 0.1% level. TN114, which appeared to form floral buds after fewer days than wild type also had a slightly higher leaf number than wild type, although this was not significant at the 0.1% level. When the mean leaf numbers for all transformants carrying 35S:co-3 were pooled they were found to have significantly more leaves than wild type and the 35S:ZF and 35S:co-7 transformants at the 0.1% level.

5.6.3 35S:ZF

The flowering times and leaf numbers of the five 35S:ZF transformants were not significantly different from the wild type controls with one exception; Tn204 flowered with significantly more leaves than wild type, at the 0.1% level. However, individuals from all five 35S:ZF transformant populations showed the same flower phenotype seen in a number of 35S:co-7 and 35S:co-3 transformants. When grown in long days, between 5 and 20% of individuals from the five 35S:ZF transformant populations had more than the usual four petals in one or two of the first flowers on the primary inflorescence. If this is a phenotype caused by the transgenes and is not a consequence of regeneration through tissue culture...
<table>
<thead>
<tr>
<th>Transformant</th>
<th>Long Days</th>
<th>Short Days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Days to induction of flowering</td>
<td>Total leaf number</td>
</tr>
<tr>
<td>35S:co-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tn101-4</td>
<td>22.3±0.3</td>
<td>9.8±0.2</td>
</tr>
<tr>
<td>Tn104-5</td>
<td>18.4±0.3</td>
<td>7.6±0.2</td>
</tr>
<tr>
<td>Tn112-4</td>
<td>18.9±0.3</td>
<td>7.3±0.2</td>
</tr>
<tr>
<td>Tn114-4</td>
<td>17.7±0.2</td>
<td>8.1±0.2</td>
</tr>
<tr>
<td>35S:co-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tn33a-1</td>
<td>18.9±0.3</td>
<td>7.0±0.1</td>
</tr>
<tr>
<td>Tn43-1</td>
<td>19.9±0.1</td>
<td>6.4±0.2</td>
</tr>
<tr>
<td>Tn75a-1</td>
<td>21.3±0.2</td>
<td>7.9±0.2</td>
</tr>
<tr>
<td>TnG209-8</td>
<td>14.2±0.1</td>
<td>6.4±0.1</td>
</tr>
<tr>
<td>TnG210-7</td>
<td>21.3±0.2</td>
<td>7.9±0.3</td>
</tr>
<tr>
<td>35S:ZF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tn204-2</td>
<td>20.2±0.5</td>
<td>8.5±0.2</td>
</tr>
<tr>
<td>Tn206-2</td>
<td>20.4±0.4</td>
<td>8.1±0.3</td>
</tr>
<tr>
<td>Tn211-4</td>
<td>19.8±0.6</td>
<td>7.6±0.2</td>
</tr>
<tr>
<td>TN213-2</td>
<td>20.7±0.2</td>
<td>6.9±0.2</td>
</tr>
<tr>
<td>Tn215-1</td>
<td>19.5±0.4</td>
<td>6.9±0.2</td>
</tr>
<tr>
<td>Wild type Ler</td>
<td>20.1±0.5</td>
<td>7.2±0.3</td>
</tr>
<tr>
<td>co-2 tt4</td>
<td>30.9±2.0</td>
<td>14.4±1.0</td>
</tr>
</tbody>
</table>

Table 5.2 Flowering time and leaf number analysis of the transformants in LDs and, where examined, SDs, compared to untransformed wild type Landsberg erecta and the co-2 mutant.
Figure 5.3 A wild type Landsberg *erecta* plant on the left, and a plant carrying the 35S:co-7 construct on the right (transformant TnG209). Both plants were grown in SDs and are 60 days old.
then the truncated CO protein must be expressed from the transgene and have an effect in developing flowers.

5.7 Analysis of the expression of the transgenes by Northern hybridization

To verify that the transgenes were intact and expressing the modified CO mRNAs, RNA was extracted from progeny of each independent transformant and analyzed by Northern hybridization using the CO cDNA as a probe. All transformants carrying 35S:co-3 or 35S:co-7 were found to strongly express a CO transcript. In the 35S:ZF transformants two transcripts were detected, both of which were much less abundant than the transcript detected in the 35S:co-3 and 35S:co-7 transformants. No transcript was detected in the Landsberg erecta untransformed control, which is expected as the endogenous CO transcript is present at a level undetectable by Northern hybridization. As expected, the transcript present in the 35S:co-7 and 35S:co-3 lines was approximately 1.3 kb. One of the two transcripts present in the 35S:ZF transformants was of the predicted size of 650 bp (450 bp of the CO ORF and approximately 200 bp of the 35S terminator up to the polyadenylation signal). The additional CO-hybridizing transcript in these transformants was approximately 1.5 kb.

5.8 Discussion

Naturally occurring dominant negative mutations were described by Muller (1932) as "antagonistic mutant genes, having an effect actually contrary to that of the gene from which they were derived". Well characterized examples include mutations affecting the multimeric lac and trp operon repressor proteins of E. coli, where the DNA binding domains are inactivated but the domains required for oligomerization are functional. In the presence of the wild type protein, mixed, non-functional aggregates form, which are unable to bind to DNA (Miller, 1978). Examples also exist in eukaryotes: in maize there is a
Figure 5.4 Northern blot of RNA extracted from the 35S:co-3, 35S:ZF and 35S:co-7 transformants. The blot was probed with the CO cDNA. Two different exposures are shown:
A) 8 hour exposure to X-ray film, showing the single 1.3 Kb transcript present in the 35S:co-3 and 35S:co-7 transformants. The two transcripts present in the 35S:ZF transformants are just visible.
B) Three day exposure to X-ray film showing the presence of at least two CO-hybridizing transcripts in the 35S:ZF transformants. No hybridizing transcript was detected in the Landsberg erecta control, as expected.
naturally occurring dominant negative mutation of the anthocyanin biosynthesis regulatory
gene C1 (Paz-Arez et al., 1990; Goff et al., 1991). The C1-I allele blocks pigmentation in
the cells of the aleurone layer in the C1/C1-I heterozygote. By creating fusion proteins
between the wild type C1 and the mutant C1-I allele in a transient expression system, it
was found that mutations in both the N-terminal DNA binding domain and the C-terminal
acidic activation domain contribute to the dominant phenotype. The mutant protein may
inhibit binding of the functional wild type protein to DNA by occupying the binding sites,
or may interact directly with the wild type protein to form an inactive complex. The
analysis of the yeast transcriptional machinery is well documented and the construction of
artificial dominant negative mutations has helped in the functional dissection of many of
the genes involved. For example, the separation of the DNA binding domain from the
transcriptional activation domain of GCN4 (Hope and Struhl, 1986) and GAL4 (Keegan et
al., 1986) resulted in some of the derivatives acting as transcriptional repressors which
could bind to DNA, preventing the binding of wild type proteins, but could not activate
transcription.

In plants, one of the first proteins to be analyzed in vitro by the artificial construction of
dominant negative derivatives was the maize OPAQUE2 bZIP transcriptional activator
(Unger et al., 1993). This protein regulates the genes encoding the 22-kD zein class of
storage proteins in the maize endosperm. Derivatives of OPAQUE2, which had the basic
DNA binding domain deleted formed heterodimers with wild type OPAQUE2 proteins
when they were co-expressed in an expression system, and these heterodimers could not
bind to the 22-kD zein promoter. Removal of the putative transactivation domain allowed
the formation of both homo- and heterodimers with the wild type proteins, both of which
could bind to the promoter but not activate transcription.
Subsequently, a number of other plant proteins that have a modular structure have been analyzed by the creation of dominant negative mutations, both \textit{in vitro} and \textit{in vivo}. These include Phytochrome A from rice (Emmler \textit{et al.}, 1995), S$_3$ RNase from \textit{Petunia} (McCubbin \textit{et al.}, 1997), the bZIP transcription factor PG13 from potato (Rieping \textit{et al.}, 1994), and several \textit{Arabidopsis} genes including Cdc2a kinase (Hemerly \textit{et al.}, 1995), Phytochrome A (Boylan \textit{et al.}, 1994), Phytochrome B (Wagner \textit{et al.}, 1996), the zinc-binding regulatory protein COP1 (McNellis \textit{et al.}, 1996) and the MADS box regulatory protein AGAMOUS (Mizukami \textit{et al.}, 1996).

The aim of the experiments described in this chapter was to study the \textit{in vivo} function of individual domains of the CO protein by introducing dominant negative forms which may inhibit wild type CO function in transgenic plants. It was hoped that this would delay the onset of flowering, which, as well as providing information on the function of CO, could have major implications for the manipulation of similar genes in commercial crop plants. However, with the exception of small effects in one or two transformants, little or no significant alteration in flowering time phenotype was observed.

There are several possible explanations for why the transformants did not show clear phenotypes. The first is purely technical and concerns the 35S:ZF construct. Although the construct was thoroughly checked by restriction mapping when transferred into \textit{Agrobacterium}, it is possible that it became rearranged subsequently in the transformants. Northern analysis showed that at least two CO-hybridizing transcripts were present in these transformants, one of the predicted size (650 bp, consisting of 450bp of CO sequence and approximately 200bp of additional 3' sequence derived from the CaMV polyadenylation sequence (Guerineau \textit{et al.}, 1991)) and an additional one of approximately 1.5 kb. Both transcripts in the 35S:ZF transformants were also considerably less abundant than those.
present in the other transformants. The simplest explanation, then, for the lack of a phenotype in the 35S:ZF transformants is the low abundance of the mRNA of the expected size. This may have occurred because the truncated transcript is unstable, because the fusion transcript between the truncated CO gene and the CaMV polyadenylation sequence is unstable or because of the presence of a rearrangement in the T-DNA which affects the transcript size and its abundance.

The homeodomain transcription factor KNOTTED-1 from maize regulates vegetative development (Vollbrecht et al., 1991). When the DNA binding domain and conserved proximal amino acids, the ELK-homeodomain (ELK-HD), was expressed under the control of the 35S promoter in transgenic tobacco no dominant negative phenotypes were observed (Meisel and Lam, 1996). One explanation was that the DNA binding domain, which was fused to the uidA reporter gene, was not properly folded, and therefore could not bind to DNA. Alternatively residues outside this domain may be required for the stability of the bound protein. Another explanation, then, for the lack of dominant negative phenotypes among transformants could be that even if proper translation of the modified co proteins occurs, the resulting proteins are unstable or not folded properly. When these experiments were performed, an antibody to the CO protein was not available to verify whether the stable mutant protein was present in the transformants.

Only a small number of transformants were obtained for the 35S:co-3 and 35S:ZF constructs. Such a small number of transformants may have been biased against those with strong phenotypes so that only transformants in which the expression of the transgene was low or modified were recovered. Low expression of the transgene was observed for the 35S:ZF transformants. Expression of the modified genes under the control of an inducible system rather than a constitutive promoter, for example by fusing the modified co proteins
to the steroid-inducible rat glucocorticoid receptor would overcome this difficulty by permitting normal propagation of the transformants in the absence of induction. The uninduced transformants would also serve as a more stringent experimental control than untransformed wild type plants.

A total of 37 kanamycin resistant transformants were produced with 35S:co-7. Although only five of these were analyzed in detail in the T₃ generation in both LDs and SDs, many others were observed to flower earlier in the T₂ generation than wild type and the 35S:ZF and 35S:co-3 transformants. The generation of a large number of transformants and the observation that many of them were slightly accelerated in flowering time compared to wild type suggested that the co-7 protein under the control of the 35S promoter had some residual CO activity which was sufficient to promote flowering, although less efficiently than the wild type protein. The transformants containing this construct also weakly resembled the 35S:CO transformants (Igeño et al., unpublished results) in the formation of a terminal pistil. Although the co-7 allele is the second most severe in the allelic series and flowers later than the co-8 mutant which is presumed to carry a null allele, it could still retain some function. However, this residual function of co-7 has probably been dramatically enhanced by expressing the mutant protein from the strong 35S promoter. This would express the mutant protein at artificially high levels, in tissues and at developmental stages where it is not normally expressed.

Another possible explanation for the slight acceleration of flowering seen in the 35S:co-7 transformants is that the CO protein may be negatively regulated by an interacting repressor protein, and that the overexpressed, defective co-7 protein may titrate this repressor into a non-functional complex. This would remove the negative regulation from the wild type endogenous CO protein which may result in an enhancement of CO function and consequently earlier flowering plants.
Unlike the overexpression of co-7, overexpression of the co-3 allele did not accelerate flowering. Therefore the overexpression of co-3 cannot compensate for the loss of function of the putative DNA binding domain which is affected in co-3. However, overexpression of co-3 did not cause a dramatic dominant negative phenotype either. The original model suggested that the co-3 protein could not bind to DNA, but might interact with another factor, which, if co-3 was present in excess, would be unavailable to interact with the wild type CO protein. Perhaps CO cannot interact with another factor if it is not bound to DNA, so that the wild type CO protein, present in the Landsberg erecta transformants, can promote flowering regardless of the presence of excess co-3.

Alternatively, if CO can only bind to DNA as a homo- or hetero dimer, this might explain why 35S:ZF transformants, if they contain a stable modified co protein, showed no mutant phenotype. A truncated CO protein lacking the conserved C-terminal domain may not be able to interact with its partner, and therefore cannot bind to DNA. If this is the case then the endogenous wild type CO protein will not be out-competed at the DNA binding sites.

Although none of the modified co constructs produced a dominant negative effect on flowering time, many long day-grown transformants had an increased number of petals (usually five or six instead of four) in their first or second flowers. The petal number phenotype was seen most frequently in the transformants carrying the 35S:ZF construct, although its low penetrance made it difficult to study. The phenotype is sometimes observed among wild type plants grown in long days, but was not observed in the Landsberg erecta controls grown alongside the transformants during these experiments. However, as the control population of Landsberg erecta plants was untransformed and had not been through selection in tissue culture the possibility of this phenotype being a tissue culture- or T-DNA- induced artefact cannot be ruled out.
As previously discussed in Chapter 2, an increase in petal and stamen number is a common phenotype in short day grown plants, and in long day grown co and other late flowering mutants. The incidence of increased petal number in these transformants and the increase in carpel number in the 35S:CO transformants (Igeño et al., unpublished results) and some of the transformants carrying the Brassica napus CO orthologue (Chapter 6) suggests that CO may interact with regulators of meristem development such as CLAVATA1. Mutations in the CLAVATA1 gene result in enlarged vegetative, inflorescence and floral meristems and an increase in floral organ number (Clark et al., 1993). The clavata1 mutants were originally identified as having an increase in carpel number (Koomneef et al. 1983) but subsequently were shown to have an increase in the number of all floral organ types and sometimes in the number of whorls. Weaker alleles tend to show an increase in carpel and stamen number and stronger mutant alleles show additional increases in petal and sepal number.

The analysis of dominant negative mutations of the MADS box protein AGAMOUS effectively demonstrates the systematic dissection of a protein into functional domains. Mizukami et al. (1996) constructed thirteen AGAMOUS derivatives based on the sequence homology to related genes which divides AGAMOUS into five distinct regions. They investigated the in vivo functions of each domain by analyzing the phenotypes of transgenic plants over-expressing these derivatives, and also used them in vitro to study DNA binding and dimerization. This strategy could be applied to CO, which can also be subdivided into a number of regions and recognizable structural domains: an N-terminal region, zinc finger 1, zinc finger 2, the putative transcriptional activator, the putative NLS, the highly conserved basic domain, the C-terminus and the less well conserved regions between some of these domains. The creation of a number of derivatives, where one or more of these regions is deleted might be effective in producing dominant negative phenotypes, but also
may help to analyze the function of individual subdomains. By overexpressing several different co derivatives at least some of them may be stably translated and folded properly.

The creation of a dominant negative mutation of the GATA-3 transcription factor in a transient expression system (Smith et al., 1994) may also suggest one strategy for the design of modified CONSTANS proteins. N-terminal and C-terminal deletions of GATA-3, which left the zinc fingers intact could not suppress wild type GATA-3 function. The region between the two zinc fingers of GATA-3 is highly conserved to that of GATA-1 and contains a small basic motif. Mutagenesis of three basic residues (KRR) to AAA caused GATA-3 to display a dominant inhibition of transactivation of a reporter gene in the presence of wild type GATA-1, -2 or -3. The CO protein also contains a basic domain between the two zinc fingers, which is conserved between CO homologues and appears to be important for CO function as it is affected by a point mutation in the co-2 allele. Site-directed mutations or small deletions within this domain may affect transactivation but leave DNA binding intact, leading to a dominant negative inhibition of wild type CO function.

Since the experiments described in this chapter were planned and performed the characterization of the CO protein has continued. In particular, the sequence similarities between CO and its homologues have allowed important regions of homology to be identified. The strategy used for creating dominant negative mutations could be improved in light of this information. A comprehensive series of deletions of specific domains from either end or from within the CO protein, site directed mutagenesis of particular residues and expression of isolated domains may be necessary in order to create dominant negative derivatives. These derivatives would also help to assess the function of the individual domains of CO, both *in vitro* and *in vivo*.

119
6 Investigation of the conserved function of a *Brassica napus* CO homologue

6.1 Introduction

Arabidopsis thaliana and *Brassica napus* (oilseed rape) are taxonomically closely related, both belonging to the Cruciferae, or Brassicaceae, family (Hedge, 1976). Unlike *Arabidopsis*, some members of the *Brassica* genus are of great agricultural importance, providing vegetables and spices for human consumption, animal fodder, and oils for culinary purposes and for use as industrial lubricants (Murphy, 1992). Genetic mapping studies in *Brassica* species are being carried out in order to map genes controlling agronomically important traits (Campos *et al.*, 1996; Lagercrantz *et al.*, 1996; Keith, 1995; Teutonico and Osborn, 1994). However, the complex, internally duplicated genomes of *Brassica* species makes the isolation of such genes difficult (Lagercrantz and Lydiate, 1995). On the other hand, *Arabidopsis*, with its small genome, high number of single-copy genes and low amount of repetitive DNA, is ideal for isolating genes using map-based cloning and chromosome walking. Genes isolated in this way from *Arabidopsis* could potentially be used to isolate homologues from their close relatives in the *Brassica* genus. Considerable variation in flowering time exists among members of the Brassicaceae and the manipulation of flowering time could have a significant impact on the cultivation of these crops. Currently, for example, *Brassica napus* is only grown in temperate latitudes because of the lack of very early flowering varieties, which would be required if it were to be cultivated in subtropical regions or the more northerly latitudes of Canada (Akbar, 1987; Thurling and Depittayan, 1992; Murphy and Scarth, 1994).
The mapping of a number of QTLS (Quantitative Trait Loci) controlling flowering time in some *Brassica* species has identified genomic regions that contain homologues of the CO gene (Keith, 1995; Lagercrantz *et al.*, 1996). In *Brassica nigra*, CO homologues were located to two loci on linkage groups LG2 and LG8, close to or coincident with loci that influence flowering time (Lagercrantz *et al.*, 1996). The CO homologue on LG2 appeared to be coincident with a major flowering time QTL in *Brassica nigra*, controlling 53% of the total variation. In *Brassica napus*, *Arabidopsis* CO probes and other probes from the top arm of chromosome 5, detected a number of loci on several different linkage groups at which QTLS controlling flowering have been mapped (Keith, 1995; Osborn *et al.*, 1997). CO homologues might be expected at six loci in *Brassica napus* because it is an amphidiploid derived from the hybridization of *Brassica rapa* and *Brassica oleracea* and the genome of each of the progenitor species is believed to be triplicated (Lagercrantz and Lydiate, 1996). The *Brassica napus* CO homologues have been mapped to linkage groups N2 and N10, from the *Brassica rapa* component of the genome, and linkage groups N12 and N19 from the *Brassica oleracea* component (linkage group nomenclature according to Parkin *et al.*, 1995). Whether all of these CO genes have remained active and have a role in the promotion of flowering is addressed in this chapter.

The conservation of synteny (conservation of genetic linkage between the same genes in different species), collinearity (gene order) and gene sequence between *Arabidopsis thaliana* and members of the *Brassica* genus are being extensively investigated (Cavell *et al.*, 1998; Kowalski *et al.*, 1994; Lagercrantz *et al.*, 1996; Sadowski *et al.*, 1996; Scheffler *et al.*, 1997). This chapter is concerned with the conservation of the function of a *Brassica napus* CO homologue. The work described in the remainder of the introduction to this chapter was carried out by Dr. Laurian Robert, who provided a cloned *Brassica napus* CO gene to the author for complementation of the *co* mutant phenotype in *Arabidopsis thaliana*.

121
The *Brassica napus* CO homologues were isolated from genomic libraries constructed from the doubled-haploid lines N-o-1 and N-o-9 that show differences in their flowering time. N-o-1 is a facultative early flowering annual spring variety from Canada. N-o-9 is a late flowering biennial winter variety that has an absolute requirement for vernalization in order to flower. The *Arabidopsis* CO cDNA, amplified by PCR, was used as a probe against these libraries, and a number of genomic clones were isolated. From their restriction patterns, these genomic clones appeared to represent four loci, two from each early or late flowering line. The chosen representative clones were RFLP mapped and found to correspond to the CO locus on linkage group N10 from the *Brassica rapa* (A) genome and the homoeologous locus on linkage group N19 from the *Brassica oleracea* (C) genome. Both loci were isolated from the two lines screened. Since the libraries were made from doubled-haploid lines each locus is assumed to be homozygous for a particular allele. The CO loci on linkage groups N2 (A genome) and N12 (C genome) were not isolated from either of the two genomic libraries.

The four genes were sequenced and found to be very similar to each other, with the highest similarity seen between alleles from the same ancestral genome but derived from different lines. The representative allele chosen for complementation analysis in *Arabidopsis* was derived from the *Brassica napus* early flowering spring variety, N-o-1 on linkage group N10 (*Brassica rapa* A genome), and is known as Bn1CON10.

The isolation and characterization of the four *Brassica napus* CO homologues by Dr. Laurian Robert, and the complementation of the *Arabidopsis co-2* mutation by the author has been accepted for publication (Robert et al., 1998).
6.2 Sequence comparison of the *Brassica napus* CO homologue *Bn1CON10*, and *Arabidopsis thaliana* CO

The sequences of the *B. napus* CO homologue *Bn1CON10* were compared to the *Arabidopsis CO* sequence. The DNA sequences of the ORFs were 83% identical but in the two highly conserved domains, discussed in Chapter 3, the identity was higher. The region encoding the zinc fingers was 89% identical and the region encoding the C-terminal basic domain was 91% identical. Upstream of the start of translation the homology was maintained at 66% for approximately 125bp, including a perfectly conserved sequence (TATTA) which may represent a TATA box. Further upstream the similarity decreased. Like the *Arabidopsis CO* gene, the *Bn1CON10* allele, and the other alleles isolated from *Brassica napus*, have a single intron, and its position is conserved in all of the genes. The *Bn1CON10* and CO predicted proteins were 74% identical but this increased to 91% over the zinc finger domain and 94% over the C-terminal basic domain. All the residues which, from the analysis in the introduction (Chapter 1) and Chapter 3 of this thesis, are thought to be important for CO function within these two domains are conserved in *Bn1CON10*. These include the putative zinc-binding cysteines, the residues which are affected in the seven alleles and the putative nuclear localization consensus. Interestingly, the sequence encoding the most highly negatively charged region of the candidate transcriptional activating sequence in *Arabidopsis CO* is deleted in the *B. napus CO* homologue. Figure 6.1 shows the *B. napus* and *Arabidopsis CO* amino acid sequences aligned.

6.3 Plasmid construction

Two plasmid constructs containing the *Bn1CON10* allele were designed. The first contained the two ORFs separated by the intron, 2.5 kb of DNA upstream of the ATG and 2.2 kb after the TGA. 1.1 kb of DNA 5' to the start of translation was sufficient to drive expression of the *Arabidopsis CO* gene and therefore 2.5 kb was assumed to contain all the
cis elements necessary for regulating the expression of \(Bn1\text{CON10} \). The second gene fusion contained the \(Bn1\text{CON10} \) ORFs driven by the \textit{Arabidopsis CO} promoter, in case the \textit{Brassica} promoter was not active in \textit{Arabidopsis}.

6.3.1 The \textit{Brassica napus} \textit{CO} homologue expressed from its native promoter

This construct (called \(pBn\text{CO} \)) was made by Dr. Laurian Robert, who inserted the 6.1 kb \(\text{Eco RI} \) fragment from the genomic clone \(\lambda Bn1\text{CON10} \) into the \(\text{Eco RI} \) site of the binary vector SLJ1711 (Jones et al., 1992; Figure 6.2A and B). The fragment contains the entire \textit{CO} coding region of allele \(Bn1\text{CON10} \) plus approximately 2.5 kb and 2.2 kb of 5’ and 3’ flanking region, respectively. The resulting plasmid, \(pBn\text{CO} \), was introduced into \textit{Agrobacterium tumefaciens} C58C1 pGV2260 by the author. The integrity of the construct was verified by restriction digestion and Southern analysis of plasmid DNA prepared from putative \textit{Agrobacterium} transformants.

6.3.2 The \textit{Arabidopsis CO} promoter with the \textit{Brassica napus CO} coding sequence

To make this construct (called \(pA\text{pBnCO} \)) a 2.3 kb \(\text{Hind III} \) fragment containing the \(Bn1\text{CON10} \) coding region plus approximately 70 bp and 0.9 kb of 5’ and 3’ flanking region, respectively, was subcloned from the genomic clone \(\lambda Bn1\text{CON10} \) into pBluescript (Figure 6.2A and C). The \textit{Hind III} site just upstream of the start of translation is present also in the \textit{Arabidopsis CO} gene, and has been used in the construction of a number of transcriptional fusions between \textit{CO} and foreign promoters (Simon et al., 1996) The 70 bp of 5’ sequence from the ATG up to this \textit{Hind III} site, plus an additional 60 bp is highly conserved between the \textit{Arabidopsis CO} gene and the four \textit{Brassica napus CO} homologues sequenced so far (Robert et al., 1998). The \textit{Arabidopsis CO} promoter was isolated as a 2.1 kb \textit{Hind III} fragment from an \textit{Arabidopsis CO} genomic clone, p486, kindly provided by
Figure 6.1 Prettybox comparison of the predicted protein sequence of the *Brassica napus* Bn1CON10 allele (Bn101) with *Arabidopsis* CO (Co).
Kate Dixon (Figure 6.2D). The promoter was cloned into the conserved Hind III site upstream of the Bn1CON10 ORF and orientated by restriction mapping (Figure 6.2C). This was accomplished using a step-wise approach, because of the presence of a Hind III site at the 3' end of the Bn1CON10 fragment. The Hind III site at the 3' end was temporarily removed within an Xba I fragment while the promoter was added to the coding sequence, and replaced in the correct orientation after all Hind III cloning steps were completed. The Arabidopsis promoter Brassica napus ORF fusion was moved as a 4.5 kb Cla I/Sac I fragment into the binary vector SLJ1711, and introduced into Agrobacterium tumefaciens as previously described.

6.4 Introduction of the constructs into the co-2 mutant
The two constructs were introduced into the Arabidopsis thaliana co-2 mutant by a root transformation method adapted from Valvekens et al. (1988). The co-2 mutant used was marked with the tt4 (transparent testa) mutation which maps approximately 3.4 cM from co and causes a yellow seed phenotype (Koomneef et al., 1990) so that any early flowering transformants caused by complementation of co-2 would be distinguishable from wild type brown seeded plants.

The BnCO construct and the ApBnCO construct yielded seven and eight independent kanamycin-resistant transformants, respectively. These T1 plants were allowed to self-fertilize, their T2 progeny were plated onto GM with kanamycin at 50mg/L and the number of kanamycin resistant:sensitive seedlings recorded to determine the number of loci at which the T-DNA had inserted (Table 6.1). The seeds of the transformants were yellow, verifying the presence of the tt4 marker and excluding the possibility that they were derived from contaminating wild type plants. The kanamycin resistant T2 seedlings were transferred to the greenhouse and self-fertilized. The resulting T3 seeds were harvested and sown on
Figure 6.2

A) Restriction map of the \(\lambda \) clone N.o.101 which contains the \(\text{Bn1CON10} \) allele. The \(\lambda \) clone is approximately 20 kb, and was subcloned as a \(\text{Not I} \) fragment into pBluescript (pSK+). Only 10 kb is shown. Underneath are the two constructs, B) \(\text{pBnCO} \) and C) \(\text{pApBnCO} \). The EcoR I or \(\text{Hind III} \) sites which were used to subclone the \(\text{Bn1CON10} \) allele are in blue. At the bottom is D) \(\text{p485} \), the \(\text{Arabidopsis CO} \) genomic clone from which the 2.1 kb \(\text{Hind III} \) fragment containing the \(\text{Arabidopsis CO} \) promoter was derived. The sites used to orientate the fragments when making the ApBnCO construct are in red. The \(\text{Xba I} \) fragment containing a \(\text{Hind III} \) site was temporarily removed so that the \(\text{Hind III} \) fragment containing the \(\text{Arabidopsis CO} \) promoter could be cloned into this construct. The \(\text{pBnCO} \) and \(\text{pApBnCO} \) constructs, once completed in the pBluescript vector were moved as \(\text{Sac I - Cla I} \) fragments into the poly linker of the binary vector pSLJ1711 (Jones et al., 1992).
kanamycin-containing medium in order to identify individuals homozygous for the T-DNA insertion for each independent transformant.

6.5 Identification of transgenic plants homozygous for the T-DNAs
Approximately 100-150 T₃ seeds from each of five T₂ families for each transformant were sown on GM/Km and the ratio of resistant:sensitive seedlings recorded (Table 6.1). T₃ families that were all resistant to kanamycin and therefore derived from T₂ plants homozygous for the T-DNA were identified for all seven BnCO transformants, and for five of the ApBnCO transformants, and analyzed further in controlled flowering time experiments (Table 6.2)

6.6 Phenotypic analysis of the transformants under long and short days
For each transformant the flowering times of 20 plants homozygous for the T-DNA were measured under LDs and SDs and compared with the flowering times of Landsberg erecta and the co-2 tt4 mutant. As described previously flowering time was scored as the number of days from sowing to the first appearance of buds in the centre of the rosette, and the total number of leaves produced on the primary shoot of the plant.

6.6.1 Flowering time of transformants carrying BnCO
Under LDs, the BnCO construct not only complemented the co-2 mutant phenotype and restored wild type flowering time, but all transformants flowered earlier than the wild type control (Figure 6.3A; Table 6.2). This was most apparent in lines which were predicted to contain the T-DNA at multiple loci based on the segregation of kanamycin resistance. Under SDs the acceleration of flowering of the transformants was more evident as both wild type Landsberg erecta and the co-2 mutant flower very late under these conditions. All transformants, including those predicted to contain the T-DNA at one locus, flowered
<table>
<thead>
<tr>
<th>Construct</th>
<th>Transformant</th>
<th>Km<sup>r</sup>:Km<sup>s</sup> ratio in T<sub>2</sub> generation</th>
<th>T3 family</th>
<th>Km<sup>r</sup>:Km<sup>s</sup> ratio in T<sub>3</sub> generation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>BnCO</td>
<td>Tn2a</td>
<td>3.75:1</td>
<td>Tn2a-3</td>
<td>2.9:1</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>Tn2a-5</td>
<td></td>
<td></td>
<td>1:0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tn3a</td>
<td>1.5:1</td>
<td>Tn3a-3</td>
<td>1:0</td>
<td>Hom? All T<sub>3</sub> families 100% Km<sup>r</sup></td>
</tr>
<tr>
<td></td>
<td>Tn17</td>
<td>3.4:1</td>
<td>Tn17-2</td>
<td>2.7:1</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>Tn17-5</td>
<td></td>
<td></td>
<td>1:0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tn18a</td>
<td>6.0:1</td>
<td>Tn18a-3</td>
<td>5.6:1</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>Tn18a-4</td>
<td></td>
<td></td>
<td>1:0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tn34</td>
<td>2.0:1</td>
<td>Tn34-4</td>
<td>1:0</td>
<td>Hom? All T<sub>3</sub> families 100% Km<sup>r</sup></td>
</tr>
<tr>
<td></td>
<td>Tn36</td>
<td>2.46:1</td>
<td>Tn36-2</td>
<td>2.4:1</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>Tn36-4</td>
<td></td>
<td></td>
<td>1:0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tn91</td>
<td>12.5:1</td>
<td>Tn91-6</td>
<td>7.0:1</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>Tn91-7</td>
<td></td>
<td></td>
<td>1:0</td>
<td></td>
</tr>
<tr>
<td>ApBnCO</td>
<td>Tn406</td>
<td>nt</td>
<td>Tn406-3</td>
<td>2.6:1</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>Tn406-4</td>
<td></td>
<td></td>
<td>1:0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tn410</td>
<td>3.7:1</td>
<td>Tn410-2</td>
<td>3.1:1</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>Tn410-1</td>
<td></td>
<td></td>
<td>1:0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tn412</td>
<td>nt</td>
<td>Tn412-3</td>
<td>3.2:1</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>Tn412-2</td>
<td></td>
<td></td>
<td>1:0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tn413</td>
<td>nt</td>
<td>Tn413-1</td>
<td>3.2:1</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>Tn413-2</td>
<td></td>
<td></td>
<td>1:0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tn418</td>
<td>nt</td>
<td>Tn418-3</td>
<td>4.0:1</td>
<td>Hom</td>
</tr>
<tr>
<td></td>
<td>Tn418-5</td>
<td></td>
<td></td>
<td>1:0</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.1 The Kanamycin segregation analysis for the transformants in the T₂ and T₃ generations and the identification of families homozygous for the T-DNA/s to be used in further analysis of flowering time.
<table>
<thead>
<tr>
<th>Transformant</th>
<th>Long Days</th>
<th>Short Days</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Days to</td>
<td>Total leaf</td>
<td>Days to</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>induction of</td>
<td>number</td>
<td>induction of</td>
<td>leaf</td>
</tr>
<tr>
<td></td>
<td>flowering</td>
<td></td>
<td>flowering</td>
<td>number</td>
</tr>
<tr>
<td>BnCO in co-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tn2a-5</td>
<td>18.7±0.2</td>
<td>6.9±0.1</td>
<td>35.6±0.5</td>
<td>23.7±0.4</td>
</tr>
<tr>
<td>Tn3a-3</td>
<td>16.8±0.5</td>
<td>5.4±0.1</td>
<td>29.9±1.1</td>
<td>11.1±0.6</td>
</tr>
<tr>
<td>Tn17-5</td>
<td>15.9±0.7</td>
<td>5.9±0.1</td>
<td>37.7±1.3</td>
<td>17.0±2.0</td>
</tr>
<tr>
<td>Tn18a-4</td>
<td>17.8±0.2</td>
<td>6.4±0.1</td>
<td>29.3±0.7</td>
<td>13.4±0.8</td>
</tr>
<tr>
<td>Tn34-4</td>
<td>18.5±0.4</td>
<td>6.8±0.2</td>
<td>34.0±1.0</td>
<td>13.2±0.8</td>
</tr>
<tr>
<td>Tn36--4</td>
<td>18.3±0.3</td>
<td>6.8±0.1</td>
<td>34.8±1.0</td>
<td>12.9±0.8</td>
</tr>
<tr>
<td>Tn91-7</td>
<td>17.4±0.6</td>
<td>5.2±0.2</td>
<td>23.4±0.8</td>
<td>7.7±0.5</td>
</tr>
<tr>
<td>co-2 tt4</td>
<td>33.1±0.9</td>
<td>19.1±0.6</td>
<td>48.8±0.8</td>
<td>36.7±1.1</td>
</tr>
<tr>
<td>Wild type Ler</td>
<td>19.8±0.9</td>
<td>8.2±0.2</td>
<td>60.3±1.2</td>
<td>48.9±0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ApBnCO in co-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tn406-4</td>
<td>30.2±1.2</td>
<td>15.9±0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tn410-1</td>
<td>26.4±0.4</td>
<td>12.8±0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tn412-2</td>
<td>27.6±0.8</td>
<td>13.2±0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tn413-2</td>
<td>27.7±0.8</td>
<td>13.0±0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tn418-5</td>
<td>25.9±0.5</td>
<td>13.0±0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>co-2 tt4</td>
<td>30.9±2.0</td>
<td>14.4±0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild type Ler</td>
<td>20.1±0.5</td>
<td>7.2±0.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.2 Flowering time and leaf number analysis for the transformants in the co-2 tt4 mutant background, in LDs and where applicable, SDs, compared to untransformed co-2 tt4 and wild type Landsberg erecta
Figure 6.3 A) From the left, a wild type Landsberg erecta plant, a co-2 tt4 mutant and a co-2 tt4 mutant carrying the Brassica napus CO homologue, Bn1CON10 (the BnCO construct, transformant Tn2a). All plants were grown in LDs and are 28 days old. B) Plants as in A, but grown in SDs. All plants are 42 days old.
earlier and with fewer leaves than both control populations under SDs (Figure 6.3B; Table 6.2). However, the early flowering phenotypes of lines containing T-DNAs at multiple loci were particularly dramatic. For example, transformant 91 (Tn 91), flowered in SDs with an average of 7.8 leaves after 23.4 days while the untransformed co-2 tt4 control flowered with 36.7 leaves after 48.8 days. The Tn 91 family chosen for flowering time analysis appeared to be still segregating for one T-DNA which caused very early flowering, because some individuals in this SD grown population flowered with a total of 3 or 4 leaves.

6.6.1.1 Phenotypes other than early flowering conferred by pBnCO

Although all the BnCO transformants flowered earlier than wild type in both LDs and SDs there was a gradation of flowering time phenotypes, and the most extremely early individuals displayed other phenotypes which are characteristic of plants in which CO is expressed from the CaMV 35S promoter. Transformants which carry 35S:CO, as well as flowering early in both LDs and SDs form fewer flowers than wild type, terminate in the formation of a pistil, and show alterations in flower morphology, particularly to the gynoecium which can be comprised of three or four carpels rather than the usual two (Igeno et al., unpublished results). These phenotypes are also found in the earliest flowering BnCO transformants (particularly individuals derived from Tn 91 and Tn 3a) in both LDs and SDs. Figure 6.4A shows an altered BnCO gynoecium containing three fused carpels, compared to a wild type gynoecium. Several early flowering individuals from a number of BnCO transformed lines also showed an alteration in phyllotaxy on the flowering stem. Flowers were no longer produced in the spiral pattern characteristic of Arabidopsis, but were randomly distributed along one side of the stem (Figure 6.4B and C). This phenotype was not observed in the 35S:CO transformants.
Figure 6.4 Examples of phenotypes observed in some BnCO transformants.
A) At the top, an altered gynoecium from a Tn 91 individual, comprised of three fused carpels compared to a wild type gynoecium below, comprised of two.
B) A flowering stem from a Tn 91 individual showing an altered phyllotaxy, compared to a wild type stem (C) with normal spiral phyllotaxy.
6.6.2 Flowering time of transformants carrying ApBnCO

All transformants carrying the *Brassica napus* CO ORF driven by the *Arabidopsis* CO promoter flowered as late as untransformed co-2 tt4 under LDs, so this construct was not able to complement the co mutant phenotype (Figure 6.5; Table 6.2). The integrity of the construct in each of the five transformants analysed was checked by restriction digestion of DNA extracted from the transformed plants, Southern blotting and hybridization to CO and T-DNA probes (data not shown). No rearrangements which might compromise CO expression were detected at this level of analysis.

6.7 Analysis of the expression of the transgenes by Northern hybridization and RT-PCR

To confirm that the ApBnCO transgene was expressed and to compare the abundance of the CO transcript in the ApBnCO and BnCO transformants, the expression of the transgenes in each transformant was analyzed. As the BnCO construct complemented the co-2 mutation and caused phenotypes associated with over-expression of CO, Northern analysis was first attempted, in case the BnCO transcript in the transformants was present at levels detectable by this method. In wild type plants, the CO transcript was too rare to be detected by Northern analysis (Putterill et al., 1995). RNA was extracted from triplicate batches of 10 day old LD grown seedlings of the following genotypes: each BnCO transformant, wild type Landsberg erecta, co-2 mutant and, as a positive control, the 35S:CO transformant Tn5, provided by Maribel Igeño. The resulting Northern blot was probed with a mixed DNA probe containing the 6.1 kb *Brassica napus* BnCO fragment and the *Arabidopsis* CO cDNA (Figure 6.6). No transcript specific to the BnCO transformants was detected but a very abundant transcript was present in the 35S:CO samples. A faint transcript of the same size as the 35S driven CO transcript in the positive control plants was present in all samples including the untransformed controls but this was probably a
Figure 6.5 From the left, a wild type Landsberg *erecta* plant, a *co-2 tt4* mutant and two *co-2 tt4* mutants, each carrying the *Arabidopsis* promoter:*Brassica napus* ORF construct, ApBnCO, which did not complement the *co* mutant phenotype. All plants were grown in LDs and are 28 days old.
Figure 6.6 Northern blots of RNA extracted from the BnCO transformants. RNA from untransformed wild type Landsberg erecta and co-2 mutants, and from plants carrying the CaMV 35S:CO construct were included as controls. Three independent RNA samples were loaded for each transformant or control as the ethidium bromide-stained gel also served to check the concentration of RNA for duplicate RT-PCR reactions (Figure 6.7). The blot was probed with the CO cDNA and the 6.1 kb EcoR I fragment containing the whole Bn1CON10 gene.
highly expressed CO homologue like COLI, which cross hybridizes with CO in both Northern and Southern analysis unless a CO-specific probe is used (Putterill et al., 1997). The ApBnCO transformants were not analyzed by Northern hybridization because the BnCO ORF in this construct is expressed from the Arabidopsis promoter and consequently the CO mRNA in these lines was assumed to be undetectable by this method.

To analyze the wild type CO transcript an RT-PCR approach was taken (Putterill et al., 1995). This technique was therefore also used to look at expression of the transgenes in BnCO and ApBnCO transformants.

To analyze the expression in Brassica napus of four CO homologues, Laurian Robert designed PCR primers which were allele-specific. A pair of primers designed to only amplify the Bn1CON10 allele were kindly provided to the author. One of these primers, bnco9, annealed to exon sequences on either side of the single intron present in the four Brassica napus CO homologues, to prevent amplification of contaminating DNA and the second primer, bnco7, annealed at the 5' end of the first exon and was specific for the Bn1CON10 allele (Figure 6.7b; Chapter seven, Materials and Methods). These specific primers were able to amplify a fragment of the expected size (580 bp) from cDNA prepared from the RNA of both the BnCO and ApBnCO transformants. This transcript hybridized to a CO probe (Figure 6.7a). No major differences in transcript level were detected between transformants carrying the same construct, even for lines thought to contain multiple copies of the complementing BnCO T-DNA. However, the transcript was reproducibly more abundant in the BnCO transformants than in the ApBnCO transformants.

An additional fragment of approximately 750 bp was also amplified from all transformants, but was more abundant in the ApBnCO transformants than in the BnCO transformants, and in the ApBnCO transformants was more abundant than the correct sized fragment. The nature of this extra fragment is as yet unknown, however it was able to hybridize to a CO
Figure 6.7a Southern blots of RT-PCR products amplified from RNA extracted from the BnCO and ApBnCO transformants and untransformed control plants. RNA was extracted from three batches of plant tissue for each transformant or control and used in independent reverse transcription and PCR reactions so that an occasional negative result, probably due to poor RNA quality, could be discounted. The blot was probed with a mixed DNA probe containing the Arabidopsis CO cDNA and the 6.1 Kb Eco RI Brassica Bn1CON10 fragment.

Figure 6.7b The RT-PCR strategy used to monitor the expression of the transgenes in the transformants carrying the Bn1CON10 allele.
probe. No transcript was amplified using the Bn1CON10 primers from the untransformed controls, confirming that the primers were specific to the transcript of the B. napus gene, and RT-PCR reactions using Arabidopsis CO-specific primers amplified a transcript from both transformed and untransformed plants as expected.

6.8 Discussion

A CO homologue from the Brassica rapa genome in a Canadian early flowering spring variety of Brassica napus was introduced into the Arabidopsis co-2 mutant and demonstrated to complement the co-2 mutation. This indicates that the necessary cis regulatory elements required for CO expression are contained within the 6.1 kb fragment used for complementation. The B. napus promoter must be recognized by the Arabidopsis transcriptional machinery and the protein encoded by the gene must be able to interact correctly with the factors necessary for CO function.

The Bn1CON10 allele not only corrected the late flowering co-2 mutation, but all seven independent BnCO transformants analyzed flowered earlier than wild type under both LDs and SDs. The segregation of kanamycin resistance in the T2 families derived from some of the transformants suggested that they contain the transgene at multiple loci. The earliest flowering line, Tn 91, for example, had a kanamycin resistant:sensitive ratio of 12.5:1 in the T2 generation and 7.0:1 in a T3 family which would be consistent with the segregation of two loosely linked T-DNA copies. One of these copies appeared to be segregating in the T3 family chosen for flowering time analysis because some extremely early flowering individuals with a total leaf number of three were observed in the SD-grown population (wild type, 48.9 leaves). Two other lines, Tn 3a and Tn 34 also had an unusual kanamycin segregation ratio, where all T3 families tested appeared to be 100% kanamycin resistant. This could be coincidental, or could also suggest that these two lines contain many copies of the T-DNA. To estimate the number of T-DNAs, and identify homozygous families, the
segregation of kanamycin resistance would have to be followed in a larger population of seedlings or kanamycin resistant plants could be backcrossed to wild type to reduce the copy number. However, at least three of the transformed lines, Tn 2a, Tn 17 and Tn 36, were predicted to contain the T-DNA at only one locus and these lines also flowered earlier than wild type in both LDs and SDs. It is possible that these lines also contained multiple copies of the T-DNA tandemly arranged at one locus. Alternatively the position of integration of the T-DNA into the genome may be significant because the CO transcript is present at an extremely low level in wild type plants and consequently the presence of other regulatory elements close to the site of integration of the T-DNA may affect the expression of the transgene and therefore cause earlier flowering.

Introduction of the Arabidopsis CO gene into co-2 mutants produced similar results to those obtained with the Brassica CO homologue (Putterill et al., 1995). Several co-2 transformants carrying a cosmid that contained the Arabidopsis CO gene flowered earlier than wild type in both LDs and SDs. Some of these were predicted to contain the T-DNA at several loci based on the kanamycin segregation ratios and on Southern blot analysis. One transformed line, when analyzed in SDs, contained individuals which flowered with five leaves (wild type flowered with 18.9) indicating that at least one T-DNA in this line was causing very early flowering. The results from the complementation with the Arabidopsis CO-containing cosmids were the first indication that CO could promote earlier flowering than wild type in a dosage-dependent manner, and that in SDs the amount of CO is limiting. Subsequently, expressing CO under the control of the strong CaMV 35S promoter (Igeño et al., unpublished results) confirmed this observation. The transformants carrying this fusion are practically day neutral, flowering earlier than wild type after producing a total of approximately five leaves in both LDs and SDs.

In wild type plants the Arabidopsis CO transcript is present at very low levels (Putterill et al., 1995) and co heterozygotes flower later than wild type (Chapter 2) suggesting that a
two-fold reduction in the amount of CO mRNA delays flowering. The transcript from the
Brassica CO homologue in the Arabidopsis transformants could be detected by RT-PCR
but not by Northern analysis, even for lines containing multiple T-DNAs which caused
some individuals to flower as early as plants carrying the 35S:CO construct. This
observation is in agreement with the idea that the level of expression of CO is critical in
determining flowering time and that above a certain threshold of CO transcript abundance
the response to CO is saturated (Putterill et al., 1995).

The observation that transformants carrying Bn1CON10 flower earlier than wild type may
also be explained by differences in the Brassica CO protein, which is 74% identical at the
amino acid level to the Arabidopsis CO protein, or to differences in the controlling regions
of the gene. Upstream of the start of translation the two genes are 67% identical for
approximately 130 bp, but after this the similarity decreases. Although in Arabidopsis the
transcript of the Brassica CO homologue is very rare, it is possible that differences in the
promoter might affect transcript abundance, location or developmental stage of expression,
which might in turn affect flowering time.

Transformants carrying the Arabidopsis CO gene under the control of the CaMV 35S
promoter (35S:CO) showed a number of modifications in flower and shoot morphology
(Igeño et al., unpublished results). These characteristic modifications, caused by increased
and/or ectopic expression of CO, were also observed among transformants carrying multiple
copies of the Brassica CO homologue. The transformants formed fewer flowers than wild
type and these flowers were sometimes altered, particularly the gynoecium which was often
composed of three or more fused carpels instead of the usual two. Another phenotype seen
particularly in the earliest flowering BnCO transformants but not in the 35S:CO
transformants was a disruption of the spiral phyllotaxy of the shoot, so that flowers were
distributed along one side of the stem.
The *Bn1CON10* gene expressed from its own promoter was able to complement the *co-2* mutation in *Arabidopsis*. However, when the open reading frame of this gene was expressed from the *Arabidopsis* promoter (the ApBnCO construct) the transformants flowered as late as the untransformed *co-2* mutant controls. This could not be explained by large-scale rearrangements of the T-DNA because restriction digested DNA extracted from the transformants and probed with *CO* and T-DNA probes detected no rearrangements in the transgene. The transformants were then analyzed by RT-PCR to establish whether a *Bn1CON10* transcript was present. Transformants carrying either the BnCO construct or the ApBnCO construct were examined. Although the RNA concentrations were carefully measured, this RT-PCR experiment was not quantitative. However in duplicate experiments the *Bn1CON10* cDNA was amplified from RNA extracted from BnCO transformants and the abundance of the product suggested that the *Bn1CON10* RNA was slightly more abundant than in ApBnCO transformants. To verify this difference in transcript abundance, and to test whether it might account for the difference in ability to complement the *co-2* mutation the *Bn1CON10* transcript present in both sets of transformants should be analyzed more thoroughly by quantitative RT-PCR. If the transcript is more abundant when the *Bn1CON10* allele is under the control of the *Brassica*, rather than the *Arabidopsis*, *CO* promoter perhaps this increase in abundance is able to compensate for differences in the *Bn1CON10* protein, which might be less efficient at promoting flowering than the native *Arabidopsis* *CO* protein.

A transcript of the expected size was present in all transformants, however an extra *CO*-hybridizing fragment was also amplified. In subsequent amplifications in which the PCR conditions were altered, this fragment disappeared from the BnCO samples, but was still present in the ApBnCO samples. The nature of this extra fragment needs to be investigated further by DNA sequencing. It is not clear whether the *Bn1CON10*-specific primers amplified a fragment from contaminating DNA, whether one or both primers can anneal
elsewhere on the Bn1CON10 cDNA, or whether this larger fragment is an incorrectly spliced Bn1CON10 transcript, and whether this might also account for the lack of complementation conferred by this construct.

In addition to the five ApBnCO transformants used during this analysis several other transformants were generated which were not analyzed. These could be screened to identify lines which have a higher Bn1CON10 mRNA abundance either due to the presence of multiple copies of the T-DNA or to position effects, and the effect of this increased abundance on the flowering time of the co-2 mutant studied.

The Brassica protein was 74% identical to the Arabidopsis CO protein, but as expected the highest homology was found in the two domains which are conserved in a number of other CO homologues from Arabidopsis and other species (Chapter three). The zinc fingers were 91% identical and the C-terminal basic domain showed even higher homology with 94% identity. If CO is involved in the regulation of transcription it might be expected to contain a transcriptional activation domain. One candidate for this is an acidic region from residues 124 to 150, which contains a highly negatively charged cluster from 138 to 147. This cluster is absent in the Brassica CO homologue. It is not known whether this acidic domain in the Arabidopsis CO protein is involved in transcriptional activation of genes in vivo, but the absence of this domain from the Brassica CO protein might suggest a number of possibilities. The first is that it is not important for CO function. Another possibility is that it acts as a transcriptional activator in the Arabidopsis CO protein, but in the Brassica protein another acidic domain is used to activate transcription. Alternatively the acidic residues which are still present in this region may be able to function without the highly acidic subdomain. It would be interesting to investigate whether the Brassica CO protein, like the Arabidopsis CO, can activate the transcription of reporter genes in yeast, and whether this or other domains are responsible.
The *Brassica napus* and *Arabidopsis* CO genes show a high degree of sequence conservation, consistent with their evolutionary relatedness (Cavell *et al.*, 1998). Other homologous gene sequences analyzed so far show an average of 87% identity at the DNA level, and 86% at the amino acid level (Lydiate *et al.*, 1993; Cavell *et al.*, 1998). The amino acid sequence similarity between the *Arabidopsis* and *Brassica napus* CO homologues is lower, at 74%. This lower level of similarity possibly reflects the nature of the genes compared so far between the two species, many of which are essential genes involved in metabolic processes rather than transcription factors like CO which are involved in developmental regulation.

The first published example of complementation of an *Arabidopsis* mutation with a *Brassica napus* gene has already been mentioned in the general introduction (Chapter 1; Arondel *et al.*, 1992). It was one of the first examples of chromosome walking in *Arabidopsis*, in which the genomic clones covering the region of the *Arabidopsis* genome thought to contain an Omega-3 fatty acid desaturase gene were used to isolate cDNAs from a *Brassica napus* library made from RNA extracted from seeds. An equivalent *Arabidopsis* library made from developing seeds was not available. The *Brassica napus* cDNA was introduced into the *Arabidopsis* fad3 (*fatty acid desaturase 3*) mutant and successfully complemented the mutant phenotype.

Another example of functional complementation of an *Arabidopsis* mutation with a *Brassica napus* homologue involves another flowering time gene, FCA. In *Arabidopsis* this gene is involved in promoting flowering through the autonomous flowering pathway, and mutations at this locus, which cause late flowering in both LDs and SDs, can be corrected by vernalization (Macknight *et al.*, 1997; Chapter 1). The *Brassica napus* FCA allele from the *Brassica oleracea* (C) genome, isolated from the late flowering line N-o-9, was
introduced into the *Arabidopsis fca* mutant, and wild type flowering time was restored to the transformants (R. Macknight, unpublished results).

So far only the *Bn1CON10* allele from the *B. rapa* (A) genome has been used to complement the *Arabidopsis co-2* mutation. Three other *CO* alleles have been cloned from *Brassica napus*: the homoeologous allele from the *B. oleracea* (C) genome in the same early flowering line, and the equivalent A and C genome alleles on the same linkage groups in the late flowering line (Robert *et al.*, 1998). In addition to the *CO* alleles on linkage groups N10 and N19, there are also alleles on linkage groups N2 and N12. These have not yet been cloned as they appear to be less well conserved between *Arabidopsis* and *Brassica* and are only detected at very low stringency in Southern analysis using the *Arabidopsis CO* gene as a probe (Robert *et al.*, 1998). The four *CO* homologues cloned so far appear to be expressed in the *Brassica napus* lines from which they were derived, and it would be interesting to test whether the other three cloned alleles, and the less well conserved alleles on linkage groups N2 and N12, from both early and late flowering lines, can complement the *Arabidopsis co* mutation. This would help to determine whether all alleles encode a functional *CO* protein.
7 Materials and Methods

7.1 Materials

7.1.1 Plant Materials

Arabidopsis thaliana var. Landsberg erecta obtained from Professor Maarten Koornneef (University of Wageningen).

Arabidopsis thaliana var. Columbia obtained from Professor Elliot Meyerowitz (Caltech) via Dr. Clare Lister.

co-1 allele obtained from Professor George Rédei (University of Missouri) via Professor Maarten Koornneef.

co-2 and *co-3* alleles obtained from Professor Maarten Koornneef via Dr. Caroline Dean.

co-4, *co-5*, *co-6* and *co-7* alleles obtained from Professor Maarten Koornneef. All *co* alleles are in a Landsberg *erecta* background except *co-1* which is in Landsberg.

tt4 mutant (Landsberg *erecta* background) obtained from Professor Maarten Koornneef.

*co-Dfx*41-1, Dfx-1, -2, -4, -5, -6, -7, -15, -16 and Dfa-2 to 15 obtained from Dr. Igor Vizir (University of Nottingham).

7.1.2 Bacterial and Yeast Strains

Escherichia coli

DH5α

\[supE44, F^-, endA1, hsdR17, thi-1, ΔlacU169[φ 80 lacZΔM15] recA1, glyA96, relA1 \] (Hanahan, 1983)

HB101

\[F^-, hsd S20 (r_b^-, m_b^-), supE44, ara14, λ-, galK2, lacY1, proA2, rpsL20, xyl-5, mtl-1, recA13 \] (Raleigh and Wilson, 1986)
JM101 \textit{supE, thi-1, \Delta(lac-proAB), F' [traD36, proAB, lacFZAM15]} (Messing, 1979)

XL1-BlueMR \Delta(mcrA)182, \Delta(mcrCB-hsdSMR-mrr)172, \textit{endA1, supE44, thi-1, recA, gyrA96, relA1, lac, \lambda} (Bullock \textit{et al.}, 1987)

\textit{Agrobacterium tumefaciens}

C58C1 A Rifampicin resistant derivative of C58 cured for pTiC58 (Zambryski \textit{et al.}, 1983)

\textit{Yeast}

AB1380 \textit{Saccharomyces cerevisiae} strain AB1380 (\textit{mat-a, ade2-1, can1-100, lys2-1, trp1, ura3, his5 [psi+]}) (Burke \textit{et al.}, 1987)

7.1.3 Plasmids

pBluescript II

SK (+/-) a plasmid derived from pUC19 (Stratagene USA)

pSLJ1711 A binary vector based on the tetracycline resistant octopine Ti plasmid pRK290. The T-DNA carries a neomycin phosphotransferase gene (\textit{NPTII}) under the control of the CaMV 35S promoter and a polylinker derived from pBluescript (Jones \textit{et al.}, 1992). Obtained from Dr. Jonathan Jones.

pRK2013 Helper plasmid which carries the \textit{incP} conjugation system to allow transfer of binary vectors to \textit{Agrobacterium} (Ditta \textit{et al.}, 1980).

pGV2260 A disarmed Ti plasmid in which the entire T-DNA region is substituted by pBR322. The \textit{vir} region is intact and will act \textit{in trans} to transfer the T-DNA from the binary vector to the plant cell. The plasmid carries carbenicillin resistance (Debeaere \textit{et al.}, 1985).
pJIT62 A pUC12 based plasmid containing the CaMV 35S promoter and polyadenylation signal (Guerineau et al., 1991). Obtained from Dr. Phil Mullineaux.

p486 A 4.2 kb Pvu II/Eco RV genomic fragment cloned into pBluescript and containing the CO gene. Obtained from Kate Dixon.

p21 The CO cDNA amplified by PCR using primers designed to introduce Hind III/Bam HI sites for cloning into pBluescript. Obtained from Dr. Rüdiger Simon.

p505 A genomic fragment containing the CO ORF under the control of the CaMV 35S promoter in the binary vector pSLJ1711. Obtained from Dr. Maribel Igeño.

pAP2 A 1 kb Pst I/Bam HI clone containing part of the APETALA 2 gene. Obtained from Dr. Renate Schmidt.

c04541 A T-DNA cosmid vector derived from the binary vector SLJ1711 (Jones et al., 1992) by the insertion of a fragment containing a cos site between the Bgl II sites. Obtained from Dr. Clare Lister.

CIC9E2, CIC9F3, CIC8H6, CIC3F11, CIC8E12 and CIC8H5: YACs in vector pYAC4 identified from the CIC library (Creusot et al., 1995). Obtained from Dr. Melanie Stammers.

7.1.4 General Media and Solutions

L-broth Difco bacto-tryptone 10g, yeast extract 5g, NaCl 10g per litre, pH 7.5

L-agar As above with 15g agar per litre

YT-broth Difco bacto-tryptone 8g, yeast extract 5g, NaCl 5g per litre, pH 7.4

LBglycerol Difco bacto-tryptone 10g, yeast extract 5g, NaCl 5g, 500ml glycerol per litre pH 7.2
YEPD-agar Difco bacto-peptone 20g, yeast extract 10g, glucose 20g, adenine 0.1g, 2% bacto agar per litre

YEP-broth Difco bacto-peptone 10g, yeast extract 10g, NaCl 5g per litre

M9-agar NaH$_2$PO$_4$ 6g, KH$_2$PO$_4$ 3g, NaCl 0.5g, NH$_4$Cl 1g pH 7.4, 1.5% bacto agar per litre. Add 2ml 1M MgSO$_4$, 10ml 20% glucose and 0.1ml 1M CaCl$_2$ after autoclaving.

20 x SSC 3M NaCl, 3.3M Na Citrate pH 7.0

20 x SSPE 3M NaCl, 0.2M NaH$_2$PO$_4$$\cdotH_2$O, 20mM EDTA pH 7.4

TE pH 8.0 10mM Tris.Cl pH 8.0, 1mM EDTA pH 8.0

10 x TBE 0.9M Tris base, 0.9M Boric acid, 0.02M EDTA pH 8.0

10 x TAE 0.4M Tris-acetate, 10mM EDTA pH 8.0

10 x MOPS 0.2M 3-[N-Morpholino]-propanesulphonic acid pH 7.0, 50mM Na acetate, 10mM EDTA

10% SDS 100g Na dodecyl sulphate per litre water

SM0 buffer KH$_2$PO$_4$ 3g, Na$_2$HPO$_4$ anhydrous 7g, NaCl 5g, 1ml (1M) MgSO$_4$, 1ml (0.1M) CaCl$_2$, 1% gelatin made up to 1 litre with water.

Loading dye 0.25% bromophenol blue, 40% glycerol in 1 x TBE

7.1.5 Plant Media

Vacuum infiltration Medium (VIM)

0.5 x Murashige and Skooge salts (MS), 1 x B5 vitamins, 5% sucrose. Add 0.044μM benzylamino purine and 0.03% Silwet L-77 (Union Carbide) after autoclaving

Germination medium (GM)

1 x Murashige and Skooge salts, 1% sucrose, 100μg/ml inositol, 1μg/ml thiamine, 0.5μg/ml pyridoxine, 0.5μg/ml nicotinic acid, 0.5mg/ml 2-(N-morpholino)ethanesulphonic acid (MES), pH 5.7 with 1M KOH, 0.8% Difco bacto agar
GM K50
As GM but supplemented with 50µg/ml Kanamycin (Sigma)

GM K50 R20
As GM K50 but supplemented with 20µg/ml Rovral fungicide (Rhône-Poulènc) for selection of transformants after vacuum infiltration

Callus inducing medium (CIM)
1 x Gamborg’s B5 medium (without 2,4-dichlorophenoxyacetic acid (2,4-D), kinetin and sucrose) (Flow Labs), 2% glucose, 0.5mg/ml MES pH 5.7, 0.8% agar, 0.5µg/ml 2,4-D (Sigma), 0.05µg/ml kinetin (Sigma)

Liquid IM
1 x Gamborg’s B5 medium as above, 2% glucose, 0.5mg/ml MES pH 5.7

Shoot inducing medium (SIM V750 K50)
1 x Gamborg’s B5 medium (as for CIM), 2% glucose, 0.5mg/ml MES pH 5.7, 0.8% agar, 5µg/ml N6-(2-isopentenyl)adenine (2iP) (Sigma), 0.15µg/ml indole-3-acetic acid (IAA) (Sigma), 750µg/ml vancomycin (Eli-Lilly), 50µg/ml kanamycin
7.2 Methods

7.2.1 Bacterial and General DNA Techniques

7.2.1.1 Methods of DNA Extraction

i) Alkaline lysis miniprep of plasmid DNA from *E. Coli* - based on the method of Birnboim and Doly (1979).

A single bacterial colony was inoculated into 10ml of L-broth with the appropriate antibiotic and grown overnight at 37°C with vigorous shaking. 1.5ml of this culture was pelleted for 30 seconds in a benchtop centrifuge. The pellet was resuspended by vortexing in 100μl ice cold solution I (50mM EDTA, 25mM Tris.Cl pH 8.0). 200μl freshly prepared solution II (0.2N NaOH, 1%SDS) was added and the mixture inverted several times before incubating at room temperature for 5 minutes. 150μl ice cold solution III (3M/5M potassium acetate, pH4.8) was added, the mixture vortexed briefly and incubated on ice for 5 minutes. The cell debris and chromosomal DNA was pelleted by centrifugation for 5 minutes and the supernatant was removed to a clean tube. This was extracted with phenol/chloroform then chloroform (optional), the DNA ethanol precipitated, dissolved in 20-50μl TE pH 8.0 or water and stored at -20°C. 1/10 of this solution was normally used for restriction enzyme digests.

ii) Large scale plasmid and cosmid DNA extraction

For large scale preparation of plasmid DNA a single bacterial colony was inoculated into 50-400ml L-broth or YT broth with appropriate antibiotics and grown overnight at 37°C with vigorous shaking. The bacterial cells were harvested by centrifugation at 5000rpm for 10 minutes in a Sorvall H6000A rotor. The plasmid DNA was extracted and purified using a midi/maxi plasmid qiagen kit (Qiagen) in accordance with the manufacturer’s instructions.
iii) Small scale plasmid DNA extraction from Agrobacterium - based on the method of Koncz et al., 1984.

10µl of a glycerol stock of the appropriate Agrobacterium strain was inoculated into 5ml YEP broth containing the appropriate antibiotic to select for the binary vector and Rifampicin (200µg/ml) to select for Agrobacterium. This culture was grown at 30°C for 48 hours with vigorous shaking. Cells from 4.5ml of culture were pelleted for 30 seconds and resuspended by gentle pipetting in 100µl solution I (25mM Tris.Cl pH 8.0, 10mM EDTA, 15% sucrose) with 4mg/ml freshly prepared lysozyme. It was then incubated for 5 minutes at room temperature followed by 5 minutes on ice. 200µl of freshly prepared solution II (0.1N NaOH, 1%SDS) was added and the solution gently mixed by inversion. Following another 5 minutes on ice 150µl ice cold solution III (3M/5M potassium acetate) was added, the mixture gently inverted and incubated on ice for 10 minutes. Cell debris and chromosomal DNA were pelleted by centrifugation for 10 minutes at 4°C and the supernatant extracted with phenol/chloroform then chloroform, ethanol precipitated, the pellet dissolved in 20µl TE pH 8.0 and stored at -20°C. 10µl of this solution was used in restriction enzyme digests which, because of the poor quality of plasmid DNA prepared from Agrobacterium, were usually Southern blotted and probed with an appropriate DNA fragment to visualize the bands of interest.

7.2.1.2 Glycerol Stocks

To preserve bacterial strains 0.75ml of overnight (E. coli) or 48 hour (Agrobacterium) cultures were mixed with 0.75ml of LB-glycerol in an Eppendorf tube, frozen briefly in liquid nitrogen and transferred to a -70°C freezer for storage.
7.2.1.3 Preparation of Competent *E. coli* Cells

To prepare cells for chemical transformation a single bacterial colony (usually *E. coli* strain DH5α) from a freshly streaked plate was used to start a 10ml L-broth overnight culture. 1ml of this culture was used to inoculate 100ml of YT broth or L-broth which was grown at 37°C with shaking until the OD$_{600}$ reached 0.4-0.5 (approximately 2 hours). The cells were cooled on ice and harvested by centrifugation (3000rpm for 10 minutes at 4°C in a Sorvall H6000A rotor) followed by resuspension in 4ml ice cold TFBI buffer (30mM potassium acetate, 100mM RbCl$_2$, 10mM CaCl$_2$, 50mM MnCl$_2$ in 15% glycerol adjusted to pH 5.8 with 0.2M acetic acid and filter sterilized). The cells were again harvested by centrifugation, resuspended in 4ml ice cold TFBII buffer (10mM MOPS, 10mM RbCl$_2$, 75mM CaCl$_2$ in 15% glycerol adjusted to pH 6.5 with KOH and filter sterilized) and divided into 100μl aliquots. These were either kept on ice for immediate use or frozen briefly in liquid nitrogen and transferred to a -70°C freezer.

7.2.1.4 Transformation of *E. coli*

Frozen competent cells (100μl aliquots in 1.5ml Eppendorf tubes) were gently thawed on ice for at least 10 minutes. 1.7μl of β-mercaptoethanol (a fresh 1/10 dilution of a 14.4M stock) was added and the cells incubated on ice for 10 minutes with gentle flicking every 2 minutes to mix. 1-50ng of plasmid DNA was added to the cells, mixed by flicking and incubated on ice for 30 minutes. The cells were then heat-shocked by immersing the tubes in a 42°C water bath for 45 seconds before immediately being transferred back to ice for a further 2 minutes. 0.9ml of preheated YT broth was added and the mixture incubated at 37°C for 1 hour with vigorous shaking. Cells were plated on L-agar plates containing antibiotics to select for the transformed plasmid and where appropriate IPTG (50μg/ml) and X-Gal (40μg/ml) to select for recombinant plasmids in pBluescript-based vectors and grown.
overnight at 37°C. Typically 0.1μl-100μl of the total transformation mixture (1ml) was plated.

7.2.1.5 Transfer of Plasmids from *E. coli* to *Agrobacterium tumefaciens*

i) Tri-parental mating - transfer of plasmids by conjugation based on Ditta *et al.* (1980)

Day 1; The *E. coli* "donor" strain containing the binary vector (usually pSLJ1711) and the *E. coli* "helper" strain HB101 containing the plasmid pRK2013 were streaked out on fresh selective plates containing 10μg/ml tetracycline and 25μg/ml kanamycin, respectively, and grown overnight at 37°C.

Day 2; A 24 hour culture using 10μl from a glycerol stock of *Agrobacterium tumefaciens* strain C58C1 was prepared in YT broth and grown at 30°C. Overnight cultures from single colonies of the two *E.coli* strains were also prepared. None of the cultures contained antibiotics.

Day 3; 1ml of the *Agrobacterium* culture and 0.2ml of each of the two *E. coli* cultures were transferred into one Eppendorf tube, mixed, and the cells pelleted by centrifugation for 1.5 minutes. The cell pellet was resuspended in 0.1ml of YT broth, spread onto an L-agar plate without antibiotics and allowed to grow at 30°C overnight.

Day 4; Approximately 3 loopfuls of the bacterial lawn were transferred into 2ml of 10mM magnesium sulphate and 100μl of 10^2, 10^4 and 10^6 dilutions were plated on L-agar plates containing 1μg/ml tetracycline and 200μg/ml rifampicin. These were incubated at 30°C for 2-3 days until colonies appeared.

Day 6/7; Individual colonies were streaked out on M9-agar (minimal) plates containing the appropriate antibiotics and grown for 2-3 days to select for *Agrobacterium*.

ii) Direct transformation of *Agrobacterium* - based on Holsters *et al.* (1978)

A 10ml YEP broth culture inoculated with 10μl from a glycerol stock of *Agrobacterium tumefaciens* strain C58C1 and containing 200μg/ml rifampicin was grown overnight at 30°C.
with shaking. 4ml of this culture was inoculated into 100ml fresh YEP broth plus 200μg/ml rifampicin and grown at 30°C for 4-5 hours until mid-log phase. The cells were pelleted by centrifugation at 2500rpm for 10 minutes in a Sorvall H6000A rotor before being resuspended in 2ml chilled YEP broth. This was divided into 200μl aliquots in prechilled Eppendorfs and chilled on ice for 5 minutes. DNA for each binary construct was prepared using a qiagen midi kit and diluted to 0.1-0.2μg/μl in water. 10μl (1-2μg) of DNA was pipetted into the cells and mixed by gently flicking the tubes. 10μl of water in one aliquot of cells served as a control. The aliquots of cells were frozen immediately in liquid nitrogen for 15 seconds and then heat-shocked in a 37°C water bath for 5 minutes. 1ml YEP broth was added to each tube and they were incubated at 30°C with shaking for 1-2 hours. 0.1ml aliquots were plated onto L-agar plus 1μg/ml tet, 200μg/ml rif. plates and incubated at 30°C for 1-5 days until colonies appeared. Individual colonies were streaked onto M9-agar plates with the appropriate antibiotics and grown at 30°C for 2-3 days until colonies appeared.

7.2.1.6 Preparation of Filters for Colony Hybridization

Colony hybridization was performed when a particular rare recombinant plasmid needed to be isolated from a large background of non-recombinant or unwanted recombinant plasmids, for example, after a difficult cloning step where the number of individual DNA minipreps required would be impractical or during the screening of a cosmid library. Cells were plated out on L-agar with appropriate antibiotics and grown at 37°C overnight. Details on the plating of cosmid libraries are given in the section "Preparation and screening of a Cosmid Library" (7.2.6). For isolation of a particular plasmid following a cloning step individual colonies were picked using a toothpick and plated into a grid pattern on L-agar plus appropriate antibiotics to make identification of the positively hybridizing colonies easier. Colonies expected to produce a positive or negative result were also included. After overnight incubation the colonies were transferred to nylon membrane (Hybond-N,
Amersham). A membrane of an appropriate size and dampened on a sterile L-agar plate, was placed on the surface of the plate, marked with 3 asymmetric pin holes and peeled off after 1 minute. Subsequent duplicate membranes were left on the surface for double the previous time. The pin holes were duplicated onto the underside of the plate. The membranes were handled and processed always with the colomes facing up. To fix the DNA from the colonies to the membrane they were treated sequentially with a number of solutions soaked into pads of Whatman's 3MM paper: 10% SDS for 5 minutes, 1.5M NaCl, 0.5M NaOH for 5 minutes, 1M Tris.Cl pH 8.0, 1.5M NaCl for 2 x 5 minutes and 2 x SSPE for 3 minutes, ensuring that the solutions did not come into direct contact with the upper surface. The membranes were then pressed between 2 sheets of clean 3MM paper to remove excess cell debris, air dried and baked at 80°C for 2-3 hours. A prewashing step (50mM Tris.Cl pH 8.0, 1M NaCl, 1mM EDTA, 0.1% SDS at 42°C for 1 hour) removed more cell debris before the membranes were prehybridized and hybridized as outlined in section 7.2.1.12.

7.2.1.7 Cleavage of DNA with Restriction Enzymes

All restriction enzyme digestions were carried out in 1.5ml Eppendorf tubes. Small scale digestions (<1μg) were typically carried out in small volumes of 20-30μl which fit conveniently into standard agarose gel wells. Large scale plasmid, cosmid, yeast or plant DNA digestions were carried out in much larger volumes, up to 300μl and typically contained 1mM spermidine (Sigma) and 33μg/ml BSA (Boehringer). If necessary the volume was subsequently reduced by ethanol precipitation. Heat-treated RNAse A at 50μg/ml was included in DNA digestions where necessary. All digestions contained the appropriate restriction enzyme buffer supplied by the manufacturers at 1 x concentration plus 1-20 units of enzyme as appropriate. Plasmid DNA digests containing <1μg were incubated at the manufacturer's recommended temperature - usually 37°C - for 1-2 hours.
Plant and yeast genomic DNA digests and large scale plasmid or cosmid digests were incubated overnight. In double digests the two enzymes were added simultaneously if requiring the same buffer, or sequentially starting with the enzyme requiring the lowest salt concentration. All restriction enzymes were obtained from Pharmacia Ltd., BCL Boehringer, Northumbria Biologicals Ltd. or Gibco (BRL).

7.2.1.8 Agarose Gel Electrophoresis of DNA

Separation of DNA fragments according to size was performed by electrophoresis through horizontal submerged agarose gels. This was done routinely as a confirmatory technique during the construction of novel plasmids, to separate plant DNA prior to Southern blotting and to visualize the results of PCR. The gels used were typically 0.4-1.5% depending on the size of the fragments to be separated. All gels were made with and run in 1 x TBE buffer. Large gels were electrophoresed overnight at 35-70 volts whereas smaller gels were run at 50-120 volts for 1-3 hours. 1/10 volume of 10 x loading dye was added to each DNA sample prior to loading into preformed wells and in the case of plant DNA digests 1/10 volume of 1M NaCl was also added to even out the salt concentration between samples. Size markers were separated alongside the samples for comparison (Hind III digested lambda DNA or 1kb ladder (BRL)). To visualize the DNA 0.1μg/ml ethidium bromide was added to the cooled molten agarose before casting the gel and to the running buffer. Gels were examined on a short wave (610nm) UV transilluminator (UVP Inc.) and photographed onto Sony UPP-110HA thermal paper using a UVP ImageStore 5000 camera system attached to a Sony Video Graphic Printer.
7.2.1.9 Isolation and Recovery of DNA Fragments from Agarose Gels

i) Using the Qiaex and Qiaquick kits (Qiagen)

The restriction enzyme digestion from which the fragment was to be isolated was
electrophoresed at 30 volts until the fragment of interest was clearly separated from all
other fragments. If the fragment was to be used for cloning purposes it was visualized using
a long-wave UV lamp (model UVSL.25, Mineralight) to minimise DNA damage. It was
then excised from the gel using a clean scalpel blade and isolated from the gel according
to the manufacturer's instructions.

ii) Using the Spin-X column kit (Costar)

The DNA fragment was excised from the gel as above, chopped finely and placed in the
Spin-X column which was then frozen at -70°C for 1 hour. The column was allowed to
thaw to room temperature before spinning at 4000rpm in a benchtop centrifuge for 30
minutes. The eluate was extracted once with phenol/chloroform followed by chloroform,
ethanol precipitated and dissolved in a small volume of TE or water.

7.2.1.10 DNA Ligations

To ligate a fragment with 5' or 3' overhangs after restriction enzyme digestion ("sticky
ends") into small, high-copy number plasmids (for example, pBluescript) typically 100ng
linearized vector DNA and sufficient insert DNA to give a molar ratio of DNA "ends" of
1:3 (vector:insert) were used. For ligations into large binary vectors (for example,
pSLJ1711 - 30kb) the ratio of vector to insert was the same but up to 1μg of vector was
used. All ligations were typically carried out in a volume of 10-30μl in 1 x ligation buffer
(50mM Tris.Cl pH 7.4, 10mM MgCl₂, 10mM DTT, 1mM spermidine, 1mM ATP, 0.1mg/ml
BSA) with 1-2 Weiss units of T4 DNA ligase (1u/μl, BRL) at 15°C for 8 hours-overnight.
Vector DNA digested with a single restriction enzyme was treated with calf intestinal
alkaline phosphatase (CIAP - 0.5u/μg DNA) in 1 x CIAP buffer supplied with the enzyme,
for 30 minutes at 37°C and the enzyme removed by phenol/chloroform extraction and
ethanol precipitation prior to ligation. This treatment removes 5' phosphate groups from the
DNA ends, preventing self-ligation. To ligate fragments with blunt ends the volume was
reduced to 5-10µl and the ligation incubated overnight at 4°C in 1 x blunt end buffer
(66mM Tris.Cl pH 7.4, 5mM MgCl₂, 5mM DTT, 0.5mM spermidine, 0.2mM ATP, 1mM
hexamine cobalt chloride).

7.2.1.11 Southern Blotting

Following separation through agarose gels DNA was transferred to nylon membranes and
hybridized to radioactively labelled DNA probes (Southern 1975, modified by Wahl et al.
1979). While this technique was used mainly for the detection of particular DNA sequences
in plant DNA it was also routinely used for plasmid DNA (to monitor cloning steps),
cosmid DNA (to aid restriction mapping) and for monitoring PCR and RT-PCR products.

The gel was treated as follows: depurination of the DNA for 20 minutes in 0.25M HCl
(except for fragments smaller than 10kb), denaturation for 30 minutes in 0.5M NaOH, 1.5M
NaCl and neutralization for 2 x 15 minutes in 1M Tris.Cl pH 7.2, 1.5M NaCl. The gel was
rinsed between each step with water and all steps involved several gel-volumes of solution
with gentle shaking. The gel was moved to a piece of Whatman 3MM paper prewetted with
10 x SSC on a glass plate supported over a reservoir of 10 x SSC. The ends of the 3MM
"wick" were in contact with the reservoir. A piece of Hybond-N (or Hybond-N+,
Amersham) the same size as the gel was placed on top followed by 2 pieces of 3MM,
prewetted in 10 x SSC. A stack of paper towels to draw moisture through the apparatus
was pressed down on top with a glass plate and a 1kg weight (for a diagram see Maniatis
et al. 1989). The blotting apparatus was generally left overnight although 2 hours was
sometimes sufficient for plasmid DNA. The blot was dismantled, the membrane rinsed
briefly in 2 x SSC and allowed to air dry. The DNA was immobilized on the membrane by UV stratalinking at an energy setting of 2400 in a Stratagene "Stratalinker".

7.2.1.12 Hybridization of Radio-labelled DNA probes to DNA Immobilized on Nylon Membranes

This technique was used for the detection of particular DNA sequences from DNA transferred to membranes by Southern blotting (7.2.1.11) and by colony blotting (7.2.1.6). Membranes were prehybridized and hybridized either in tightly sealed polypropylene boxes in a moving-shelf hybridization oven (New Brunswick Scientific Co. Ltd.) or in pyrex tubes in a hybridization oven (Bachofer) with a rotating spindle. 25ml pre/hybridization solution was used for polypropylene boxes but in pyrex tubes after prehybridization in 25ml solution the volume during hybridization was reduced to 5-10ml. Colony hybridizations were usually performed in petri dishes contained within polypropylene boxes with sufficient pre/hybridization solution to cover the membranes. All hybridizations were carried out at 65°C unless otherwise stated. Several different methods were investigated for pre/hybridization and washing membranes but the most effective was based on the method of Church and Gilbert (1984). Membranes were prehybridized for 2-4 hours in 0.3M sodium phosphate buffer pH 7.2 (to make 1L: 1M Na₂HPO₄ 684ml, 1M NaH₂PO₄ 316ml), 7% SDS, 1mM EDTA, 1% w/v BSA. Denatured radio-labelled DNA probe was then added to the solution and hybridization allowed to proceed overnight. The hybridization solution was poured off into a suitable container (usually a 50ml tube) and stored at -20°C in a perspex box for re-use or to decay. The membranes were washed by first rinsing for 5 minutes in wash buffer (0.5M sodium phosphate pH 7.2, 5% SDS, 50mM EDTA) added at room temperature, then washed for 2 x 30 minutes in the same buffer preheated to 65°C in the pyrex tubes or boxes used for hybridization. Colony filters were removed from their petri dishes and washed in polypropylene boxes. The membranes and discarded wash
solutions were continually monitored using a Geiger counter and the number and/or duration of washes adjusted as appropriate. If the membranes were to be reused for subsequent DNA probes they were always kept moist in a sealed bag following washing. The labelled probe was removed by incubation in 1.5M NaCl, 0.5M NaOH at 45-55°C for 20-40 minutes with gentle shaking. The membranes were then neutralized using the same conditions in 1M Tris.Cl pH 7.2, 1.5M NaCl.

7.2.1.13 Autoradiography
While still moist after washing, the membranes were sealed in Saranwrap or an air-tight plastic envelope before exposure to Kodak X-OMAT AR film in cassettes with intensifying screens at -70°C. Exposure times ranged from 30 minutes (for plasmid DNA and PCR products) to 2 weeks (for plant DNA) depending on the strength of the radioactive signal. Films were developed in a Fuji X-Ray Film Developer RG II.

7.2.1.14 Radioactive Labelling of DNA Fragments
DNA fragments to be used as radioactive probes were radio-labelled by a method based on Feinberg and Vogelstein (1983). 20-50ng of gel-purified DNA fragment or 50-200ng of digested plasmid or cosmid DNA was denatured in a volume of 32μl for 5 minutes at 100°C and cooled on ice. The following reagents were added in this order: 5μl 10 x Hexanucleotide Mix (Boehringer Mannheim), 5μl 2.5mM dNTPs minus dCTP, 1μl 10mg/ml BSA, 1.85MBq [α-32P]dCTP at a specific activity of 111 TBq/mmol and a concentration of 370 MBq/ml (NEN) and 1.5μl Klenow fragment of E. coli DNA polymerase I (1u/μl, NBL). The reagents were mixed and the reaction incubated at 37°C for 30 minutes-2 hours. To separate unincorporated nucleotides the reaction was passed over a sephadex G50 column equilibrated with TE after addition of 10μl "nucleotide dye" (1% dextran blue, 0.1% orange G in TE). The blue fraction containing the radioactively-labelled DNA was collected
and the slower orange fraction containing the unincorporated nucleotides was discarded. The approximate percentage of incorporation was estimated by comparing the radioactivity of the two coloured fractions using a Geiger counter held at a suitable distance from the collection tubes.

7.2.1.15 Quantification of Nucleic Acid Concentration

i) Spectrophotometric estimation

The optical density (OD$_{260}$) of a DNA or RNA sample was determined using a Philips PU 8620 UV/VIS/NIR spectrophotometer. The concentration was calculated where:

$$1 \text{ OD}_{260} \text{ unit} = 50 \mu g/ml \text{ double stranded DNA}$$

$$= 40 \mu g/ml \text{ single stranded DNA/RNA}$$

$$= 33 \mu g/ml \text{ oligonucleotide} \text{ (see 7.2.3.6)}$$

ii) UV quantification

An estimate of concentration was made by running the DNA sample on an agarose gel with several DNA standards (for example lambda DNA) of known concentration. The intensity of each band visualised on a UV transilluminator after staining the gel with ethidium bromide was compared to the known standards.

7.2.1.16 Ethanol Precipitation of DNA

A 1/10 volume of 3M sodium acetate pH 5.2 was added to the DNA solution and mixed well. Two volumes of ice-cold ethanol were added, mixed well and stored at -20°C for 30 minutes-overnight. The DNA was pelleted by centrifugation in a benchtop centrifuge at full speed or an SS34 rotor at 15,000rpm for 10-30 minutes. The pellet was washed with 70% ethanol (1ml in an Eppendorf, 5ml in 30ml Corex tubes, ensuring all walls of the tube were rinsed) and respun for 2 minutes if necessary, to re-attach the pellet to the bottom of the tube. The washing step was repeated if a lot of salt was present in the sample or if the
DNA pellet was large. The pellet was drained and dried at room temperature or briefly at 37°C or in a vacuum dessicator. The pellet was dissolved in a suitable volume of sterile distilled water or TE.

7.2.1.17 Isopropanol Precipitation of DNA

To precipitate small amounts of DNA and to minimise salt precipitation 1 volume of room temperature isopropanol (Propan-2-ol) was used in place of 2 volumes of ethanol. Unless otherwise stated the DNA was pelleted immediately after addition of the isopropanol.

7.2.1.18 Phenol/Chloroform Extraction of DNA

This was used to remove proteins from DNA preparations (after plant/bacterial DNA extraction or treatment with restriction or modifying enzymes). An equal volume of a 25:24:1 mixture of phenol:chloroform:iso-amyl alcohol equilibrated with TE pH 8.0 was added to the DNA solution. The aqueous and organic phases were mixed by inversion (for large fragments of DNA) or vortexing (for small fragments). The tubes were centrifuged for 5 minutes in a suitable centrifuge and the upper (aqueous) phase removed to a clean tube without disturbing the interphase. If necessary the extraction was repeated before a final extraction with an equal volume of 24:1 chloroform:iso-amyl alcohol to remove traces of phenol.

7.2.2 Plant DNA Extraction Methods

7.2.2.1 CTAB (Cetyl trimethyl ammonium bromide) Plant DNA Extraction

A modified miniprep CTAB protocol was used to prepare plant DNA for Southern analysis and PCR (Dean et al. 1992). 2-5 grams of frozen leaf material was ground to a fine powder using a precooled pestle and mortar. The powder was transferred to a 50ml polypropylene
tube (Corning), 25ml extraction buffer added (140mM Sorbitol, 220mM Tris.Cl pH 8.0, 22mM EDTA, 800mM NaCl, 1% N-Lauryl sarcosine, 0.8% CTAB) and the mixture incubated for 20 minutes at 65°C with occasional vigorous shaking. After addition of 10ml chloroform and inverting for 20 minutes at room temperature the samples were centrifuged at 2500rpm for 15 minutes in an H6000A rotor to resolve the phases. The nucleic acid was precipitated from the aqueous phase by the addition of 17ml of isopropanol, placed on ice for 10 minutes and centrifuged as before. The pellet was drained and dissolved in 4ml TE pH 8.0 and an equal volume of 4M lithium acetate added to precipitate RNA. The mixture was placed on ice for 20 minutes and after centrifugation (as before) the supernatant was removed to a clean tube and the DNA precipitated with 2 volumes of ethanol. Following an incubation on ice for 20 minutes and centrifugation the pellet was again dissolved in 4ml TE, extracted with phenol/chloroform and precipitated with 1/10 volume 3M sodium acetate and 2 volumes of ethanol. The resulting pellet was dissolved in 100-200μl TE. The yield was usually >10μgg⁻¹ tissue.

7.2.2.2 Dellaporta DNA Microprep

This protocol was used for small scale DNA preparations. Plant material (up to 0.15g) was collected in Eppendorf tubes, immediately frozen in liquid nitrogen and transferred to a -70°C freezer until required. To extract the DNA the tube was cooled in liquid nitrogen and the tissue ground to a fine powder using a precooled microfuge pestle (Kontes) attached to a drill. 0.7ml extraction buffer (50mM Tris.Cl pH 8.0, 10mM EDTA, 100mM NaCl, 1% SDS, 1mM β-mercaptoethanol) was added, the tube vortexed to resuspend the pulverised tissue and incubated at 65°C for 10 minutes. 200μl 5M potassium acetate was added, the tube vortexed and incubated on ice for 20 minutes before being spun in a benchtop centrifuge for 10 minutes. The supernatent was transferred to a new tube and if it still contained insoluble material, respun and transferred as before, and the DNA precipitated...
with an equal volume of isopropanol. The tube was spun immediately for 2 minutes and the DNA pellet washed with 80% ethanol. The pellet was dried at room temperature and dissolved in 50μl TE. If the DNA was to be used for PCR it was passed through a Sepharose CL-6B spin column. Restriction digests for Southern blotting contained 1/10 final volume 40mM spermidine. This method usually yielded sufficient DNA for 2 lanes on a Southern blot from 0.15g tissue.

7.2.3 Polymerase Chain Reaction Techniques

The polymerase chain reaction (PCR) was used to amplify genomic sequences for cloning, sequencing and as a diagnostic tool in screening as well as for the amplification of specific mRNA species following reverse transcription (RT-PCR). Protocols for RT-PCR are described in section 7.2.6 (RNA techniques).

7.2.3.1 PCR Amplification of Genomic and Plasmid DNA

Genomic and plasmid DNA was amplified essentially as described by Saiki et al., 1988. 2ng DNA was used in each reaction, with 0.5μl Taq polymerase (Boehringer Mannheim), 0.25mM nucleotides (dATP, dCTP, dGTP, dTTP), 1μM primers in 1 x PCR buffer (10mM Tris.Cl pH 8.3, 50mM KCl, 1.5mM MgCl₂, 0.1mg/ml gelatin, 0.05% Tween 20). Amplification usually involved 35 cycles, each consisting of 1 minute at 94°C (denaturation), 1 minute at a temperature chosen usually between 50 and 65°C (annealing - see below), and 1.5 minutes at 72°C (extension). The amplification cycles were preceded by 4 minutes at 94°C to denature the DNA during which time the enzyme in 1/5 reaction volume in 1 x PCR buffer was added to prevent non-specific amplification before cycling started. The cycles were followed by 10 minutes at 72°C to complete synthesis. PCR was performed in a total volume of 50μl in a 0.5 ml Eppendorf tube. Mineral oil was added (20μl) if the PCR machine in use did not have a top heating block. Several PCR machines
were used, most frequently the Programmable Thermal Controller (M J Research Inc.) and the Cyclogene (Techne). Depending on the DNA to be amplified, the length of the expected product and the composition of the primers, several parameters were often changed: most frequently, the amount of DNA in each reaction, the extension time, the number of cycles and the annealing temperature. PCR products were analyzed by running 1/10 of the reaction on a gel, followed by Southern blotting and hybridization to radioactively-labelled DNA probes as appropriate.

7.2.3.2 Rapid Preparation of Plant Material for Diagnostic Screening by PCR

This technique was used when a large number of plants was to be screened by PCR as it bypasses the DNA extraction step. The top of an Eppendorf tube was used to sever a sample of leaf material (2mm²) into the tube containing 40μl of 0.25M NaOH. The submerged leaf was placed in a boiling water bath for 30 seconds, neutralized by the addition of 40μl 0.25M HCl followed by 20μl 0.5M Tris.Cl pH 8.0 and again placed in the boiling water bath for a further 2 minutes. The extract was then used as a PCR template or stored at 4°C. Stored samples were denatured for 2 minutes in a boiling water bath immediately before use (Klimyuk et al., 1993).

7.2.3.3 Inverse Polymerase Chain Reaction (IPCR)

This was used to isolate unknown DNA adjacent to the deletion in co-8. 2μg of CTAB-extracted DNA was digested overnight in a volume of 300μl at 60°C with BstY I. The digest was ethanol precipitated and the pellet dissolved in 40μl water. 20μl (1μg) was self-ligated in a total volume of 300μl in 1x ligation buffer (see 7.2.1.10) with 1μl ligase (BRL) at 15°C overnight. The ligation reaction was then extracted with phenol/chloroform and chloroform, ethanol precipitated and dissolved in 10μl water. 2.5μl was used as a PCR template in 50μl reactions (see 7.2.3.1) using primers adjacent to the co-8 deletion and to
the known BstY I site. 1/10 of the reaction was run on a 1% agarose gel. Where a band of a predictable size was obtained the remainder of the PCR reaction was treated as described in section 7.2.3.4 (Cloning PCR products).

7.2.3.4 Cloning PCR Products

Following the examination of 1/10 of the PCR reaction on an agarose gel the remainder was phenol/chloroform and chloroform extracted, ethanol precipitated and the pellet dissolved in 20µl TE. To blunt-end the PCR product in preparation for cloning into the EcoR V site of pBluescript, 19.5µl of the PCR reaction was incubated in 1 x T4 DNA polymerase buffer (BRL), 6µl 2.5mM dNTPs, 1µl T4 DNA polymerase (5u/µl, BRL) and 0.5µl 10mg/ml BSA in a total volume of 30µl for 30 minutes at 37°C. The T4 DNA polymerase was denatured by incubation at 70°C for 10 minutes and the reaction fractionated on an agarose gel. The band of interest was excised using a clean scalpel blade and extracted from the agarose using one of the techniques outlined in section 7.2.1.9. Subsequent ligations, usually into EcoR V cut pBluescript, and transformation into E. coli strain DH5α followed the methods described in sections 7.2.1.4 and 7.2.1.10.

7.2.3.5 Colony PCR

This technique was used to amplify cloned DNA inserts directly from a large number of transformed E. coli colonies as a less time-consuming alternative to plasmid DNA extraction. The required number of wells in a microtitre dish were filled with 50µl LB plus the appropriate antibiotic. Single E. coli colonies were touched with the thin end of sterile toothpicks and placed into individual wells. 50µl aliquots of water were pipetted into the same number of 0.5ml eppendorf tubes and the toothpicks were transferred from the microtitre dish into the tubes for a few seconds and then discarded. The microtitre dishes were closed, wrapped in clingfilm and transferred into a 37°C incubator for the rest of the
day to provide cultures for glycerol stocks when the correct clones were identified. The 0.5ml tubes were closed and dipped into liquid nitrogen for 2 minutes immediately followed by 10 minutes in a boiling water bath and a brief spin in a benchtop centrifuge. A mix containing the following reagents was prepared; Per reaction: 100ng of each of the pair of primers (usually M-13 forward and reverse), 10µl 10 x PCR buffer (see 7.2.3.1), 0.5µl *Taq* polymerase (Boehringer Mannheim), 2.5µl 4mM dNTPs and water to 50µl. 50µl of the mix was added to each of the PCR tubes plus 20µl mineral oil. Amplification was as described in section 7.2.3.1.

7.2.3.6 Oligonucleotide Preparation

Oligonucleotides were synthesised using a Pharmacia LKB Gene Assembler Plus. To detach the oligonucleotide from the support column following synthesis, the support was incubated in a screw-capped, sealed tube in concentrated ammonia solution (35%) at 55°C overnight. After cooling on ice for 15 minutes the whole apparatus was spun in a benchtop centrifuge for 1 minute, the support removed to a clean tube and respun, and the extracted ammonia pooled. The oligonucleotide was precipitated with ethanol, spun for 30 minutes, washed and dissolved in 1ml TE pH 8.0. After measuring the absorbance at 260nm (see 7.2.1.15) of a 5µl sample diluted to 1ml, the concentration of the sample was calculated using the following formula: Concentration=Optical Density/Extinction co-efficient. To determine the extinction co-efficient (ε), the number of A, C, G and T nucleotides was counted. ε was then calculated as: A(15.4x10^3) + G(13.7x10^3) + C(9.1x10^3) + T(7.4x10^3). The following oligonucleotides were used in PCR and sequencing experiments:

<table>
<thead>
<tr>
<th>NAME</th>
<th>COMPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bnco7</td>
<td>5'- GAATTCGCCATAAAAGGGTCAGA - 3'</td>
</tr>
<tr>
<td>Bnco9</td>
<td>5'- AAGCCTTTGATGGATTGTAT-GCGT - 3'</td>
</tr>
</tbody>
</table>
Oli9 5'- AAATGTATGC-GTTATGGTTAATGG - 3'
Oli5 5'- CATTAAACCATAAC-GCATACATTTTC - 3'
AP2 Oli3 5'- CTCATGCCG-AGTCATCAGG - 3'
AP2 Oli4 5'- CAGAGAGGAGGTTGGAAGC - 3'
G775 5'- GACTCGAGTCGACATCGAT - 3'
CO17 5'- ATGGATCATGTGGACTAG - 3'
CO19 5'- CATGGCAATACACGCTTG - 3'
CO20 5'- GAGAGTAACGCACATAGG - 3'
CO21 5'- GATTCGAGCTAGCACGTG - 3'
CO25 5'- TACTGTTTGCAAAATGG - 3'
CO28 5'- TGCAGATTCTGCTACTTGTGC - 3'
CO32 5'- TGAGAGAAGTTCCAAACCGC - 3'
CO33 5'- GAACAACAGGCACGACCC - 3'
CO34 5'- GACAAACAGGTATGCTTG - 3'
CO40 5'- CACAGACGAGCTACGGGGG - 3'
CO41 5'- GGTCCAAGAAAGAAGTG - 3'
CO42 5'- CAGGGAGGCGGTGAAAGTGT - 3'
CO43 5'- GGGGATCTGTACCAATAGACTG - 3'
CO48 5'- CACCTTCTCTCTGATCCAC - 3'
CO49 5'- GCCTCCACACCATCAAACTTACTAC - 3'
CO50 5'- CTCCCTCGCTCCATTTCTC - 3'
CO51 5'- CCATTGTCGTTGTAGTGAATGTC - 3'
CO52 5'- GGAACAGCCACGAAGCAAC - 3'
CO53 5'- ACGCCATTACGGAAGTCC - 3'
CO54 5'- ACCCAAGAGCCTAAAGG - 3'
CO55 5'- CAGGGTCAGTTGTGGCTCT - 3'
Hyphens interrupting primer sequences oli5, oli9, AP2 Oli3, and bnco9, represent the position of introns where primers were designed to specifically amplify cDNAs.

7.2.4 RNA Extraction and Manipulation

7.2.4.1 Small Scale Total RNA Extraction from Plant Tissue

The following technique, based on the method of Stiekema et al., 1988, was used to extract RNA from Arabidopsis seedlings for Northern blotting (see 7.2.4.2) and RT-PCR (see 7.2.4.3). 10-20 seedlings, 8-14 days old, were harvested into an Eppendorf, frozen in liquid nitrogen and transferred into a -70°C freezer until required. To extract RNA each tube was first filled with liquid nitrogen. This was allowed to evaporate off before grinding the tissue to a fine powder using a precooled microfuge pestle (Kontes) attached to a drill. 500μl of extraction buffer (80mM Tris.Cl pH 9.0, 150mM LiCl, 5mM EDTA, 5% SDS) was added and the contents homogenized before placing on ice. The contents were extracted twice with phenol/chloroform and once with chloroform. 1/3 volume of 8M LiCl was added to a final concentration of 2M and the RNA allowed to precipitate at 4°C overnight. The RNA
was pelleted by centrifugation for 10 minutes and the pellet washed with cold 85% ethanol before drying briefly at room temperature. If the RNA was to be used for Northern analysis only (not RT-PCR) a quick protocol was followed. The pellet was dissolved in 200μl DEPC-treated water, precipitated with 1 volume of isopropanol and 1/10 volume of 3M sodium acetate for 1 hour at -20°C. The RNA was pelleted by centrifugation for 10 minutes, washed and dried as before and dissolved in DEPC-treated water to a final concentration of 5μg/μl. If the RNA was to be used for RT-PCR, after the overnight LiCl precipitation the RNA was pelleted by centrifugation for 10 minutes and dissolved in 100μl 0.5 x React 3 restriction enzyme buffer (Gibco BRL) containing 1μl DNase I (Gibco BRL) and 1μl RNase inhibitor (RNAguard, Pharmacia). This was incubated at 37°C for 30 minutes-2 hours to degrade contaminating DNA, before being extracted with phenol/chloroform as before. The final supernatant was precipitated with 1/10 volume 3M sodium acetate and 1 volume of isopropanol at -20°C for 1 hour, spun for 10 minutes at 4°C and the pellet washed with cold 85% ethanol. The pellet was dried briefly and resuspended in DEPC-treated water to a final concentration of 0.5-1μg/μl.

7.2.4.2 Northern Analysis

Based on the method of Goldberg (1980). All plastic-ware (the gel tank, gel former and comb) was soaked in 0.1M NaOH, 1mM EDTA for several hours prior to use, then rinsed in DEPC-treated water. RNA was fractionated by electrophoresis through 1.3% agarose, 2% formaldehyde (1/20 final gel volume of a 40% solution, added after the dissolved agarose had cooled to 50°C), in 1 x MOPS buffer (see 7.1.4). Samples contained 5-20μg total RNA in 50% de-ionized formamide, 7% formaldehyde, 0.5mg/ml ethidium bromide, 1mM EDTA, 20% glycerol, 1 x MOPS buffer, 0.25% bromophenol blue, and were heated to 65°C for 15 minutes before loading onto the gel. RNA ladder (0.16-1.77kb, Gibco BRL) was loaded alongside the samples. Electrophoresis was in 1 x MOPS buffer at 30-60 volts for
2-4 hours in a fume hood. After electrophoresis the RNA was visualized on a short-wave UV transilluminator and photographed as previously described for DNA electrophoresis. The RNA was transferred to Hybond-N membrane as described in section 7.2.1.11 (Southern blotting) except that the gel required no pretreatment before setting up the capillary blot. The RNA was bound to the membrane by UV cross-linking. The conditions for DNA-RNA hybridizations and subsequent washings were identical to those described for Southern blotting (see 7.2.1.12, Church and Gilbert, 1984). Following autoradiography RNA membranes were stripped by incubation in boiling 0.1% SDS poured onto the membrane and allowed to cool to room temperature.

7.2.4.3 RT-PCR (Reverse transcription - Polymerase Chain Reaction)

Based on the method of Frohman, Dush and Martin (1988).

A cocktail containing the following reagents was prepared:

- 2μg RNA (heated to 80°C for 2 minutes and cooled on ice)
- 2μl RNAsin (RNAguard, Pharmacia)
- 2μl 0.1M DTT
- 1μl 20mM dNTPs
- 1μl (1μg) Primer G775 (see 7.2.3.6)
- 1μl M-MLV Reverse Transcriptase (Gibco-BRL)
- 4μl 5 x Reverse Transcriptase buffer (Gibco-BRL)

Sterile distilled water to 20μl

The reaction was incubated at 37°C for 2 hours then diluted 10-fold with water. This stock could then be stored at -20°C providing sufficient template for 40 PCR reactions. PCR was carried out as described in section 7.2.3.1, using 5μl of the reverse transcription reaction in a final volume of 50μl. Increasing the concentration of MgCl₂ from 1.5mM to 2.5mM gave more reliable amplification. Gene-specific primers were used with one of the pair
designed to span an intron to rule out the possibility of amplification of contaminating DNA. The number of cycles for each pair of primers was adjusted so that when 1/5 of the reaction was analysed by agarose gel electrophoresis the amplified band was only just visible to the naked eye in control samples. At this point the PCR reaction would not have reached saturation and the amount of product was still increasing exponentially and would give an indication of the relative amount of mRNA in each sample. After fractionation the DNA was analyzed by Southern hybridization.

7.2.5 DNA Sequencing

7.2.5.1 Sequencing Reactions

Double-stranded DNA templates of recombinant plasmid DNA, prepared using qiagen kits (see 7.2.1.1), were used in all sequencing reactions. Templates were sequenced by the dideoxy chain termination method described by Sanger et al., 1977. The protocol used was modified after Chen and Seeburg (1985). Usually templates were processed in batches of 10. For one reaction 18μl of plasmid DNA (0.5μg/μl) was mixed with 5μl 1M NaOH, 1mM EDTA and incubated at 37°C for 15 minutes to denature the DNA. It was then purified by spin dialysis through a 200μl column of Sepharose CL-6B (Pharmacia) equilibrated with TE. The DNA was sequenced using Sequenase kits (USB) essentially as described in the manufacturer's protocol booklet. 7μl of eluate from the spin column was added to 2μl sequenase buffer (200mM Tris.Cl pH 7.5, 100mM MgCl₂, 250mM NaCl) and 1μl (10ng) primer and annealed at 37°C for 30 minutes. DNA was first labelled by primer extension in the presence of limiting amounts of dNTPs. A mix of the following reagents was prepared, sufficient for the number of reactions plus one: Per reaction: 1μl DTT, 2μl labelling mix (1.5μM dCTP, dGTP, dTTP), 0.5μl α-³⁵S dATP (5μCi, 10μM), 3 units sequenase (2μl). 5.5μl of the mix was added to the template and left at room temperature
for 2-5 minutes. A chain termination step followed where 3.5μl of the labelling reaction was added to each of 4 prewarmed tubes containing 2.5μl of either G, A, T or C termination mix (80μM for each dNTP, 50mM NaCl, 8μM for the appropriate ddNTP) and incubated at 37°C for 2-3 minutes. Reactions were terminated by the addition of 4μl of stop solution (95% formamide, 20mM EDTA, 0.05% bromophenol blue, 0.05% xylene cyanol) and stored at -20°C (for maximum of 1 week) or used immediately.

7.2.5.2 Polyacrylamide Gel Electrophoresis

DNA in sequencing reactions was denatured by boiling for 2 minutes, transferred to ice and loaded onto 6% polyacrylamide gels in 1 x TBE buffer (high pH 10 x TBE for sequencing: 1.3M Tris-base, 0.44M boric acid, 0.025M EDTA). To make the gels 70ml 6% (w/v) Sequencing Gel Solution (Anachem) was polymerized with 70μl 25% ammonium persulphate and 70μl TEMED (Bio-Rad). This is sufficient for 1 wedge gel cast between two 20cm x 50cm glass plates separated by wedge spacers (IBI Kodak Ltd.). The electrophoresis was carried out at 35 Watts in 1 x TBE and continued until the bromophenol blue dye-front had migrated just off the bottom of the gel. For longer runs electrophoresis was continued for a further 3-5 hours. The gels were fixed in 10% methanol, 10% acetic acid for 40 minutes, mounted on Whatman 3MM paper and dried under vacuum at 80°C for at least 1 hour. Gels were exposed to X- Omat AR Kodak X-ray film at room temperature.

7.2.5.3 Analysis of DNA Sequences

All sequence analysis was performed using the programs available in the Wisconsin Package: Genetics Computer Group (GCG) sequence analysis software package, version 7.2 (1992).
7.2.6 The Preparation and Screening of a Cosmid Library

Plant DNA from the *Arabidopsis thaliana* co-8 mutant was extracted using the CTAB DNA extraction procedure (7.2.2.1) and further purified on a caesium chloride gradient (details in Maniatis *et al.*, 1989).

i) Small scale test partial digestion: 10µg genomic DNA was added to a mix on ice containing 15µl 10 x A buffer (Boehringer Mannheim), 4mM spermidine, 1 x BSA to a total volume of 150µl which was then aliquotted into 9 tubes (first tube = 30µl, rest = 15µl). *Sau* 3A restriction enzyme was diluted in 1 x A buffer to 1u/µl and 1 unit added to the first tube. A series of 7 two-fold dilutions of the enzyme in the DNA mix followed with the ninth aliquot serving as an undigested control. All aliquots were incubated at 37°C for 1 hour, digestion stopped by the addition of 1µl 0.5M EDTA on ice and the aliquots run on a 0.4% agarose gel. Lambda DNA digested with Xho I and Xba I was the size marker used. The sample containing the most DNA in the size range 15-25kb was estimated. Half this amount of enzyme should give the maximum amount of molecules in this range.

ii) Large scale digest: Starting with 150µg genomic DNA a large scale digest was set up using the conditions determined during the testpartials and 1µg removed for analysis on an agarose gel. The rest of the reaction was stopped by incubation at 65°C for 20 minutes followed by phenol/chloroform extraction and ethanol precipitation.

iii) CIP treatment of the DNA; The DNA was resuspended in 270µl water, 30µl 10 x CIP buffer and 2.5u CIP (Calf intestinal alkaline phosphatase) added and the mixture incubated at 37°C for 20 minutes. The enzyme was heat-inactivated at 68°C for 15 minutes followed by phenol extraction and ethanol precipitation. The DNA pellet was dissolved at a concentration of 75µg/300µl.

iv) Sucrose density gradient centrifugation; To size fractionate the DNA sucrose gradients were prepared according to Maniatis using 10% and 40% sucrose containing 1M NaCl,
20mM Tris.Cl pH 8.0, 5mM EDTA, mixed in a gradient mixer and aliquotted into 13.2ml cellulose centrifuge tubes (Kontron Instruments) using a peristaltic pump. Each 75µg sample was heated to 65°C for 10 minutes and loaded on top of a gradient. Gradients were balanced using mineral oil. Centrifugation was at 38,000rpm overnight at 20°C in a Sorvall Swing-out 41 rotor in a Sorvall OTD55B ultracentrifuge (DuPont). 300-400µl fractions were collected from a pin-hole in the bottom of the gradients and 10µl of every third fraction analysed by agarose gel electrophoresis as before. The fractions containing DNA in the size range 15-25kb were pooled and dialysed overnight against TE. The volume was reduced to 400µl by butanol reduction, the DNA ethanol precipitated and dissolved in 20µl water. The approximate concentration was determined by agarose gel electrophoresis of a 0.5µl sample against known concentration standards.

v) Preparation of vector DNA; 10µg caesium-pure 04541 vector DNA (see 7.1.3) was digested with Bam HI, an aliquot checked on a gel and the remainder phenol/chloroform extracted, ethanol precipitated and resuspended at 250ng/µl in water.

vi) Ligation of vector and insert; 1µg purified insert DNA was added to 0.25µg vector in a volume of 7.5µl. 0.5µl was removed as an unligated control. The remainder was incubated at 65°C for 5 minutes, 42°C for 20 minutes and room temperature for 2 hours to promote annealing of compatible ends. 1µl of 0.5M Tris.Cl pH 8.0, 100mM MgCl₂ was added along with 0.5µl 0.1M ATP, 0.5µl of a 5/1000 dilution of β-mercaptoethanol and 1u of T4 DNA ligase. The reaction was incubated at 12°C for 18 hours. The unligated control and 0.5µl of ligation were checked on a gel to determine the success of the ligation, visible as a decrease in mobility compared to the unligated control.

vii) Preparation of plating cells; The E. coli strain XL1 Blue MR (see 7.1.2) was streaked out on an L-agar plate and grown at 37°C overnight. A single colony was used to inoculate 50ml LB-Maltose (L-broth supplemented with 0.4% maltose) plus 0.5ml 1M MgSO₄. This was grown at 37°C with shaking for 4-6 hours until the OD₆₀₀ < 1.0. The bacteria were
pelleted at 2000rpm for 10 minutes, resuspended in 20mM MgSO$_4$ and the OD$_{600}$ adjusted to 0.5.

ei) Packaging; Gigapack II Gold packaging extracts (Stratagene) were used according to the manufacturer’s instructions to package the recombinant cosmids. 1μl from the 10μl ligation was packaged in a pilot experiment and resuspended in 500μl SM0 buffer (see 7.1.4) with 20μl chloroform.

ix) Titering the test packaging reaction; 10μl from the 500μl packaging reaction was added to 100μl SM0 buffer and 200μl plating cells and incubated at 37°C for 20 minutes. 1ml LB was added and the reaction incubated for a further 45 minutes. 0.1ml and 0.5ml aliquots were spread onto L-agar tet$_{10}$ plates plus IPTG and X-Gal (see 7.2.1.4) and incubated at 37°C overnight. The number of colonies was counted and the titre of the library determined.

The remainder of the ligation was divided into 2μl aliquots, packaged and titred as above.

x) Amplification of the cosmid library; The packaged aliquots in SM0 buffer were pooled, mixed with a equal volume of freshly prepared plating cells and incubated in a 15ml Falcon tube for 30 minutes at room temperature. 4 volumes of LB were added and the tube incubated at 37°C for 1 hour with shaking. The culture was spun at room temperature for 10 minutes, the pellet resuspended in 500μl LB and spread onto a 150mm L-agar tet$_{10}$ plate. After overnight incubation at 37°C the colonies were gently resuspended in 2 washes each of 3ml LB using a glass spreader. The LB was pooled into a 50ml tube and sterile glycerol added to a final concentration of 18% and tetracycline to 10μg/ml. The tube was gently rocked overnight at 4°C, divided into 1ml aliquots and frozen at -70°C. Using 2μl of the amplified library serial dilutions in LB from 10$^{-2}$-10$^{-9}$ were plated as before and the titre determined. This was always rechecked prior to each library screen.

xi) Screening the cosmid library; Roughly 50,000 colonies divided between 10 x 150mm L-agar tet$_{10}$ plates were used for each screen. The colonies were transferred to nylon membranes and processed as described in section 7.2.1.6 and screened using radioactively-
labelled DNA probes as described in section 7.2.1.12. Following autoradiography, "positive" colonies were identified and a plug of agar plus usually several colonies from the correct region was cored out of the plate using the wide end of a sterile pasteur pipette and resuspended in 1ml LB. This was in preparation for the isolation of single positive colonies. The titre was determined using serial dilutions as previously described and the colonies transferred to nylon membranes for re-hybridization (2nd round). After identification of positive colonies they were subjected to a 3rd round of screening to ensure their purity. DNA was isolated from the cosmids of interest as described in section 7.2.1.1(ii).

7.2.7 Yeast Techniques

7.2.7.1 Screening the CIC YAC (Yeast Artificial Chromosome) Library

The CIC YAC library (Creusot et al. 1995) was prepared from Arabidopsis thaliana Columbia DNA in vector pYAC4 and contains 1152 clones maintained in the yeast strain AB1380. The clones are maintained in a numbered grid as glycerol stocks in twelve 12 x 8 microtitre plates and on YEPD plates to provide a stock of cells for colony hybridisation and preparation of yeast DNA from individual clones of interest. The entire library can be represented twice on one colony hybridization filter which is designed so that each clone can be identified from its two unique positions on the grid. The CIC YAC library colony hybridization filters (Hybond-N+) were kindly provided by Dr. Melanie Stammers. The filters were prehybridized for >4 hours in 20ml PEG buffer (7% SDS, 0.25M Sodium phosphate (500ml 0.5M phosphate buffer per litre PEG buffer), 0.25M NaCl, 1mM EDTA, 0.02M PEG 6000) at 62°C. The radioactively-labelled DNA probe was added and the filters hybridized overnight in the same buffer at 62°C. The filters were washed by first rinsing them in 3 x SSC, 0.1% SDS briefly at room temperature. They were then washed for 10 minutes at 62°C in preheated 3 x SSC, 0.1% SDS then for 10 minutes at the same
temperature in 0.1 x SSC, 0.1% SDS. The DNA to be used as a radioactive probe was gel purified away from vector sequences twice to avoid hybridization of contamination vector sequences to the pYAC4 vector.

7.2.7.2 Yeast Genomic DNA Extraction

To extract DNA from yeast, the colonies of interest identified from the CIC YAC library screen were streaked out into 2cm squares from the YEPD stock plates onto fresh YEPD plates. The colonies were grown at 30°C for 2 days. As many cells as possible were scraped onto the end of a toothpick and resuspended in 400μl TE/SDS (0.4% SDS, 75mM Tris.Cl pH 7.5, 40mM EDTA) by vortexing. 400μl phenol/chloroform was added, mixed by vortexing and the tube transferred to 65°C for 15-30 minutes. After the incubation the contents of the tube were again vortexed and spun in a microcentrifuge for 10 minutes. The supernatant was transferred to a clean tube and ethanol precipitated. The precipitate was pelleted by centrifugation for 10 minutes and dissolved in 50μl water. After incubation at 4°C for 3-4 hours residual SDS was spun out for 10 minutes, the supernatant re-extracted with phenol/chloroform, ethanol precipitated and the DNA pellet dissolved in 20μl water.

To analyse the YAC DNA each yeast genomic DNA preparation was digested with BamHI/EcoRI in a double restriction digest (see 7.2.1.7), fractionated by agarose gel electrophoresis and Southern blotted as for plant genomic DNA (see 7.2.1.11). This extraction procedure yields sufficient DNA for 2 tracks on a Southern blot.
7.2.8 Arabidopsis Transformation and Tissue Culture Techniques

7.2.8.1 Transformation of Arabidopsis thaliana Root Explants

Adapted from the method of Valvekens et al. (1988).

All plant media are described in section 7.1.5. Manipulations were carried out in a flow hood using sterilized equipment and solutions and standard sterile technique. Growth conditions in the tissue culture room were 20°C with a 16 hour photoperiod of light intensity 50μE m⁻² s⁻¹.

To produce root material for Agrobacterium-mediated transformation Arabidopsis thaliana var. Landsberg erecta seeds, either wildtype or co-2tt4 mutant, were surface sterilized as described in section 7.2.8.3. For each DNA construct 5 x 250ml conical flasks were filled with 50ml liquid IM and sterilized by autoclaving. 10-15 sterilized seeds were placed in each flask and incubated on a platform with slow shaking in a growth room for 2-3 weeks. Two days prior to transformation a culture of Agrobacteria containing the desired construct was initiated by inoculating 10ml LB rif²⁰⁰ tet₁ with 10μl from the appropriate glycerol stock. This was grown at 30°C until day 1 of transformation when it was spun at 2000rpm for 10 minutes and the pellet resuspended in LB without antibiotics. The OD₆₀₀ was measured and an aliquot diluted to OD₆₀₀ = 0.1 in sterile liquid IM (usually 100ml).

Day 1; The root material was separated from all green tissue, pooled, chopped into 0.5cm lengths and placed into a plastic sieve within a petri dish. Roots from one of the flasks were treated with IM alone (no bacteria) to serve as an untransformed control. 25-50ml of the IM/Agrobacteria solution was poured over the root explants and agitated for 2 minutes. The contents of the sieve were drained, blotted on several changes of sterile Whatman 3MM paper and the roots spread thinly over the surface of CIM plates. These were sealed
(Micropore tape, 3M Medical-Surgical Division) and left to co-cultivate in the tissue culture room for 2 days.

Day 3; The roots were scraped off the surface of the plates, placed in a plastic sieve and washed with several changes of liquid IM until no longer turbid with bacteria. The roots were drained and blotted as before and divided into small clumps. These were spread thinly on the surface of SIM plates so that the diameter of each explant was no larger than 1cm. The plates were sealed and incubated as before. The untransformed roots were divided between 2 plates, with and without kanamycin to test for regeneration and kanamycin selection.

The explants were transferred to fresh SIM plates weekly. After about 10 days small green calli appeared all over the untransformed control explants on plates without kanamycin. A few days later calli were produced on the experimental plates. These produced plantlets which were transferred to GM plates to grow. Any additional callus material on the plantlets was trimmed off weekly. When the developing plants bolted they were transferred into a Magenta GA7 pot to set seed, the seeds harvested and sown directly onto GM/Km₅₀ plates to record the segregation ratio of resistant:sensitive seedlings. The progeny of the Km resistant plants were sown on GM/Km₅₀ plates to identify individuals homozygous for the transgene.

7.2.8.2 Transformation of *Arabidopsis thaliana* by Vacuum Infiltration

Based on the technique described by Bechtold et al. (1993) with modifications by Andrew Bent (Berkeley).

i) **Plant material:** Plants were grown in 4-inch pots in "Arabidopsis" mix (7.2.9(i)) rounded on top to form a dome. The pots were covered with mesh which was taped tightly down. They were watered, allowed to drain and Landsberg *erecta* seeds sprinkled over the top. Eight 4-inch pots were prepared for each construct, placed into an outer seed tray in short
days (SDs) and covered with a propagator lid for the first week. When the seedlings had produced a few true leaves they were thinned out to 10 plants per pot. After 3 weeks in SDs they were transferred to the long day greenhouse to allow the plants to bolt. When the bolts were approximately 10cm tall they were cut off near the base of the stem to encourage the plant to produce axillary shoots. Vacuum infiltration took place when the new shoots had produced their first 1 or 2 siliques.

ii) *Agrobacteria* culture: A 10ml culture of the appropriate strain was prepared 3 days in advance of infiltration (see 7.2.8.1). After 2 days the 10ml culture was used to inoculate 400ml LB rif₂₀₀ tet₁ in a 1L flask and grown for 24 hours at 30°C. The OD₆₀₀ was measured and if it was >1 the cells were harvested by centrifugation at 5000rpm for 10 minutes in a Sorvall H6000 rotor. The pellet was resuspended in sterile VIM (see 7.1.5) at an OD₆₀₀ of 0.8 (usually 3 x 400ml bottles of VIM per 400ml culture).

iii) Vacuum infiltration: Before infiltration 0.044μM benzylaminopurine (Sigma) and 0.03% Silwet L-77 (Union Carbide) were added to the VIM/Agrobacteria mixture. 400ml was poured into a 2L beaker and a single pot placed upside-down in the medium so that all plant stems were submerged. The beaker was placed in a vacuum dessicator (attached via a Refrigerated Vapour Trap RVT 100 to a Savant vacuum pump) and a vacuum applied for 30 seconds-3 minutes. The vacuum was released, the pot removed, rinsed in water and placed on its side on multiple layers of blueroll to drain. The VIM mixture was reused and replenished after every 3rd pot. When all pots had been treated the plants were covered with plastic autoclave bags and allowed to recover overnight. The next day they were uncovered and placed upright in the long day greenhouse where they remained until the plants set seed. Once the siliques started to turn brown all the plants on each pot were bulk bagged in 220mmx220mm cellophane bags and the seeds allowed to dry out. The seeds were harvested in bulk from each pot, separated from chaff, weighed and sterilized. After sterilization in 15ml falcon tubes batches of approximately 5000 seeds were resuspended.
in 8ml moulten GM K50 at 42°C and poured over the surface of 150mm GM K50 R20 plates (containing 20μg/ml Rovral fungicide). Seeds from different pots were never combined, so that independent transformants could be more easily identified. The plates were placed at 4°C for 2 days to break dormancy and transferred to a growth room. Kanamycin resistant plants were visible after about 7 days. When they had produced a few leaves they were transferred into soil to set seed.

7.2.8.3 Seed Sterilization

Seeds were surface sterilized before sowing on all plant growth media. To sterilize multiple batches of seeds together, seeds (usually 50-100) were enclosed in envelopes constructed from 3cm² pieces of Miracloth (Cal-Biochem) secured using paper clips. The envelopes were agitated in 70% ethanol for 2 minutes, bleach solution (5% NaOCL, 0.5% SDS) for 15 minutes followed by at least 4 rinses in sterile water. The envelopes were opened, the seeds allowed to dry for 2 hours in a sterile flow hood before being scattered onto petri dishes containing the appropriate medium (usually GM with or without Km). The plates were sealed and placed in a fridge for 2-5 days to break dormancy before being moved into the growth room. If a large amount of just one line of seeds was required (for example, to set up multiple flasks to grow root material for transformation) or after vacuum infiltration when 3-5000 seeds were to be sown per 150mm plate seeds were poured into 15ml Falcon tubes and sterilized using the method described above.

7.2.8.4 Selective Assay on Kanamycin

Seeds for selection on kanamycin were surface sterilized, sown on GM K50 (50μg/ml kanamycin) and scored for segregation of resistant to sensitive seedlings after 10 days. Sensitive seedlings produce cotyledons which bleach completely as they expand and
develop no true leaves and only stunted roots. Resistant seedlings grow as wildtype without kanamycin, and can be rescued onto GM plates or soil.

7.2.9 Plant Growth Conditions

i) **Soil:** In the glasshouses and controlled environment rooms (CER) plants were grown on a loam-based soil consisting of John Innes Potting Compost Number 1, vermiculite and grit in the ratio 1.5:1:1 by volume, or a mixture of Levington’s Potting Compost Number 3 and grit in the ratio 6:1 by volume. Seeds were sown onto the surface of prewatered soil. Plants to be analysed phenotypically were usually sown in 4 inch pots, covered with clingfilm to maintain high humidity and transferred to the appropriate glasshouse or CER until sturdy enough to be pricked out into individual sections of P40 seed trays. After pricking out they were again covered with clingfilm for one week. Thereafter the clingfilm was removed and the plants watered once or twice a day as required. Seeds for plants to be grown only for DNA or RNA extraction were sown directly into seed trays and covered with cling film for a week.

ii) **Stratification:** Seed dormancy was broken by stratification: incubation at 4°C in the dark on damp filter paper for 2-7 days prior to transfer to the glasshouse or CER.

iii) **Light conditions:** In the summer plants in the glasshouses were grown in natural daylight. In the winter supplementary light was provided so that the minimum day length was 16 hours. Flowering time was measured under defined conditions by growing plants in Sanyo Gallenkamp Controlled Environment Rooms at 20°C with a relative humidity of 70%. Short days (SDs) comprised a photoperiod of 10 hours lit with 400W metal Halide Power Star lamps supplemented with 100W Tungsten Halide lamps. This provided a level of photosynthetically-active radiation of 113.7μmoles photons m⁻²s⁻¹ and a red:far red ratio of 2.41. Long days (LDs) comprised the same lighting regime with a 6 hour extension of the Tungsten Halide lamps.
iv) Out-crossing: Using a dissecting microscope and fine forceps a flower from the plant designated as the "female" was stripped of sepals and petals, and emasculated by removal of the immature anthers. Once a few (1-4) flowers on an inflorescence had been emasculated, mature flowers with dehisced anthers and those already forming siliques were removed to ensure that seeds from self-pollinated flowers did not contaminate the out-crossed seeds. The emasculated flowers were then pollinated by dusting pollen from the designated "male" plant onto the stigma of the female. Pollination was repeated the following day, and new "female" flowers emasculated for pollination every 2 days as they developed. Once sufficient out-crossed siliques were developing the remaining immature flowers on the inflorescence were removed. Seeds were collected by enclosing the stem in a gas-permeable cellophane bag before the siliques ripened and split open. Once they had been harvested they were allowed to dry out at room temperature for > 2 weeks before sowing.
Appendix

One-Way Analysis of Variance (ANOVA) of flowering time of transformants in Long days (Chapter 5)

<table>
<thead>
<tr>
<th>Transformant</th>
<th>0 = Landsberg erecta</th>
<th>1 = Tnl01</th>
<th>2 = Tnl04</th>
<th>3 = Tnl12</th>
<th>4 = Tnl14</th>
<th>5 = Tnl204</th>
<th>6 = Tnl206</th>
<th>7 = Tnl211</th>
<th>8 = Tnl213</th>
<th>9 = Tnl215</th>
<th>10 = Tnl33a</th>
<th>11 = Tnl43</th>
<th>12 = Tnl75a</th>
<th>13 = TnlG209</th>
<th>14 = TnlG210</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>DF</td>
<td>SS</td>
<td>MS</td>
<td>F</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>variety/</td>
<td>14</td>
<td>1000.50</td>
<td>71.46</td>
<td>32.46</td>
<td>0.000 ***</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>269</td>
<td>592.21</td>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>283</td>
<td>1592.71</td>
<td></td>
</tr>
</tbody>
</table>

Analysis of Variance on days to flowering

<table>
<thead>
<tr>
<th>Level</th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>20.10</td>
<td>1.449</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>22.33</td>
<td>1.534</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>18.40</td>
<td>1.401</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>17.70</td>
<td>0.733</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>20.23</td>
<td>2.047</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>19.80</td>
<td>2.462</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>20.70</td>
<td>0.923</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>19.50</td>
<td>1.821</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>18.90</td>
<td>1.410</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>20.23</td>
<td>2.047</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>19.95</td>
<td>1.468</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>21.30</td>
<td>0.923</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>14.20</td>
<td>0.616</td>
</tr>
<tr>
<td>13</td>
<td>20</td>
<td>21.31</td>
<td>0.946</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>19.70</td>
<td>1.534</td>
</tr>
</tbody>
</table>

Individual 95% CIs For Mean Based on Pooled StDev

<table>
<thead>
<tr>
<th>Level</th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>20.10</td>
<td>1.449</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>22.33</td>
<td>1.534</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>18.40</td>
<td>1.401</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>17.70</td>
<td>0.733</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>20.23</td>
<td>2.047</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>19.80</td>
<td>2.462</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>20.70</td>
<td>0.923</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>19.50</td>
<td>1.821</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>18.90</td>
<td>1.410</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>20.23</td>
<td>2.047</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>19.95</td>
<td>1.468</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>21.30</td>
<td>0.923</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>14.20</td>
<td>0.616</td>
</tr>
<tr>
<td>13</td>
<td>20</td>
<td>21.31</td>
<td>0.946</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>19.70</td>
<td>1.534</td>
</tr>
</tbody>
</table>

Pooled StDev = 1.484

Tukey's pairwise comparisons (0.1%)

Intervals for (column level mean) - (row level mean)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.083</td>
<td>-0.384</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.116</td>
<td>2.410</td>
<td>3.516</td>
<td>5.457</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.616</td>
<td>1.910</td>
<td>-1.983</td>
<td>3.016</td>
<td>4.957</td>
<td>0.983</td>
<td></td>
</tr>
<tr>
<td>0.584</td>
<td>3.110</td>
<td>-0.783</td>
<td>-0.283</td>
<td>4.216</td>
<td>6.157</td>
<td>2.183</td>
</tr>
<tr>
<td>-2.004</td>
<td>0.512</td>
<td>-3.382</td>
<td>-2.882</td>
<td>-4.082</td>
<td>1.734</td>
<td>3.684</td>
</tr>
<tr>
<td>-2.116</td>
<td>0.410</td>
<td>-3.483</td>
<td>-2.983</td>
<td>-4.183</td>
<td>-1.712</td>
<td>1.516</td>
</tr>
<tr>
<td>-1.516</td>
<td>1.010</td>
<td>-2.883</td>
<td>-2.383</td>
<td>-3.583</td>
<td>-1.112</td>
<td>-0.883</td>
</tr>
<tr>
<td>-2.416</td>
<td>0.110</td>
<td>-3.783</td>
<td>-3.283</td>
<td>-4.483</td>
<td>-2.012</td>
<td>-1.783</td>
</tr>
<tr>
<td>-1.216</td>
<td>1.310</td>
<td>-2.583</td>
<td>-2.083</td>
<td>-3.283</td>
<td>-0.812</td>
<td>-0.583</td>
</tr>
</tbody>
</table>

177
<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-0.616</td>
<td>1.910</td>
<td>-1.983</td>
<td>-1.483</td>
<td>-2.683</td>
<td>-0.212</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>3.016</td>
<td>4.957</td>
<td>0.983</td>
<td>1.483</td>
<td>0.283</td>
<td>2.882</td>
<td>2.983</td>
</tr>
<tr>
<td>11</td>
<td>-1.666</td>
<td>0.860</td>
<td>-3.033</td>
<td>-2.533</td>
<td>-3.733</td>
<td>-1.262</td>
<td>-1.033</td>
</tr>
<tr>
<td></td>
<td>1.966</td>
<td>3.907</td>
<td>-0.067</td>
<td>0.433</td>
<td>-0.767</td>
<td>1.832</td>
<td>1.933</td>
</tr>
<tr>
<td></td>
<td>0.616</td>
<td>2.557</td>
<td>-1.417</td>
<td>-0.917</td>
<td>-2.117</td>
<td>0.482</td>
<td>0.583</td>
</tr>
<tr>
<td>14</td>
<td>-3.048</td>
<td>-0.525</td>
<td>-4.418</td>
<td>-3.918</td>
<td>-5.118</td>
<td>-2.646</td>
<td>-2.418</td>
</tr>
<tr>
<td></td>
<td>0.616</td>
<td>2.560</td>
<td>-1.413</td>
<td>-0.913</td>
<td>-2.113</td>
<td>0.485</td>
<td>0.587</td>
</tr>
</tbody>
</table>

Tukey's pairwise comparisons (1%)

Family error rate = 0.0100

Critical value = 5.45

Intervals for (column level mean) - (row level mean)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-4.489</td>
<td>0.022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-0.515</td>
<td>2.076</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-1.015</td>
<td>3.415</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.195</td>
<td>4.615</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-2.414</td>
<td>2.143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-2.515</td>
<td>1.915</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-1.915</td>
<td>2.515</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-2.815</td>
<td>1.615</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-1.615</td>
<td>2.815</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-1.015</td>
<td>3.415</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-2.065</td>
<td>2.365</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-3.415</td>
<td>1.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3.685</td>
<td>8.115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-3.450</td>
<td>1.018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

178
<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>-2.708</td>
<td>0.908</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-1.508</td>
<td>-0.608</td>
<td>2.108</td>
<td>3.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-0.908</td>
<td>-0.008</td>
<td>-1.208</td>
<td>2.708</td>
<td>3.608</td>
<td>2.408</td>
</tr>
<tr>
<td>11</td>
<td>-1.958</td>
<td>-1.058</td>
<td>-2.258</td>
<td>-2.858</td>
<td>1.658</td>
<td>2.558</td>
</tr>
<tr>
<td>12</td>
<td>-3.308</td>
<td>-2.408</td>
<td>-3.608</td>
<td>-4.208</td>
<td>-3.158</td>
<td>0.308</td>
</tr>
<tr>
<td>13</td>
<td>3.792</td>
<td>4.692</td>
<td>3.492</td>
<td>2.892</td>
<td>3.942</td>
<td>5.292</td>
</tr>
</tbody>
</table>

Tukey's pairwise comparisons (5%)

Family error rate = 0.0500
Individual error rate = 0.000800
Critical value = 4.80

Intervals for (column level mean) - (row level mean)
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
One-Way Analysis of Variance of leaf number of transformants in Long days (Chapter 5)

<table>
<thead>
<tr>
<th>Transformant</th>
<th>0 = Landsberg erecta</th>
<th>1 = Tn101</th>
<th>2 = Tn104</th>
<th>3 = Tn112</th>
<th>4 = Tn114</th>
<th>5 = Tn204</th>
<th>6 = Tn206</th>
<th>7 = Tn211</th>
<th>8 = Tn213</th>
<th>9 = Tn215</th>
<th>10 = Tn33a</th>
<th>11 = Tn43</th>
<th>12 = Tn75a</th>
<th>13 = TnG209</th>
<th>14 = TnG210</th>
</tr>
</thead>
</table>

Analysis of Variance on leaf number

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variety</td>
<td>14</td>
<td>193.619</td>
<td>13.830</td>
<td>16.40</td>
<td>0.000 ***</td>
</tr>
<tr>
<td>Error</td>
<td>269</td>
<td>226.786</td>
<td>0.843</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>283</td>
<td>420.405</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Individual 95% CIs For Mean
Based on Pooled StDev

Tukey's pairwise comparisons (0.1%)
Family error rate = 0.100
Individual error rate = 0.00176
Critical value = 4.47

Intervals for (column level mean) - (row level mean)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-3.7224</td>
<td>-1.4331</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-1.4740</td>
<td>1.2849</td>
<td>0.7740</td>
<td>3.1707</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-1.2240</td>
<td>1.5349</td>
<td>-0.6677</td>
<td>1.0240</td>
<td>3.4207</td>
<td>1.1677</td>
</tr>
<tr>
<td>4</td>
<td>-1.9740</td>
<td>0.7849</td>
<td>-1.4177</td>
<td>-1.6677</td>
<td>0.2740</td>
<td>2.6707</td>
</tr>
<tr>
<td>5</td>
<td>-2.4272</td>
<td>0.3257</td>
<td>-1.8780</td>
<td>-2.1280</td>
<td>-1.3780</td>
<td>-0.1140</td>
</tr>
<tr>
<td>6</td>
<td>-1.9740</td>
<td>0.7849</td>
<td>-1.4177</td>
<td>-1.6677</td>
<td>0.9177</td>
<td>0.5368</td>
</tr>
<tr>
<td>7</td>
<td>-1.4740</td>
<td>1.2849</td>
<td>-0.9177</td>
<td>-1.1677</td>
<td>-0.4177</td>
<td>-0.0368</td>
</tr>
<tr>
<td>8</td>
<td>-0.8740</td>
<td>1.8849</td>
<td>-0.3177</td>
<td>-0.5677</td>
<td>0.1823</td>
<td>0.5632</td>
</tr>
<tr>
<td>9</td>
<td>-0.8740</td>
<td>1.8849</td>
<td>-0.3177</td>
<td>-0.5677</td>
<td>0.1823</td>
<td>0.5632</td>
</tr>
<tr>
<td>10</td>
<td>-0.9240</td>
<td>1.8349</td>
<td>-0.3677</td>
<td>-0.6177</td>
<td>0.1323</td>
<td>0.5132</td>
</tr>
<tr>
<td>11</td>
<td>-0.3240</td>
<td>2.4349</td>
<td>0.2323</td>
<td>-0.0177</td>
<td>0.7323</td>
<td>1.1323</td>
</tr>
</tbody>
</table>

Pooled StDev = 0.918

Individual error rate = 0.00176

Critical value = 4.47
Tukey's pairwise comparisons (1%)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1.7740</td>
<td>0.9849</td>
<td>-1.2177</td>
<td>-1.4677</td>
<td>-0.7177</td>
<td>-0.3368</td>
</tr>
<tr>
<td></td>
<td>0.4740</td>
<td>2.8707</td>
<td>0.6177</td>
<td>0.3677</td>
<td>1.1177</td>
<td>1.5780</td>
</tr>
<tr>
<td>1</td>
<td>-0.3240</td>
<td>2.4349</td>
<td>0.2323</td>
<td>-0.0177</td>
<td>0.7323</td>
<td>1.1132</td>
</tr>
<tr>
<td></td>
<td>1.9240</td>
<td>4.3207</td>
<td>2.0677</td>
<td>1.8177</td>
<td>2.5677</td>
<td>3.0280</td>
</tr>
<tr>
<td>2</td>
<td>-1.8286</td>
<td>0.9285</td>
<td>-1.2745</td>
<td>-1.5245</td>
<td>-0.7745</td>
<td>-0.3930</td>
</tr>
<tr>
<td></td>
<td>0.4391</td>
<td>2.8376</td>
<td>0.5850</td>
<td>0.3350</td>
<td>1.0850</td>
<td>1.5447</td>
</tr>
</tbody>
</table>

Critical value = 5.45

Intervals for (column level mean) - (row level mean)

8	-0.3177	1.5177					
9	-0.3177	-0.9177	1.5177	0.9177			
10	-0.3677	-0.9677	-0.9677				
	1.4677	0.8677	0.8677				
11	0.2323	-0.3677	-0.3677	-0.3177			
	2.0677	1.4677	1.4677	1.5177			
12	-1.2177	-1.8177	-1.8177	-1.7677	-2.3677		
	0.6177	0.0177	0.0177	0.0677	-0.5323		
13	0.2323	-0.3677	-0.3677	-0.3177	-0.9177	0.5323	
	2.0677	1.4677	1.4677	1.5177	0.9177	2.3677	
14	-1.2745	-1.8745	-1.8745	-1.8245	-2.4245	-0.9745	-2.4245
	0.5850	-0.0150	-0.0150	0.0350	-0.5650	0.8850	-0.5650

Family error rate = 0.0100
Individual error rate = 0.000146
<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>-0.5190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.7190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-0.5190</td>
<td>-1.1190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.7190</td>
<td>1.1190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-0.5690</td>
<td>-1.1690</td>
<td>-1.1690</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.6690</td>
<td>1.0690</td>
<td>1.0690</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.0310</td>
<td>-0.5690</td>
<td>-0.5690</td>
<td>-0.5190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2690</td>
<td>1.6690</td>
<td>1.6690</td>
<td>1.7190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-1.4190</td>
<td>-2.0190</td>
<td>-2.0190</td>
<td>-1.9690</td>
<td>-2.5690</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8190</td>
<td>0.2190</td>
<td>0.2190</td>
<td>0.2690</td>
<td>-0.3310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.0310</td>
<td>-0.5690</td>
<td>-0.5690</td>
<td>-0.5190</td>
<td>-1.1190</td>
<td>0.3310</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2690</td>
<td>1.6690</td>
<td>1.6690</td>
<td>1.7190</td>
<td>1.1190</td>
<td>2.5690</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-1.4783</td>
<td>-2.0783</td>
<td>-2.0783</td>
<td>-2.0283</td>
<td>-2.6283</td>
<td>-1.1783</td>
<td>-2.6283</td>
</tr>
<tr>
<td></td>
<td>0.7888</td>
<td>0.1888</td>
<td>0.1888</td>
<td>0.2388</td>
<td>-0.3612</td>
<td>1.0888</td>
<td>-0.3612</td>
</tr>
</tbody>
</table>

Tukey's pairwise comparisons (5%)

<table>
<thead>
<tr>
<th></th>
<th>Family error rate</th>
<th>0.0500</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Individual error rate</td>
<td>0.000800</td>
</tr>
<tr>
<td></td>
<td>Critical value</td>
<td>4.80</td>
</tr>
<tr>
<td></td>
<td>Intervals for (column level mean) - (row level mean)</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-3.8069</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1.3486</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-1.5570</td>
<td>1.2153</td>
</tr>
<tr>
<td></td>
<td>0.8570</td>
<td>3.2403</td>
</tr>
<tr>
<td>3</td>
<td>-1.3070</td>
<td>1.4653</td>
</tr>
<tr>
<td></td>
<td>1.1070</td>
<td>3.4903</td>
</tr>
<tr>
<td>4</td>
<td>-2.0570</td>
<td>0.7153</td>
</tr>
<tr>
<td></td>
<td>0.3570</td>
<td>2.7403</td>
</tr>
<tr>
<td>5</td>
<td>-2.5126</td>
<td>0.2532</td>
</tr>
<tr>
<td></td>
<td>-0.0286</td>
<td>2.3612</td>
</tr>
<tr>
<td>6</td>
<td>-2.0570</td>
<td>0.7153</td>
</tr>
<tr>
<td></td>
<td>0.3570</td>
<td>2.7403</td>
</tr>
<tr>
<td>7</td>
<td>-1.5570</td>
<td>1.2153</td>
</tr>
<tr>
<td></td>
<td>0.8570</td>
<td>3.2403</td>
</tr>
<tr>
<td>8</td>
<td>-0.9570</td>
<td>1.8153</td>
</tr>
<tr>
<td></td>
<td>1.4570</td>
<td>3.8403</td>
</tr>
<tr>
<td>9</td>
<td>-0.9570</td>
<td>1.8153</td>
</tr>
<tr>
<td></td>
<td>1.4570</td>
<td>3.8403</td>
</tr>
<tr>
<td>10</td>
<td>-1.0070</td>
<td>1.7653</td>
</tr>
<tr>
<td></td>
<td>1.4070</td>
<td>3.7903</td>
</tr>
<tr>
<td>11</td>
<td>-0.4070</td>
<td>2.3653</td>
</tr>
<tr>
<td></td>
<td>2.0070</td>
<td>4.3903</td>
</tr>
<tr>
<td>12</td>
<td>-1.8570</td>
<td>0.9153</td>
</tr>
<tr>
<td></td>
<td>0.5570</td>
<td>2.9403</td>
</tr>
<tr>
<td>13</td>
<td>-0.4070</td>
<td>2.3653</td>
</tr>
<tr>
<td></td>
<td>2.0070</td>
<td>4.3903</td>
</tr>
<tr>
<td>14</td>
<td>-1.9123</td>
<td>0.8580</td>
</tr>
<tr>
<td></td>
<td>0.5228</td>
<td>2.9081</td>
</tr>
</tbody>
</table>

183
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0.1645</td>
<td>-0.4355</td>
<td>-0.4355</td>
<td>-0.3855</td>
</tr>
<tr>
<td></td>
<td>2.1355</td>
<td>1.5355</td>
<td>1.5355</td>
<td>1.5855</td>
</tr>
<tr>
<td>12</td>
<td>-1.2855</td>
<td>-1.8855</td>
<td>-1.8855</td>
<td>-1.8355</td>
</tr>
<tr>
<td></td>
<td>0.6855</td>
<td>0.0855</td>
<td>0.0855</td>
<td>0.1355</td>
</tr>
<tr>
<td>13</td>
<td>0.1645</td>
<td>-0.4355</td>
<td>-0.4355</td>
<td>-0.3855</td>
</tr>
<tr>
<td></td>
<td>2.1355</td>
<td>1.5355</td>
<td>1.5355</td>
<td>1.5855</td>
</tr>
<tr>
<td>14</td>
<td>-1.3431</td>
<td>-1.9431</td>
<td>-1.9431</td>
<td>-1.8931</td>
</tr>
<tr>
<td></td>
<td>0.6536</td>
<td>0.0536</td>
<td>0.0536</td>
<td>0.1036</td>
</tr>
</tbody>
</table>
One-Way Analysis of Variance of leaf number of pooled results from each construct in Long days (Chapter 5)

Construct
0 = Landsberg erecta
1 = 35S:co-3
2 = 35S:ZF
3 = 35S:co-7

Analysis of Variance on leaf number

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>construct</td>
<td>3</td>
<td>47.28</td>
<td>15.76</td>
<td>11.83</td>
<td>0.000 ***</td>
</tr>
<tr>
<td>Error</td>
<td>280</td>
<td>373.12</td>
<td>1.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>283</td>
<td>420.40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Individual 95% CIs For Mean Based on Pooled StDev

<table>
<thead>
<tr>
<th>Level</th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>7.200</td>
<td>0.919</td>
</tr>
<tr>
<td>1</td>
<td>78</td>
<td>8.128</td>
<td>1.262</td>
</tr>
<tr>
<td>2</td>
<td>97</td>
<td>7.567</td>
<td>1.145</td>
</tr>
<tr>
<td>3</td>
<td>99</td>
<td>7.101</td>
<td>1.093</td>
</tr>
</tbody>
</table>

Pooled StDev = 1.154

Tukey's pairwise comparisons (0.1%)
Family error rate = 0.100
Individual error rate = 0.0227
Critical value = 3.24

Intervals for (column level mean) - (row level mean)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.817</td>
<td>-0.040</td>
</tr>
<tr>
<td>2</td>
<td>-1.245</td>
<td>0.159</td>
</tr>
<tr>
<td></td>
<td>0.511</td>
<td>0.963</td>
</tr>
<tr>
<td>3</td>
<td>-0.779</td>
<td>0.627</td>
</tr>
<tr>
<td></td>
<td>0.977</td>
<td>1.428</td>
</tr>
</tbody>
</table>

Tukey's pairwise comparisons (1%)
Family error rate = 0.0100
Individual error rate = 0.00204
Critical value = 4.40

Intervals for (column level mean) - (row level mean)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2.135</td>
<td>0.278</td>
</tr>
<tr>
<td>2</td>
<td>-1.560</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>0.826</td>
<td>1.107</td>
</tr>
<tr>
<td>3</td>
<td>-1.093</td>
<td>0.483</td>
</tr>
<tr>
<td></td>
<td>-0.047</td>
<td>0.979</td>
</tr>
<tr>
<td></td>
<td>1.291</td>
<td>1.571</td>
</tr>
</tbody>
</table>

Tukey's pairwise comparisons (5%)
Family error rate = 0.0500
Individual error rate = 0.0107
Critical value = 3.63

Intervals for (column level mean) - (row level mean)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.923</td>
<td>0.067</td>
</tr>
<tr>
<td>2</td>
<td>-1.351</td>
<td>0.111</td>
</tr>
<tr>
<td></td>
<td>0.617</td>
<td>1.012</td>
</tr>
<tr>
<td>3</td>
<td>-0.884</td>
<td>0.579</td>
</tr>
<tr>
<td></td>
<td>0.043</td>
<td>0.889</td>
</tr>
</tbody>
</table>
One-Way Analysis of Variance of flowering time of pooled results from each construct in Long days (Chapter 5)

Construct
0 = Landsberg erecta
1 = 35S:co-3
2 = 35S:ZF
3 = 35S:co-7

Analysis of Variance on days to flowering

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>283</td>
<td>1592.71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>280</td>
<td>1532.07</td>
<td>5.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constr</td>
<td>3</td>
<td>60.65</td>
<td>20.22</td>
<td>3.69</td>
<td>0.012 *</td>
</tr>
</tbody>
</table>

Individual 95% CIs For Mean Based on Pooled StDev

<table>
<thead>
<tr>
<th>Level</th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>20.100</td>
<td>1.449</td>
</tr>
<tr>
<td>1</td>
<td>78</td>
<td>19.256</td>
<td>2.177</td>
</tr>
<tr>
<td>2</td>
<td>97</td>
<td>20.124</td>
<td>1.894</td>
</tr>
<tr>
<td>3</td>
<td>99</td>
<td>19.111</td>
<td>2.864</td>
</tr>
</tbody>
</table>

Pooled StDev = 2.339

Tukey's pairwise comparisons (0.1%)
Family error rate = 0.100
Individual error rate = 0.0227
Critical value = 3.24
Intervals for (column level mean) - (row level mean)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.956</td>
<td>2.644</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-1.804</td>
<td>-1.682</td>
<td>1.756</td>
</tr>
<tr>
<td>3</td>
<td>-0.789</td>
<td>-0.666</td>
<td>0.247</td>
</tr>
</tbody>
</table>

Tukey's pairwise comparisons (1%)
Family error rate = 0.0100
Individual error rate = 0.00204
Critical value = 4.40
Intervals for (column level mean) - (row level mean)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.601</td>
<td>3.288</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-2.441</td>
<td>-1.974</td>
<td>2.393</td>
</tr>
<tr>
<td>3</td>
<td>-1.426</td>
<td>-0.957</td>
<td>-0.027</td>
</tr>
</tbody>
</table>

Tukey's pairwise comparisons (5%)
Family error rate = 0.0500
Individual error rate = 0.0107
Critical value = 3.63
Intervals for (column level mean) - (row level mean)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.173</td>
<td>2.860</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-2.018</td>
<td>-1.780</td>
<td>1.970</td>
</tr>
<tr>
<td>3</td>
<td>-1.003</td>
<td>-0.764</td>
<td>0.155</td>
</tr>
</tbody>
</table>
One-Way Analysis of Variance of flowering time of 35S:co-7 transformants in short days (Chapter 5)

<table>
<thead>
<tr>
<th>Transformatn</th>
<th>0 = Landsberg erecta</th>
<th>1 = Th31a</th>
<th>2 = Tn43</th>
<th>3 = Th75a</th>
<th>4 = Tmg209</th>
<th>5 = Tmg210</th>
</tr>
</thead>
</table>

Analysis of Variance on days to flowering

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variety/Error/Total</td>
<td>5</td>
<td>7430.9</td>
<td>1486.2</td>
<td>91.71</td>
<td>0.000 ***</td>
</tr>
<tr>
<td>Error</td>
<td>90</td>
<td>1458.5</td>
<td>16.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>95</td>
<td>8889.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Individual 95% CIs for Mean Based on Pooled StDev

<table>
<thead>
<tr>
<th>Level</th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
<th>CIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>60.333</td>
<td>3.464</td>
<td>(-*- *)</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>51.947</td>
<td>5.622</td>
<td>(-*)</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>53.529</td>
<td>3.608</td>
<td>(-*)</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>57.471</td>
<td>3.044</td>
<td>(*)</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>34.316</td>
<td>2.136</td>
<td>(*)</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>56.933</td>
<td>5.035</td>
<td>(*)</td>
</tr>
</tbody>
</table>

Pooled StDev = 4.026

Tukey's pairwise comparisons (0.1%)

Family error rate = 0.100
Individual error rate = 0.00096
Critical value = 3.72

Intervals for (column level mean) - (row level mean)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.671</td>
<td>4.101</td>
<td>-5.117</td>
<td>11.169</td>
<td>1.953</td>
</tr>
<tr>
<td>2</td>
<td>11.169</td>
<td>2.439</td>
<td>-5.117</td>
<td>11.169</td>
<td>1.953</td>
</tr>
<tr>
<td>3</td>
<td>7.228</td>
<td>1.042</td>
<td>-6.502</td>
<td>-9.058</td>
<td>-7.573</td>
</tr>
</tbody>
</table>

Tukey's pairwise comparisons (1%)

Family error rate = 0.0100
Individual error rate = 0.000792
Critical value = 4.91

Intervals for (column level mean) - (row level mean)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.041</td>
<td>2.730</td>
<td>14.041</td>
<td>12.671</td>
<td>4.101</td>
</tr>
<tr>
<td>3</td>
<td>11.169</td>
<td>2.439</td>
<td>14.041</td>
<td>11.169</td>
<td>2.439</td>
</tr>
<tr>
<td>4</td>
<td>7.228</td>
<td>1.042</td>
<td>11.169</td>
<td>7.228</td>
<td>1.042</td>
</tr>
</tbody>
</table>

187
Tukey’s pairwise comparisons (5%)

- **Family error rate** = 0.0500
- **Individual error rate** = 0.00452
- **Critical value** = 4.12

Intervals for (column level mean) - (row level mean)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.640</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.969</td>
<td>-5.497</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.818</td>
<td>-2.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-1.972</td>
<td>-9.438</td>
<td>-7.964</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.697</td>
<td>-1.608</td>
<td>0.081</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.763</td>
<td>21.437</td>
<td>23.129</td>
<td>27.070</td>
</tr>
<tr>
<td>5</td>
<td>-1.545</td>
<td>-9.037</td>
<td>-7.558</td>
<td>-3.617</td>
</tr>
<tr>
<td></td>
<td>8.345</td>
<td>-0.935</td>
<td>0.751</td>
<td>4.692</td>
</tr>
</tbody>
</table>

-18.567
One-Way Analysis of Variance of leaf number of 35S:co-7 transformants in short days (Chapter 5)

Transformant
0 = Landsberg erecta
1 = Tn33a
2 = Tn43
3 = Tn75a
4 = TnG209
5 = TnG210

Analysis of Variance on leaf number

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variety/</td>
<td>5</td>
<td>9399.3</td>
<td>1879.9</td>
<td>133.47</td>
<td>0.000***</td>
</tr>
<tr>
<td>Error</td>
<td>90</td>
<td>1267.6</td>
<td>14.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>95</td>
<td>10666.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>48.889</td>
<td>2.261</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>35.737</td>
<td>6.081</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>36.882</td>
<td>4.484</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>39.412</td>
<td>2.895</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>16.526</td>
<td>0.905</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>42.200</td>
<td>2.541</td>
</tr>
</tbody>
</table>

Individual 95% CIs For Mean

Based on Pooled StDev

<table>
<thead>
<tr>
<th>Level</th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>48.889</td>
<td>2.261</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>35.737</td>
<td>6.081</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>36.882</td>
<td>4.484</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>39.412</td>
<td>2.895</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>16.526</td>
<td>0.905</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>42.200</td>
<td>2.541</td>
</tr>
</tbody>
</table>

Pooled StDev = 3.753

Tukey’s pairwise comparisons (0.1%)

Family error rate = 0.100
Individual error rate = 0.000996
Critical value = 3.72

Intervals for (column level mean) - (row level mean)

<table>
<thead>
<tr>
<th>Level</th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>48.889</td>
<td>2.261</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>35.737</td>
<td>6.081</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>36.882</td>
<td>4.484</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>39.412</td>
<td>2.895</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>16.526</td>
<td>0.905</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>42.200</td>
<td>2.541</td>
</tr>
</tbody>
</table>

Tukey’s pairwise comparisons (1%)

Family error rate = 0.0100
Individual error rate = 0.000792
Critical value = 4.91

Intervals for (column level mean) - (row level mean)

<table>
<thead>
<tr>
<th>Level</th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>48.889</td>
<td>2.261</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>35.737</td>
<td>6.081</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>36.882</td>
<td>4.484</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>39.412</td>
<td>2.895</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>16.526</td>
<td>0.905</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>42.200</td>
<td>2.541</td>
</tr>
</tbody>
</table>

189
Tukey's pairwise comparisons (5%)
Family error rate = 0.0500
Individual error rate = 0.00452
Critical value = 4.12
Intervals for (column level mean) - (row level mean)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>8.728</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.576</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7.499</td>
<td>-4.796</td>
<td>16.514</td>
<td>2.505</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.970</td>
<td>-7.325</td>
<td>-6.279</td>
<td>13.984</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References

Curtis O. F. and Chang H. T. (1930) The relative effectiveness of the temperature of the crown as contrasted with that of the rest of the plant upon the flowering of celery plants. Am. J. Bot. 17 1047-1048.

Garner W. W. and Allard H. A. (1923) Further studies in photoperiodism, the response of the plant to relative length of day and night. J. Agric. Res. 23 871-920.

Koncz C., Kreuzaler F., Kálmán Zs. and Schell J (1984) A simple method to transfer, integrate and study expression of foreign genes, such as chicken ovalbumin and α-actin in plant tumours. EMBO J. 3 1929-1937.

Koomneef M., Blankestijn-de Vries H., Hanhart C., Soppe W. and Peeters T. (1994) The phenotype of some late flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild type. Plant J. 6 911-919.

